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Semi-classical analysis and vanishing properties of

solutions to quasilinear equations ∗

Yves Belaud

Abstract

Let Ω be an open bounded subset of RN and b a measurable nonneg-
ative function in Ω. We deal with the time compact support property
for

ut −∆u + b(x)|u|q−1u = 0

for p ≥ 2 and

ut − div(|∇u|p−2∇u) + b(x)|u|q−1u = 0

with m ≥ 1 where 0 ≤ q < 1. We give criteria associated to the first eigen-
value of some quasilinear Schrödinger operators in semi-classical limits.
We also provide a lower bound for this eigenvalue.

1 Introduction

Let Ω be a regular bounded domain of RN (N ≥ 1) and q ∈ [0, 1). We consider
the weak solution of the degenerate parabolic equations subject to the Neumann
boundary condition:

ut −∆u+ b(x)|u|q−1u = 0 in Ω× (0,∞),
∂νu = 0 on ∂Ω,

u(x, 0) = u0(x) in Ω,
(1.1)

and more generally,

ut − div(|∇u|p−2∇u) + b(x)|u|q−1u = 0 in Ω× (0,∞),
∂νu = 0 on ∂Ω,

u(x, 0) = u0(x) in Ω,
(1.2)
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10 Semi-classical analysis and vanishing properties

with p ≥ 2, or

ut −∆(um) + b(x)|u|q−1u = 0 in Ω× (0,∞),
∂νu = 0 on ∂Ω,

u(x, 0) = u0(x) in Ω,
(1.3)

with m ≥ 1.
Many authors have already dealt with such equations giving a wide range of

applications in physical mathematics. Now, our task is to describe a compact
compact support property, in time.

Definition. A solution u satisfies the Time Compact Support property (for
short TCS property) if there exists a time T such that for all t ≥ T and all
x ∈ Ω, u(x, t) = 0.

First, we study some simple cases for (1.1):
1) Suppose that there exists a real γ such as b(x) ≥ γ > 0 a.e. in Ω. From the
maximum principle, u(x, t) ≤ (1 − γ(1 − q)t)

1
1−q in Ω × (0,∞). The nonlinear

absorption is stronger than the diffusion and the TCS property holds.
2) We have a different feature if we assume that there exists a connected open
set ω such as b(x) = 0 a.e. in ω (no absorption in ω). Then usually, u has not
the compact support property. Indeed, if we denote by λ(ω) the first eigenvalue
of −∆ in W 1,2

0 (ω) and ζ the first eigenfunction with ‖ζ‖L∞(ω) = 1 and ζ ≥ 0,
then from the maximum principle, u(x, t) ≥ ζ(x) e−λ(ω)t for all x in ω and for
all t ≥ 0.

Up to some minor changes, the previous examples are also valid if u satisfies
(1.2) and (1.3). The compact support property is related to {x : b(x) = 0} and
the behaviour of the function b in a neighbourhood of this set.

2 The time compact support property

The starting idea was in the article of Kondratiev and Véron [7]. They estab-
lished this property for (1.1) with the help of the following quantities

µn = inf
{∫

Ω

(|∇v|2 + 2nb(x)|v|2)dx : v ∈W 1,2(Ω),
∫

Ω

|v|2 dx = 1
}
,

with n positive integer number. More precisely, up to a small change, they
proved the following theorem.

Theorem 2.1 Suppose that u is a solution of (1.1) and

+∞∑
n=0

lnµn
µn

< +∞,

then there exists some T > 0 such that u(x, t) = 0 for (x, t) ∈ Ω× [T,+∞).
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We see that µn are linked to well-known questions in the semi-classical limit
of Schrödinger operator of the type −∆ + 2nb(.).

In [3], the authors give a first extension of this theorem by replacing the
sequence 2n by any decreasing sequence going to zero. For the sake of simplicity,
we denote by µ(α) the lowest eigenvalue of the Neumann realization of the
Schrödinger operator −∆ + αq−1b(.) in W 1,2(Ω), that is,

µ(α) = inf
{∫

Ω

(|∇v|2 + αq−1b(x)|v|2)dx : v ∈W 1,2(Ω),
∫

Ω

|v|2 dx = 1
}
. (2.1)

They proved the following theorem [3, page 50].

