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Necessary conditions of existence for an elliptic
equation with source term and measure data
involving p-Laplacian *

Marie-Francoise Bidaut-Véron

Abstract

We study the nonnegative solutions to equation
—Apu =ul + Ay,

in a bounded domain Q of RY, where 1 < p < N, ¢ >p—1, vis a
nonnegative Radon measure on €, and A > 0 is a parameter. We give
necessary conditions on v for existence, with A small enough, in terms of
capacity. We also give a priori estimates of the solutions.

1 Introduction

Let Q be a bounded regular domain in RY. We denote by M () the set of Radon
measures on 2, MT(Q) the set of nonnegative ones, and by M, (Q2), M; (2) the
subsets of bounded ones. We consider the quasilinear elliptic problem with a
source term:

~Apu = —div(|VulP?Vu) = |u|? u+p,  in Q, (1)

u=0, on 0, '
with 1 < p < N, ¢ > p—1, and p € M;(Q). We look for conditions on
the measure p ensuring that the problem admits a nonnegative solution, and
essentially in terms of capacity. In order to take account of the size of the
measure, we will study the problem with

where v € M () is fixed and A is a parameter. Recall a result of [3] in case
p =2, N >3, which gives a necessary and sufficient condition for existence:
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24 Existence of solutions to an elliptic equation

Theorem 1.1 ([3]) The following problem:

—Au=u?+ A, inQ,

1.2
u=20, on 0, (12)

where v € M (Q), v # 0, has a nonnegative solution (in the integral sense) if
and only if

—]_ ’ ’
A/wwéq, /w“qPA@“m (1.3)
Q a7 Ja

for any o € W™ (Q) N W22(Q) such that —Ay > 0, with compact support in
Q.

Thus if ¢ is subcritical, that means ¢ < N/(N — 2), problem (1.2) always
admits a solution for A small enough. In case ¢ > N/(N —2), in order to obtain
existence, the measure 1 = Av has to be small enough, and also not to charge
some small sets, in particular the point sets (this was first observed in [15]).
More precisely, if the measure is compactly supported, from [3], condition (1.3)
implies that

/ dv < Ccapa g (K,RY), for every compact set K C 0, (1.4)
K

*

where for any domain {2 and any m € N* and r > 1, cap,,,, is the capacity
associated to the Sobolev space W;™" (), defined by

Capm,r(Kv Q) = lnf{Hw”;V(;nT(Q) : 1/) S 'D(Q),O <¢<Ly=1lonkK } .
In fact it was proved in [2] that (1.4) is also sufficient:

Theorem 1.2 ([2]) Assume that v has a compact support in . Then problem
(1.2) has a solution for any XA > 0 small enough if and only if there exists C > 0
such that (1.4) holds.

Condition (1.4) implies that p does not charge the sets with 2, ¢~ capacity
zero. But it is stronger: if ¢ > N/(N — 2) (resp. ¢ = N/(N — 2)), there exists
a function v € L*(Q?) with 1 < s < N/2¢’ (resp. s = 1) such that problem (1.2)
admits no solution, for any A > 0.

Concerning problem (1.1) with p # 2, the question is much harder, because
the full duality argument used in [3] cannot be used for the p-Laplacian. The
first thing is to define a notion of solution, as it is the case for the problem
without reaction term. In Section 2 we recall the usual notions of entropy
solutions, which suppose that the measure is bounded; this leads to assume
that u? € L'(2). We denote by

N(p-1)

F:
N-—-p
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the critical exponent linked to the p-Laplacian, and we set

¢ =q/(g—p+1),
(hence ¢* = ¢’ if p = 2). In Section 3 we prove our main result:
Theorem 1.3 Let v € M} (2) and X > 0. Assume that problem

—Apu=ul+ v, inQ,

1.5
u=0, on IR, (15)

has a nonnegative entropy solution (hence ud € L*(Q)). Then for any R > pq*,
there exists C = C(N,p,q, R,Q) > 0 such that

‘IR
)\/ godl/+/ uqcpd:ngC’(/ @1*R|V@|Rdx)pq , (1.6)
Q Q Q

Jor any ¢ € Wy P(Q) N WL5(Q) (s > N) such that 0 < ¢ < 1 in Q. And for
any a < 0, there exists C = C(a, N, p,q, R,Q) > 0 such that

/R
/(u+1)“_1|Vu|”apd:E§C(1+/uq<pdx>(/ @I_R\V@|Rdm)p ()
Q Q Q

This Theorem gives a priori estimate not only of the size of the measure,
but also of the integral fQ ulp dx, independently on w. In the case p = 2, this
was first remarked by [12] when p = 0 ; it was the starting point for proving
L*° universal estimates. It was also used in [7] and [8] for obtaining a priori
estimates with a general measure pu. As a consequence we deduce the following:

