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A note on the moving hyperplane method *

Céline Azizieh & Luc Lemaire

Abstract

We make precise the domain regularity needed for having the mono-
tonicity and symmetry results recently proved by Damascelli and Pacella
on p-Laplace equations. For this purpose, we study the continuity and
semicontinuity of some parameters linked with the moving hyperplane
method.

Résumé. Dans [1], Ph. Clément et le premier auteur ont établi par
des méthodes de continuation des résultats d’existence pour des problemes
du type —Apu = f(u) dans Q, u =0 sur 9Q, u > 0 sur Q, ou 1 < p < 2,
Q C RY est un domaine borné convexe et f : R — [0 + 00) est continue.
La preuve de ces théoremes fait appel aux récents résultats de monotonie
et de symétrie établis par Damascelli et Pacella dans [3], résultats dont
la démonstration nécessitait la continuité ou semi-continuité de certains
parametres géométriques liés a la méthode des moving hyperplanes. Notre
but est ici de préciser les hypoth‘eses de régularité et de convexité du
domaine ) qui sont nécessaires pour satisfaire les différentes conditions
de continuité des parametres en question.

1 Results

Let us consider the problem
—Apu = f(u) inQ,
u=0 on 04, (1.1)
ueCHQ),u>0 inQ
where 1 < p < 2, Q ¢ R” is a bounded convex domain, A, is the p-laplacian

operator defined by Apu = div(|Vu[P72Vu) and f: R — [0, +00) is continuous
on R, locally Lipschitz continuous on (0, 400) and satisfies

3Cy, C1 > 0 such that Colu|? < f(u) < C1|u|? VYu e RT
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where ¢ > p—1. In [1], Ph. Clément and the first author proved the existence of
a nontrivial positive solution to (1.1) by using continuation methods and estab-
lishing a priori estimates for the solutions of some nonlinear eigenvalue problem
associated with (1.1). The desired a priori estimates use a blow up argument
as well as some monotonicity and symmetry results proved by Damascelli and
Pacella in [4] and generalizing to the p-laplacian operator with 1 < p < 2 the
well known results of Gidas—Ni-Nirenberg from [5] and Berestycki-Nirenberg
in [2]. In their proof, Damascelli and Pacella use a new technique consisting in
moving hyperplanes orthogonal to directions close to a fixed one. To be efficient,
this procedure needs some continuity of some parameters linked with the mov-
ing plane method (see the functions A;(r) and a(v) defined below). Therefore
they assume in their result that 9 is smooth to insure this continuity (and
only for that reason). However, such a smoothness hypothesis does not appear
in the case p = 2 in the classical moving plane procedure (see [2]).

Our purpose here is to give more precision on the regularity of the domain
Q that is needed to have the continuity of the function a(v) and the lower
semicontinuity of A;(v), and so to have the monotonicity and symmetry results
of [4]. This question is also important concerning the existence result from [1].
Specifically, we ask that the domain be of class C'!, and we also discuss convexity
conditions relating to the continuity of A;(v).

Remark that some symmetry results for solutions of elliptic partial differen-
tial equations have also been obtained by Brock by using the continuous Steiner
symmetrization (cf. [3]).

In this paper,  will denote an open bounded domain in RY with C'' bound-
ary. We will say that Q is strictly convex if for all z,y € Q and for all ¢ € (0, 1),
(I-t)x+tye.

For any direction v € RY, |v| = 1, we define

a(v) := ;relgxu

and for all A > a(v),
Yi={zeQlazrv <A},
TY :={z € Qav =X} (#0 for a(v) < A < —a(—v)).

Let us denote by R the symmetry with respect to the hyperplane T} and

2 = RY(z) Vo € RY,

(Q5)" = RX(2),

A (v) :={p > a(v)|VA € (a(v), ), we have (1.2) and (1.3)},
A (v) = sup Ay (v)

where (1.2), (1.3) are the following conditions:

(€%)’ is not internally tangent to O at some point p ¢ TY (1.2)
for all z € 0QNTY, v(z).v # 0,
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where v(z) denotes the inward unit normal to 9Q at . Notice that A;(v) #
( and A;(v) < oo since for A > a(v) close to a(v), (1.2) and (1.3) are satisfied
and € is bounded.

X, | X =R(x)
o @’
a(v) Ty
K—Aﬂ
0 ;/ A

Figure 1: Hlustration of the notations

Propositions 1 and 2 below give sufficient conditions on 2 to guarantee the
continuity of the functions a(v) and A\ (v), as well as the lower semicontinuity
of )\1 (V)

Proposition 1 Let Q be a bounded domain with C* boundary. Then the func-
tion a(v) is continuous with respect to v € SN1,

Proposition 2 Let Q C RN be a bounded domain with C* boundary. Then the
function A\ (v) is lower semicontinuous with respect to v € SN=1. If moreover
O is strictly convez, then A1 (v) is continuous.

As a consequence of these results, we can give more precision on the condi-
tions to impose to € in the monotonicity result of [4]. This result becomes:

Theorem 1.1 in Damascelli-Pacella [4] Let Q be a bounded domain in
RN with C* boundary, N > 2 and g : R — R be a locally Lipschitz continuous
function. Let u € C1(Q) be a weak solution of

—Apu = g(u) nfd
u >0 inf,
u=0 on 0

where 1 < p < 2. Then, for any direction v € RN and for X\ in the interval
(a(v), \1(v)], we have u(x) < u(z) for all x € Q. Moreover %(m) > 0 for all
z € Q5 (,)\Z where Z = {z € Q| Vu(z) = 0}.