Theorem 2.2 Assume that (αn) is a decreasing sequence of positive numbers
such that

+∞∑
n=1

1
µ(αn)

(
ln(µ(αn)) + ln(

αn
αn+1

) + 1
)
< +∞, (2.2)

then any solution of (1.1) satisfies the TCS property.

The proof is based on an iterative method using the following lemma.

Lemma 2.1 Suppose that b ≥ 0 a.e. in Ω, 0 ≤ q < 1 and u is a bounded weak
solution of (1.1) such that ‖u0‖L∞(Ω) ≤ α for some α > 0. Then

‖u(., t)‖L∞(Ω) ≤ min
(
1, C(µ(α))N/4e−tµ(α)

)
‖u0‖L∞(Ω), (2.3)

where C = C(Ω) is a positive real number.

Outline of the proof. We use u as test-function and since u1−q ≥ α1−q, we
have

1
2
d

dt

∫
Ω

u2 dx+
∫

Ω

(|∇u|2 + bαq−1u2) dx ≤ 0.

The definition of µ(α) and Hölder’s inequality gives

‖u(., s)‖L2(Ω) ≤ e−sµ(α)|Ω|1/2‖u0‖L∞(Ω),

for all positive real number s. The regularizing effects associated to this type of
equation can be write under the following form [11, 12]:

‖u(., t)‖L∞(Ω) ≤ C(1 +
1

t− s
)N/4‖u(., s)‖L2(Ω),

for all t > s. Taking t− s = 1/µ(α) completes the proof of the lemma. �
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Sketch of the proof of the theorem 2.2. (αn) is a decreasing sequence
which tends to zero. We shall construct an increasing sequence (tn) such that
for all n,

∀t ≥ tn, ‖u(., t)‖L∞(Ω) ≤ αn.

If limn→+∞ tn = T < +∞ then u satisfies the TCS property. To do this, we
use an iterative method to find an upper bound for

∑
n tn+1 − tn under the

form of a convergent series. We set t0 = 0 and α = α0 = ‖u0‖L∞(Ω). Applying
Lemma 2.1 gives an upper bound for ‖u(., t)‖L∞(Ω). t1 is defined by

C(µ(α0))N/4e−(t1−t0)µ(α0)α0 = α1.

A this point, we apply Lemma 2.1 but for time t ≥ t1 with α = α1. Iterating
this process provide us the formula

C(µ(αn))N/4e−(tn+1−tn)µ(αn)αn = αn+1.

So we obtain an upper bound for the series
∑
n tn+1 − tn. �

An analoguous result can be proved for (1.2). But before, we recall the
regularizing effects for this type of equation [11, 12].

Theorem 2.3 Let p > 1. Suppose that u is a weak solution of

ut − div(|∇u|p−2∇u) +B(x, t, u) = 0 in Ω× (0,∞),
∂νu = 0 on ∂Ω,

u(x, 0) = u0(x) ∈ Lr(Ω),

where B is a Caratheodory functions which satisfies B(x, t, ρ)ρ ≥ 0 a.e. in
Ω× (0,∞). If r ≥ 1, r > N(2/p− 1) then

‖u(., t)‖L∞(Ω) ≤ C
(
1 +

1
t

)δ(r)‖u(., 0)‖σ(r)
Lr(Ω),

with C = C(Ω, p), δ(r) = N
rp+N(p−2) and σ(r) = rp

rp+N(p−2) .

In a similar way, we introduce

µ(α, p) = inf
{∫

Ω

(|∇v|p + αq−(p−1) b(x) |v|p)dx : v ∈W 1,p(Ω),
∫

Ω

|v|p dx = 1
}
.

Here µ(α, p) is the first eigenvalue in W 1,p(Ω) for the Neumann boundary con-
dition of

u 7→ −∆pu+ αq−(p−1)b(.)up−1.