Theorem 1.4 If problem (1.5) has a solution, then, for any R > pg*, there
exists C = C(N,p, q, R,Q) > 0 such that

)\/ dv < C (cap 1 r(K, Q)P /R for every compact set K ¢ Q. (1.8)
K

and if v has a compact support in 2, there exists C = C(N,p, q, R, ) > 0 such
that

/\/ dv < C (cap 1 g(K,RNWPT/B for cvery compact set K < Q. (1.9)
K

In particular, if ¢ > P, then v does not charge the point sets. Moreover for
any 1 < s < N/pg*, there exists a function v € L*(Q) such that for any X > 0,
problem (1.5) admits no solution.

In Section 4, we mention some partially or fully open problems linked to this
study. We refer to [5] for more complete results for problem (1.1) with possible
signed measure p, and for the problem with an absorption term

~Apu+ |ulTu = p, in Q,

1.10
u=0, on . ( )
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2 Entropy solutions

First recall some well-known results concerning the problem

—Apu=p, inQ,

2.1
u=0, on 0f, (2.1)
with g € My(£2). We set
2N 1
Po=-—"" P=2-_
0 N—f—l’ 1 N’

so that 1 < Py < P, and P > Py <= P > 1. When p > P, problem (2.1)
admits at least a solution w in the sense of distributions, such that u € VVO1 ()
for any 1 < r < P . In the general case, one can define a notion of entropy or
renormalized solutions in four equivalent ways, see [11], which allow to give a
sense to the gradient in any case: they are solutions such that V7T}(u) € L, ()
for any k > 0, where

To(s) = s, if [s| <k, (2.2)
ksign(s), if |s| >k, '

and the gradient of u, denoted by y = Vu is defined by
V(Tk(u)) =y X 1{\u|§k} a.e. in ). (23)

For any p > 1 there exists at least an entropy solution of (2.1), and it is unique
if 4 € L1(Q). Moreover any entropy solution satisfies the equation in the sense
of distributions. The role of Py and P; is shown by the estimates

uP~! € L5(Q), forany 1 <s < N/(N —p),
|VulP~t € L™(Q), forany 1 <r < N/(N —1).

Thus the gradient is well defined in L*(Q) if and only if p > P, and u itself is
in L'(Q) if and only if p > P.

Recall that any measure u € M;(€2) can be decomposed as
= po g — fs,
where g € Mg (), set of bounded measures such that
to(B) =0 for any Borel set B C Q such that capi,(B,Q) =0; (2.4)

and pf, p; are nonnegative and concentrated on a set E with cap ,(E,2) = 0.
If 1 € M; (), then po is nonnegative, and p = po + puf.

We will use one of the four equivalent definitions of solution: u is an entropy
solution if u is measurable and finite a.e. in Q, and

Ti(u) € WyP(Q)  for every k > 0, (2.5)
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and the gradient defined by (2.3) satisfies
|VuP~' € L"(Q), forany 1 <7 < N/(N —1), (2.6)

and u satisfies

/|Vu|p_2Vu.V(h(u)<p)dw:/h(u)goduo
) Q

+h(+0<>)/ pdyy —h(—OO)/ pdu
Q Q

for any h € WH>°(R) and A’ has a compact support, and any ¢ € W1*(Q) for
some s > N, such that h(u)p € W, P(Q).

In the same way, for given p = po + uf € M; (Q), a nonnegative entropy
solution u of problem (1.1) will be a measurable function u such that u? € L'()
and u is an entropy solution of problem

—Apu=p—u? inQ,
u=0 on 0.

In particular

/Q VP20V (h(u)p)dz + /

Q

ulh(u)pde = /

h(u)edpo +h(+00)/ eduf,
Q Q

for any h and ¢ as above.

3 Proofs and comments

Proof of Theorem 1.3 Let u = A\v = po + pf, where po € Mo () and

pd is singular, and let « € (1 —p,0) be a parameter. For any k > 0, we set

up = Tk (u), and, for any ¢ € (0, k),

g%, if r <0,
hare(r) = (Th(rt)+)* ={ (r+e)*, if0<r<k,
(k+e), ifr>k
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We choose in (2) the test functions b = ha ke, and ¢ € Wy (Q) N Whs(Q),
with s > N and ¢ > 0 in €, and obtain

/(uic—i-E)a(pduo-i-(k—l-E)a/ (pduj—i-/(u;c—I—E)aquodx
Q Q Q
+|a|/ /(uk+€)a_1|Vuk|p<pdm
aJo
:/(uk+€)°‘|Vu|p_2Vu.V<pdx
Q