Below we prove Propositions 1 and 2 and we give a counterexample of a

C*° convex but not strictly convex domain for which A\ (v) is not continuous
everywhere.
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Proof of Proposition 1: Let us fix a direction v € SN¥~1. We shall prove that
for all sequence v, — v with |v,| = 1, there exists a subsequence still denoted
by vy, such that a(v,) — a(v). Since Q is bounded, (a(v,)) is also bounded, so
passing to an adequate subsequence, there exists a € R such that a(v,) — a.
We will show that @ = a(v). Suppose by contradiction that @ # a(v). Then
either a < a(v) or a > a(v).

CASE 1: @ < a(v): Since

a(v) = inf x.v = minz.v = min z.v,
z€Q z€Q €N

there exists x,, € 9Q such that
Ty = a(Vy). (1.4)

Passing again to a subsequence, there exists x € 02 such that x, — x and
taking the limit of (1.4), we get z.v = a < a(v), a contradiction with the
definition of a(v).

CASE 2: a > a(v): There exists x € 0Q with z.v = a(v). For n large,
|x.vy — z.v| = |x.v) — a(v)] is small, and since a(v,) — a > a(v), for n large
enough we have z.v, < a(v,), contradicting the definition of a(v,). O

Proof of Proposition 2: We first prove the continuity of A\ (v) if €2 is strictly
convex. Suppose by contradiction that there exists v € SN~1 such that \; is
not continuous at v. Then we can fix ¢ > 0 and a sequence (v,,) C SN¥~! such
that v, — v and |A\1(v) — A1(v)| > € for all n € N. Passing to a subsequence
still denoted by (v,,), we can suppose that

either A1 (v) > M(vp)+e VneN or A(v)<A(v,)—€¢ VneN

CASE 1: A (v) > M(vn) +eforall n € N, For any fixed n € N, we have the
following alternative: either there exists z, € T}, N9 with v(zy).rn =0,

or there exists =, € (02N QK’;(VH)) \ T)’\’Il(un) with (xn)i’ll(yn) € 09. Passing
once again to subsequences, we can suppose that we are in one of the two
situations above for all n € N. We treat below each situation and try to reach
a contradiction.

(1.a) For all n € N, there exists z, € T\" | N IQ with v(z,).v, = 0.
1(vn)

Passing if necessary to a subsequence, there exist A < A\;(v) —e and x € Ty N
such that x,, — « and v(z).r = 0. This contradicts the definition of A (v).
(1.b) For all n € N, there exists x, € QN QY , )\ Ty, ) with (2,)37,,) €
of.

Passing if necessary to a subsequence, there exist A < A\;(v) —e and = € 95 ﬂ(Tg
such that x, — z and 2% € o0 fx ¢ Ty, we reach a contradiction with the
definition of A\;(v). Suppose now that x € TY. Let us denote (xn)z’ll(yn) by up,.
Since  is a C! domain, it holds that v(u,).v, < 0 for all n. By definition of
A (vn), v(zn)vn > 0. If x € TY, 2 = limx,, = limu,, and so v(z).r = 0, which
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contradicts the definition of A1 (v).
Observe that we do not use the convexity of the domain in Case 1.

CASE 2: A\ (v) < AM(vn) —€efor all n € N: As in the first case, either there
exists z € T} ,,) N 9 with v(z).v = 0 or there exists x € (0N QY (V)) \T )
such that = ) € 92 We treat the first situation in (2.a) and the second one
n (2.b).

(2.a) For e small enough, Ti/l(”)"!‘% NON # (. Since Q is strictly convex, there
exists «’ € TKI(V)+% N O such that

v(z').v <O. (1.5)

For ¢ > 0 small enough, there exists ng € N such that for all n > ng, the
sets T”"( o 0f) are non empty and since they are compact, we can choose a

sequence (zn) satisfying
€ TYiyps N0, |2/ —,| = min {|1:’ —yl Y ETY s 0 89} .

Passing if necessary to a subsequence, x,, — ¥y for some y € T' /\1@) peN 0f) such
2
that

|2/ —y| = hm dist(x’, v, V45 N o),
but since this limit is equal to 0, we infer that ' = y. Now, since A\;(v) <

M(vp) —€ for all n € N, v(z,).v, > 0 for all n and thus v(2').v > 0, a
contradiction with (1.5).
(2.b) The convexity of {2 implies that =¥ . ¢ Q. Now, 2"

so that

1%
W+s Tty

J:K’;(V)Jr% ¢ Q (1.6)
for n large enough. But since x.v < Ai(v) by definition of z, we also have
.V < A (v) < Ai(v) + § for n sufficiently large, and so

€ (02N ) )\ TNy s

for these values of n. This fact together with (1.6) contradicts the definition of

)\1(l/n).
The proof of the lower semicontinuity follows from Case 1, which uses only
the C' regularity of the domain. O

A counterexample in R?

This is an example of a convex but not strictly convex domain in R2. It con-
tradicts case (2.a) in the proof and indeed, case (2.a) is the only one using the
strict convexity. The example can be made smooth. In fact all is required is a
convex domain in R? whose boundary contains a piece of (straight) line, say of
length L. Then for v parallel to the line, there exists a sequence v, — v such
that A1 (v,) > M (v) + 5.

A variation of this construction will produce similar examples in higher di-
mensions.
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)\1(I/n) > )\1(V) +e€

a(v)
.0

L) / Al(v)‘i

Figure 2: Counterexample of a smooth convex but not strictly convex domain
for which A;(v) is not continuous everywhere.
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