The theorem states as follows [1]:

Theorem 2.4 Let 0 ≤ q < 1, p > 2 and assume that there exist two sequences
of positive real numbers (αn) and (rn) such that (αn) is decreasing and

∞∑
n=0

rp−1
n

αp−2
n+1µ(αn, p)σ(rn)

< +∞. (2.4)

Then any solution of (1.2) with initial bounded data satisfies the TCS property.
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Consequently, if rn = lnµ(αn, p), we have the following statement.

Corollary 2.1 Under the same assumptions on q and p, if there exists a de-
creasing sequence of positive real numbers (αn) such that

∞∑
n=0

(lnµ(αn, p))p−1

αp−2
n+1µ(αn, p)

< +∞, (2.5)

then any solution of (1.2) satisfies the TCS property.

Theorem 2.4 comes from the following lemma.

Lemma 2.2 Suppose there exists a measurable function u in Ω × R+ which
satisfies weakly (1.2) with ‖u0‖L∞(Ω) ≤ α for some α > 0. Then

‖u(., t)‖Lr(Ω) ≤
( 1
‖u(., 0)‖2−pLr(Ω) + C1µ(α, p)t

) 1
p−2

, (2.6)

where C1 = C1(Ω, r, p) is a positive real constant and there exist two positive
real numbers C = C(Ω, p) and C2 = C2(r, p) such that

‖u(., t)‖L∞(Ω) ≤ min
(
C(1 +

2
t
)δ(r)

( 1
‖u(., 0)‖2−pL∞(Ω) + C2µ(α, p)t

)σ(r)
p−2

, 1
)
,

with δ(r) = N
rp+N(p−2) and σ(r) = rp

rp+N(p−2) .

Idea in the proofs. The principle to prove them remains true. It is a bit
more complicated because the term ut is not homogenuous with up−1 but it
follows exactly the Kondratiev-Vron method as shown in the proof of Theorem
2.2. The main differences are technical. Instead of using u as test-function,
we use u|u|rn−1 at each step of the iteration. An estimate of the asymptotic
behaviour when r → +∞ for the constant C2 = C2(r, p) is needed. The proof
of the theorem ends with sharp upper bounds for the series

∑
n tn+1 − tn. �

Now, let us talk about equation 1.3. Formally, replacing p− 1 by m give the
same results [11, 12]:

Theorem 2.5 Let m > 0 and u be a weak solution of

ut −∆(um) +B(x, t, u) = 0 in Ω× (0,∞),
∂νu = 0 on ∂Ω,

u(x, 0) = u0(x) ∈ Lr(Ω),

where B is a Caratheodory function satisfying B(x, t, ρ)ρ ≥ 0 a.e. in Ω×(0,∞).
If r ≥ 1 and r > N(1−m)/2, then

‖u(., t)‖L∞(Ω) ≤ C(1 +
1
t
)δ(r)‖u(., 0)‖σ(r)

Lr(Ω) ,

with C = C(Ω,m), δ(r) = N
2r+N(m−1) and σ(r) = 2r

2r+N(m−1) .
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We set quantities adapted to the problem

µ′(α,m) = inf
{∫

Ω

(|∇v|2 + αq−mb(x)|v|2)dx : v ∈W 1,2(Ω),
∫

Ω

|v|2 dx = 1
}
.

Thus,

Theorem 2.6 ([1]) Let 0 ≤ q < 1, m > 1 and assume that there exists two
sequences of positive real numbers (αn) and (rn) such that (αn) is decreasing
and

∞∑
n=0

rmn
αm−1
n+1 µ

′(αn,m)σ(rn)
< +∞. (2.7)

Then any solution of (1.3) with initial bounded data satisfies the TCS property.

With rn = lnµ′(αn,m), we deduce the following statement.

Corollary 2.2 Under the above assumptions on q and m, if there exists a de-
creasing sequence of positive real numbers (αn) such that

∞∑
n=0

(lnµ′(αn,m))m

αm−1
n+1 µ

′(αn,m)
< +∞,

then any solution of (1.3) satisfies the TCS property.