< / (g + )| Vug P~ [Vepldz + / (up + €)° |V |V oolde
Q {u>k}

S% / (ug + &) HVug|? pdz + C/(“k +e) TP Vp|P da
0 Q

+(k+€)a/ |VulP~Vp|dz,
{u>k}

where C' = C(a) > 0.
Now from Holder inequality, setting 8 = q/(p — 1+ a) > 1,

/(Uk +e) PP |Vl da
Q
1/6 / / 1/0'
< (/(uk—i—s)q(pdm) (/ o7 |V p|P? d:v) .
Q Q

In particular for any k > 1,

|§|/Q/Q(uk+5)a1|Vuk|pcpdm

1/6 / ' 1/0’
<o [ rerpan) ([ o ver ) + /{ [TV
- (3.1)

Letting ¢ tend to 0, we get

’

1/6 , . \1/6
M uz_1|vuk|p(pd$ SO(/ uzgpdx> (/ g01*179 |V@‘p0 d.’,U)
2 Q Q Q

—|—/ |VulP~HVp|d. (3.2)
{u>k}
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Choosing now h(u) = 1 in (2), with the same ¢, we find

/apduo—i—/apduj—&-/uqcpdazz/ |VulP~2Vu. Vi dx
Q Q Q Q

g/ ug’*”/”’|vu|p—1u,9*“>/’”'|w\dx+/ Vul? =t Vil de
Q {u>k}

1/p’ 1
é(/ a7 Vul” o de) (/ ul =N plrdn )
Q Q

+/ |Vu|P~HV|d.
{uz=k}

(3.3)

Since ¢ > p — 1, we can fix « € (1 — p,0) such that 7 = ¢/(1 —a)(p —1) > 1.
From (3.2) and (3.3), we derive
/gpd,qu/ ulpdx
Q Q
1/p 1/ , , 1/’
§</ug_1|Vuk|p cpda:) 3 (/ uggodx) p(/ o' p|Vg0\Tpdx) :
Q Q Q
+/ |VulP~ | V|de
{u=k}
’ 1/1)/

[Vl Veplde)
¥

S(O(/ﬂuigpdz)lw(/ﬂwlp6I|V80p6'dx>l/0 +/{u>k

1/7p ’ ’ 7'
X (/ ngodx) (/ OITTP|Ve| pdx) +/ |Vu|P~HVl|d.
Q Q {u>k}

Now we can let k tend to oo, since u? + |[VulP~1 € L}(Q). It follows that

(3.4)

1/p'0+1/7p
/godqu/uqcpdng’(/uqcpda:)
Q Q Q
7 7 1/ /0/ !’ ’ 1/7—,
x (/wl’pe V[P dx) ’ (/wH ”IVsolTpdx) ’,
Q Q

with a new C = C(«, N, p,q). Since 1/8'p' +1/7'p=1/q* =1—(1/0p’ +1/7p),

we find in particular

(/u'ﬁpdm)li(pil)/q
Z(/ qudx)(l/P'9'+1/T'P)
Q

§C</ gDl_W'V*D'%)lw( / <P1‘T'P|V<PIT'PdI)1/T'P.
* Q
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Consequently

/quo dx
Q
N o 7'p/(7'p+p'0") - o p'0"/(r'p+p'0")
§C( o PP VeplP dx) ( TPV pdx) .
Q Q

Notice that 7 < ¢/(p — 1) < 8, then from Holder inequality,

1—pb’ pb’ 1-7'p 7'p o'/ -0/
o TV dr < | @ TPV Pda pde
Q Q Q

<o [ e riverras)

with a new constant C' = C(N, p, q, «, ), since 0 < ¢ < 1. Therefore

* ’

1—7' ’ q/T
ulpdr < C( o TPVl pdac) , (3.5)
Q Q

with a new constant C' > 0. Moreover, from (3.4) and (3.5),

/sodu < C(/ PPV | Pda
Q Q

’ ’ q*/Tl
/gpdu+/uqcpdacSC(/gal_Tp|Vg0|Tpdm> .
Q Q Q

We can choose |a] sufficiently small, such that

)(q*—1+1/p’+1/p)/7’

then

p¢ <pr’' =q/l¢g—p+1—]a|(p—1)) < R;

thus we deduce (1.6) from Holder inequality. Also, for any o < 0, with || small
enough, from (3.1), taking ¢ = 1 and letting k tend to oo, we obtain

M/ /(u+l)a71|Vu|pgpdz
2 Jala
1/0 ‘ / 1/0

SC(/(qul)q%dx) (/ e\ dfv)