The proof of Theorem 2.6 also comes from the following lemma.

Lemma 2.3 We suppose there exists a measurable function u in Ω×R+ which
satisfies weakly (1.3) with ‖u0‖L∞(Ω) ≤ α for some α > 0. Then

‖u(., t)‖Lr(Ω) ≤
( 1
‖u(., 0)‖1−mLr(Ω) + C1µ′(α,m) t

)1/(m−1)

, (2.8)

with C1 = C1(Ω, r,m) and there exist two positive real numbers C = C(Ω,m)
and C2 = C2(r,m) such that

‖u(., t)‖L∞(Ω) ≤ min
(
C

(
1 +

2
t

)δ(r)( 1
‖u(., 0)‖1−mL∞(Ω) + C2µ′(α,m)t

) σ(r)
m−1 , 1

)
,

where δ(r) and σ(r) are defined in Theorem 2.5

The assumptions in Theorem 2.2 and Corollaries 2.1, 2.2 admit a simpler
form. A comparaison between series and integral gives the following theorem.

Theorem 2.7 (Integral criterion [3, 1]) Let 0 ≤ q < 1. 1) If p ≥ 2 and∫ 1

0

(lnµ(t, p))p−1

tp−1µ(t, p)
dt < +∞,
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then all solutions of (1.2) satisfy the TCS property.
2) If m ≥ 1 and ∫ 1

0

(lnµ′(t,m))m

tmµ′(t,m)
dt < +∞,

then all solutions of (1.3) satisfy the TCS property.

We remark that µ(t) = µ(t, 2) and that (1.1) is a particular case of (1.2) for
p = 2 and (1.3) for m = 1. The proof is first establish for p = 2 [3, page 51] and
then for p > 2 and m > 1 [1]. What is remarkable is that this criterion has a
same simple form in all cases.

For applications, µ(t, p) and µ′(t,m) have to be linked directly to the function
b. We recall that µ(α, p) is the first eigenvalue in W 1,p(Ω) for the Neumann
boundary condition of u 7→ −∆pu+ αq−(p−1)b(.)up−1.

The aim of semi-classical analysis is to describe the behavior of the spec-
trum of the operator u 7→ −∆pu + h−pV (.)up−1 in particular λ1(h) the lowest
eigenvalue. V is a function which holds in our case

V ∈ L∞(Ω), ess inf
Ω

V = 0 and
∫

Ω

V (x) dx > 0. (2.9)

We denote by γ a positive number which satisfies:

γ


= N

p for 1 < p < N,

∈ (1,+∞) for p = N,

= 1 for p > N,

(2.10)

Corollary 2.3 If (2.9) holds then for h small enough,

λ1(h)(meas{x : V (x) ≤ hpλ1(h)})1/γ ≥ C, (2.11)

where C = C(p,N, γ,Ω, V ) is a positive constant.

µ(t, p) can be written as µ(t, p) = λ1(t
(p−1)−q

p ) which after a change of variables
gives ∫ 1

0

(lnµ(t, p))p−1

tp−1µ(t, p)
dt =

∫ 1

0

(lnλ1(h))p−1

h
p(p−1)−(1+q)

p−(1+q) λ1(h)
dh.

If we have an estimate of the type

λ1(h) ≥ C
1
hθ
,

where C and θ are two positive real numbers, then the integral criterion holds
for p > 2 provided

θ >
p(p− 2)
p− (1 + q)

. (2.12)

Similar expressions can be found for p = 2 and m > 1. Finally, we obtain next
theorem.
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Theorem 2.8 (1/b criterion [3, 1]) Let 0 ≤ q < 1 and b be a bounded mea-
surable function such that

ess inf
Ω

b = 0 and
∫

Ω

b(x) dx > 0.

1) If p = 2 and ln(1/b) ∈ Ls(Ω) for some s > N/2 then equation (1.1) satisfies
the TCS property.
2) If p > 2 and (1/b)s ∈ L1(Ω) for some s with

s >

{
p−2
1−q (

N
p ) for p ≤ N,

p−2
1−q for p > N,

then equation (1.2) satisfies the TCS property.
3) If m > 1 and (1/b)s ∈ L1(Ω) for some s with

s >

{
m−1
1−q (N2 ) for N ≥ 2,
m−1
1−q for N = 1,

then equation (1.3) satisfies the TCS property.

Outline of the proof. the three cases are based on Marcinkiewicz type in-
equalities. For 1)

meas
{
x ∈ Ω : ln

1
b(x)

≥ ln
1

h2λ1(h)

}
≤ 1(

ln 1
h2λ1(h)

)s ∫
Ω

(
ln

1
b(x)

)s
dx,

and for 2)

meas
{
x :

1
b(x)

≥ 1
hpλ1(h)

}
≤ (hpλ1(h))s

∫
Ω

( 1
b(x)

)s
dx.

The proof ends with estimates such as (2.12) and some technical arguments. �

Remark 2.1 In the case where p = 2 and N ≤ 2, estimate (2.11) is not enough
sharp so we use the formula of Lieb and Thirring. See [3] for details.

Now we apply the previous theorem to the radial functions.

Corollary 2.4 Suppose that 0 ∈ Ω. 1) If b(x) = exp(− 1
‖x‖β ) with β < 2 then

any solution of (1.1) satisfies the TCS property.
2) If b(x) = ‖x‖β with p ≤ N and β < p(1 − q)/(p − 2) then any solution of
(1.2) satisfies the TCS property.
One has the same conclusion if p > N and β < N(1− q)/(p− 2).
3) If b(x) = ‖x‖β with N ≥ 2 and β < 2(1 − q)/(m − 1) then any solution of
(1.3) satisfies the TCS property.
One has the same conclusion if N = 1 and β < (1− q)/(m− 1).
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3 A lower bound for the first eigenvalue

This section is dedicated to estimating the first eigenvalue, in W 1,p(Ω), of the
operator u 7→ −∆pu + h−pV (.)up−1. We have seen that a lower bound is
fundamental for applications. First,we introduce a sequence of definitions. We
consider a non-empty connected open subset Ω ⊂ RN and a mesurable function
V defined in Ω. We set

W 1,p,V (Ω) = {ψ ∈W 1,p(Ω) : V (x)|ψp| ∈ L1(Ω)}.

If W 1,p,V (Ω) 6= {0} and ψ ∈W 1,p,V (Ω), we set

FV (ψ) =
∫

Ω

|∇ψ|p + V (x)|ψ|p dx, (3.1)

and define

λ1 = inf
{
FV (ψ) : ψ ∈W 1,p,V (Ω),

∫
Ω

|ψ|p dx = 1
}
, (3.2)

and for h > 0,

λ1(h) = inf
{
Fh−pV (ψ) : ψ ∈W 1,p,V (Ω),

∫
Ω

|ψ|p dx = 1
}
, (3.3)

Thus λ1(h) is the first eigenvalue of the operator

u 7→ −∆pu+ h−pV (.)|u|p−2u. (3.4)

in W 1,p,V (Ω) with Neumann boundary condition if the infimum is achieved by
a regular enough element of W 1,p,V (Ω) and ∂Ω C1.
We start with a simple result which enlights our arguments. On the contrary to
the linear case (p = 2), our proof is not based on the theory of pseudodifferential
operators but on the continuous injections of W 1,p(Ω) into the Ls spaces for
suitable s.

Theorem 3.1 Suppose N > p > 1. Then either λ1 = −∞ or( ∫
V (x)≤λ1

(λ1 − V (x))N/p dx
)p/N

≥ C(p,N), (3.5)

where C = C(p,N) > 0 is the positive constant of the Sobolev inequality.
In addition, if there exists a minimizer in W 1,p,V (RN ),( ∫

V (x)<λ1

(λ1 − V (x))N/p dx
)p/N

≥ C(p,N). (3.6)
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Proof. Let ψ be in W 1,p,V (RN ) with ‖ψ‖Lp(RN ) = 1 then∫
RN

|∇ψ|p dx+
∫

RN

V (x)|ψ|p dx = FV (ψ) = FV (ψ)
∫

RN

|ψ|p dx.