Q Q

p/R
SC(1+/quodx)(/gol*R|Vg0|Rd:r> .
Q Q

Then (1.7) follows for any « < 0. O

When p = 2, Theorem 1.1 naturally gives a stronger result, since any set
with 1, R - capacity zero for some R > 2¢’ has also a 2,¢'- capacity zero, see
[1]. The capacity involved in Theorem 1.3 is of order 1 instead of 2, because we
cannot use the full duality argument of the linear case. However, observe that
a point set has a 1,2¢’- capacity zero if and only if ¢ > N/(N — 2), that means
if and only if it has a 2, ¢’- capacity zero.
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Proof of Theorem 1.4 Let ¢, € D(Q) such that 0 < ¢, <1 and ¥, > xx
and ”d’n”iIEVLR(Q) tends to cap 1,r(K, Q) as n tends to co. Choosing ¢ = 2 in
(1.6), we deduce that

pq* /R
A/ dusc(/\wn|Rdx) < C Ul
K Q

with new constants C' = C(N,p,q, R,Q), and (1.8) follows. If v has a compact
support X in Q, then (1.9) holds after localization on a neighborhood of X.
Assume moreover that ¢ > P, then we can choose R such that p¢g* < R < N.
Thus any point set {a} of  has a 1, R - capacity zero, hence v({a}) = 0.

Moreover taking K = B(xg,r) with » > 0 small enough, we derive

)\/ dv < CrN 1, (3.6)
B(zo,m)

with C = C(N,p,q, R,20,Q). For any 1 < s < N/pg*, we can construct a
function v € L*(§)) with a singularity in |z — x| ™% with p¢* < k < N/s, and
with compact support in €2, such that for any A > 0, Av does not satisfy (3.6)
for p¢* < R < k. Then there exists no solution of problem (1.5). O

4 Open problems

Problem 1: Can we obtain sufficient conditions of existence?

In the subcritical case ¢ < P, at least when p > Py, the existence of solutions of
problem (1.1), with possibly signed measure p, is shown in [13]. In the super-
critical case, the problem is entirely open, even for L*® functions. In particular
it would be interesting to extend to the case p # 2 a consequence of Theorem
1.1:

Theorem 4.1 ([3]) Assume that N > 3, and v € L*(Q)), for some s > 1. If
q>N/(N—-2) and s > N/2q¢', or q= N/(N —2) and s > N/2¢, then problem
(1.2) has a solution for A small enough.

Problem 2: Can we solve problems (2.1) and (1.5) if p is not bounded?

Let us begin by the case without reaction term. For any z € €2, denote by p(x)
the distance from z to 0Q2. When p = 2, problem (2.1) is well posed in fact
for any measure g, possibly unbounded, such that fQ pdlu| < oo : it admits a
unique integral solution

U(x)ZG(u):/QQ(%y)du(y)’ (4.1)

where G is the Green kernel. And w is also the weak solution of the problem in
the sense that u € L!(Q2) and

/Q w(—AE)dz = /Q cdy, (4.2)



32 Existence of solutions to an elliptic equation

for any ¢ € C1(Q) vanishing on 9Q with V¢ is Lipschitz continuous, see [7].
The case where p is a function f, such that fQ pfdr < oo, was first considered
by Brézis, see [17]. The problem is open when p # 2 : up to now we have no
existence results concerning equation (2.1) when g may be unbounded, even
in the case p > P;, where the definition of the gradient does not cause any
problem.

Now let us consider the problem with source term. When p = 2, it was
studied in [14] and specified in [9]:

Theorem 4.2 ([14]) Let v € M*(Q), v # 0 such that [, pdv < co. Then
problem (1.2) has a solution such that G(u?) < oo, a.e. in Q, for any A > 0
small enough, if and only if there exists C > 0 such that

G(Gi(v)) < CG(v), a.e. in . (4.3)

Notice that condition G(u?) < oo a.e. in €, is satisfied as soon as [, pfuldz <
00, and the solutions are taken in the integral sense. More recently new existence
results and a priori estimates were given in [8], covering the case of measures u
such that [, p¥dp < oo for some 0 < < 1. Condition (4.3) allows to obtain a
supersolution, and then a solution by using an iterative scheme. It is available
for much more general linear operators, see [14] and [16]. It seems to be diffi-
cult to extend to nonlinear ones, since it is based on a representation formula.
However Kalton and Verbitski [14] also gave necessary and sufficient in terms
of capacity with weights, extending the result of [2] to general measures:

Theorem 4.3 ([14]) Let v # 0 be a nonnegative Radon measure on . Then
problem (1.2) has a solution for any A > 0 small enough if and only if there
exists C' > 0 such that

/ dv < Ccapag ,(K),  for every compact set K C ,
K

where

cap2q,,(K) = inf {/

wq/pl_q/dx cw >0, Gw>pxg a.e.in Q}
Q

One can ask if results of this type can be obtained for the p-Laplacian, using
capacities of order 1 with suitable weights.
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