The integral with V is split in two parts, that is,
RN = {x : V (x) < FV (ψ)} ∪ {x : V (x) ≥ FV (ψ)}. Therefore,∫

RN

|∇ψ|p dx ≤
∫
V (x)<FV (ψ)

(FV (ψ)− V (x))|ψ|p dx. (3.7)

Hölder’s inequality leads to∫
RN

|∇ψ|p dx

≤
( ∫

V (x)<FV (ψ)

(FV (ψ)− V (x))N/p dx
)p/N( ∫

RN

|ψ|p
∗
dx

)1− p
N

. (3.8)

since {x : V (x) < FV (ψ)} ⊂ RN . Non zero constants do not belong to
W 1,p,V (RN ) and so all functions ψ satisfy

∫
RN |∇ψ|p dx > 0. We can apply

Sobolev inequality. The Beppo-Levi theorem completes the proof. �

Remark 3.1 If Ω is any open domain of RN , we define

W 1,p,V
0 (Ω) = {ψ ∈W 1,p

0 (Ω) : V (x)|ψp| ∈ L1(Ω)},

and if W 1,p,V
0 (Ω) 6= {0},

λ̃1 = inf
{
FV (ψ) : ψ ∈W 1,p,V

0 (Ω),
∫

Ω

|ψ|p dx = 1
}
,

then the estimates in Theorem 3.1 hold for λ̃1.

When Ω is a C1 bounded domain of RN and V is a measurable function such
that

V ∈ L∞(Ω), ess inf
Ω

V = 0 and
∫

Ω

V (x) dx > 0, (3.9)

we set uh the first eigenfunction related to the first eigenvalue λ1(h).
Recall that γ is a positive number which satisfies

γ


= N

p for 1 < p < N,

∈ (1,+∞) for p = N,

= 1 for p > N,

(3.10)

with γ
γ−1 = +∞ if γ = 1. This γ is such that W 1,p imbeds Lq(Ω) continuously

with q = p γ
γ−1 .

Theorem 3.2 Assume that (3.9) holds. Then for h small enough,( ∫
V (x)<hpλ1(h)

(
λ1(h)−

V (x)
hp

)γ
dx

)1/γ

≥ C,

where C = C(p,N, γ,Ω, V ) is a positive real constant.
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Proof. We start with (3.8) because the beginning is similar. Replacing RN ,
ψ and V by Ω, uh and V

hp the Hölder’s inequality gives∫
Ω

|∇uh|p dx ≤
( ∫

V (x)<hpλ1(h)

(
λ1(h)−

V (x)
hp

)γ
dx

)1/γ( ∫
Ω

|uh|q dx
)p/q

,

where q = p γ
γ−1 . Thus, by the imbeddings,

( ∫
V (x)<hpλ1(h)

(
λ1(h)−

V (x)
hp

)γ
dx

)1/γ

≥ C
‖∇uh‖pLp(Ω)

1 + ‖∇uh‖pLp(Ω)

,

with C = C(p,N,Ω, γ) a positive real number. The main idea is to prove that

lim inf
h→0

‖∇uh‖Lp(Ω) > 0.

Suppose that there exists a sequence (hn) of positive real numbers which goes
to zero such that

lim
n→+∞

‖∇uhn
‖Lp(Ω) = 0.

Hence (uhn
) is bounded in W 1,p(Ω), so there exists a function u0 in W 1,p(Ω)

such that, up to a subsequence, uhn ⇀ u0 weakly in W 1,p(Ω). Obviously,
‖∇u0‖Lp(Ω) = 0. Therefore, u0 = C where C is a real. Thanks to the Rellich-
Kondrachov theorem, up to a subsequence, uhn

→ C strongly in Lp(Ω) so
C = ( 1

meas(Ω) )
1
p . We deduce that limn→+∞ hpnλ1(hn) =

∫
Ω V (x) dx

meas(Ω) . But from
lemma 3.2 in [3], limh→0 h

pλ1(h) = 0 which leads to a contradiction. �
A simpler form is provided in the following corollary.

Corollary 3.1 If (3.9) holds then for h small enough,

λ1(h)(meas{x : V (x) < hpλ1(h)})γ ≥ C,

where C = C(p,N, γ,Ω, V ).

We end this section by quoting a theorem. For Ω a domain of RN bounded
or not, regular or not and V a mesurable function defined on Ω such that
W 1,p,V (Ω) 6= {0}, we define a well for a mesurable function V [1].

Definition. We say that V has a well in U if U is a C1 bounded, connected,
non-empty open set of Ω and if there exists ψ0 ∈W 1,p,V (Ω) with ‖ψ0‖Lp(Ω) = 1

such that
∫

Ω

V (x)|ψ0|p dx < a = essinf
Ω\U

V with meas(Ω\U) > 0.

The term of well generalizes the definition in [8].

Theorem 3.3 ([3]) If V has a well in U , for h small enough,( ∫
V (x)≤hpλ1(h)

(λ1(h)− h−pV (x))γ dx
)1/γ

≥ C,
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where C is a positive constant which does not depend on h.
In addition, if there exists a minimizer in W 1,p,V (Ω),( ∫

V (x)<hpλ1(h)

(λ1(h)− h−pV (x))γ dx
)1/γ

≥ C.

The proof is technical but some arguments have already been used for The-
orem 3.2.

4 Summary and open questions

For the sake of completeness, we quote another theorem of.

Theorem 4.1 ([3]) Suppose that b is a continuous and nonnegative function
defined in Ω which satisfies for some x0 ∈ Ω

lim
r→0

r2 ln(1/‖b‖L∞(Br(x0))) = ∞.

If u is a weak solution of (1.1) then u does not satisfies the TCS property.

Up to now, we have the following:

p = 2 p > 2 m > 1

Integral
criterion

∫ 1

0
lnµ(t)
tµ(t) dt <∞

∫ 1

0
(lnµ(t,p))p−1

tp−1µ(t,p) dt <∞
∫ 1

0
(lnµ′(t,m))m

tmµ′(t,m) dt <∞

1/b criterion
with

ln(1/b) ∈ Ls
s > N

2

1/b ∈ Ls
s > p−2

1−q
N
p , N ≥ p

s > p−2
1−p , N < p

1/b ∈ Ls
s > m−1

1−q
N
2 , N ≥ 2

s > m−1
1−q , N = 1

Radial case
for β ≥ 0
and

exp(−1/‖x‖β)
β < 2

‖x‖β
p(1−q)
p−2 , N ≥ p

β < N(1−q)
p−2 , N < p

‖x‖β

β < 2(1−q)
m−1 , N ≥ 2

β < (1−q)
m−1 , N = 1

Converse yes no no

Non TCS
property for

exp(−1/‖x‖β)
β > 2

...
...

Open questions

1. What happens for p = 2 and β = 2 ? It does not seem within sight.



Yves Belaud 21

2. We have no genuine converse for p > 2 and m > 1. A converse has been
found for p = 2 because L2(Ω) has an inner product. More precisely,
for p > 2,

∫
Ω
up−1v dx 6=

∫
Ω
vp−1u dx in general. We search for another

test-functions (see [3] for details).

3. When p > 2, we have a good generalization of the Cwikel, Lieb and
Rosenblyum formula, that is, for large dimension (N > p). The estimate
for N ≤ p is far from the optimum. When p = 2, the Lieb and Thirring
formula works well. We hope that we will find an equivalent.

4. In [7], they also deal with second order elliptic equations with a strong
absortion, i.e., utt + ∆u − a(x)uq = 0. Heuristically speaking, changing
µ(α) into

√
µ(α) gives a sufficient condition for the TCS property. We

are working on this type of equation when a depends also on t.

5. More generally, the following problem ∆pu − a(x)up−1 = 0 in an outside
domain is difficult to handle. On RN minus a ball, a similar technique
may be possible.
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