2001-Luminy conference on Quasilinear Elliptic and Parabolic Equations and Systems, Electronic Journal of Differential Equations, Conference 08, 2002, pp 23–34. http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp)

Necessary conditions of existence for an elliptic equation with source term and measure data involving p-Laplacian *

Marie-Françoise Bidaut-Véron

Abstract

We study the nonnegative solutions to equation

$$-\Delta_p u = u^q + \lambda \nu,$$

in a bounded domain Ω of \mathbb{R}^N , where 1 , <math>q > p - 1, ν is a nonnegative Radon measure on Ω , and $\lambda > 0$ is a parameter. We give necessary conditions on ν for existence, with λ small enough, in terms of capacity. We also give a priori estimates of the solutions.

1 Introduction

Let Ω be a bounded regular domain in \mathbb{R}^N . We denote by $\mathcal{M}(\Omega)$ the set of Radon measures on Ω , $\mathcal{M}^+(\Omega)$ the set of nonnegative ones, and by $\mathcal{M}_b(\Omega)$, $\mathcal{M}_b^+(\Omega)$ the subsets of bounded ones. We consider the quasilinear elliptic problem with a source term:

$$-\Delta_p u = -\operatorname{div}(|\nabla u|^{p-2}\nabla u) = |u|^{q-1}u + \mu, \quad \text{in } \Omega,$$

$$u = 0, \quad \text{on } \partial\Omega,$$
 (1.1)

with 1 , <math>q > p - 1, and $\mu \in \mathcal{M}_b^+(\Omega)$. We look for conditions on the measure μ ensuring that the problem admits a nonnegative solution, and essentially in terms of capacity. In order to take account of the size of the measure, we will study the problem with

$$\mu = \lambda \nu, \quad \lambda \ge 0,$$

where $\nu \in \mathcal{M}_b^+(\Omega)$ is fixed and λ is a parameter. Recall a result of [3] in case p = 2, $N \ge 3$, which gives a necessary and sufficient condition for existence:

^{*} Mathematics Subject Classifications: 35J70, 35B45, 35D05.

Key words: Degenerate quasilinear equations, measure data, capacities, a priori estimates. ©2002 Southwest Texas State University.

Published October 21, 2002.

Theorem 1.1 ([3]) The following problem:

$$-\Delta u = u^{q} + \lambda \nu, \quad in \ \Omega, u = 0, \quad on \ \partial\Omega,$$
(1.2)

where $\nu \in \mathcal{M}_b^+(\Omega)$, $\nu \neq 0$, has a nonnegative solution (in the integral sense) if and only if

$$\lambda \int_{\Omega} \varphi d\nu \le \frac{q-1}{q^{q'}} \int_{\Omega} \varphi^{1-q'} (-\Delta \varphi)^{q'} dx, \qquad (1.3)$$

for any $\varphi \in W_0^{1,\infty}(\Omega) \cap W^{2,\infty}(\Omega)$ such that $-\Delta \varphi \ge 0$, with compact support in Ω .

Thus if q is subcritical, that means q < N/(N-2), problem (1.2) always admits a solution for λ small enough. In case $q \ge N/(N-2)$, in order to obtain existence, the measure $\mu = \lambda \nu$ has to be small enough, and also not to charge some small sets, in particular the point sets (this was first observed in [15]). More precisely, if the measure is compactly supported, from [3], condition (1.3) implies that

$$\int_{K} d\nu \leq C \operatorname{cap}_{2,q'}(K, \mathbb{R}^{N}), \quad \text{for every compact set } K \subset \Omega, \qquad (1.4)$$

where for any domain Ω and any $m \in \mathbb{N}^*$ and r > 1, $\operatorname{cap}_{m,r}$ is the capacity associated to the Sobolev space $W_0^{m,r}(\Omega)$, defined by

$$\operatorname{cap}_{m,r}(K,\Omega) = \inf \left\{ \left\| \psi \right\|_{W_0^{m,r}(\Omega)}^r : \psi \in \mathcal{D}(\Omega), 0 \le \psi \le 1, \psi = 1 \text{ on } K \right\}.$$

In fact it was proved in [2] that (1.4) is also sufficient:

Theorem 1.2 ([2]) Assume that ν has a compact support in Ω . Then problem (1.2) has a solution for any $\lambda \geq 0$ small enough if and only if there exists C > 0 such that (1.4) holds.

Condition (1.4) implies that μ does not charge the sets with 2, q'- capacity zero. But it is stronger: if q > N/(N-2) (resp. q = N/(N-2)), there exists a function $\nu \in L^s(\Omega)$ with $1 \le s < N/2q'$ (resp. s = 1) such that problem (1.2) admits no solution, for any $\lambda > 0$.

Concerning problem (1.1) with $p \neq 2$, the question is much harder, because the full duality argument used in [3] cannot be used for the *p*-Laplacian. The first thing is to define a notion of solution, as it is the case for the problem without reaction term. In Section 2 we recall the usual notions of entropy solutions, which suppose that the measure is bounded; this leads to assume that $u^q \in L^1(\Omega)$. We denote by

$$\overline{P} = \frac{N(p-1)}{N-p}$$

the critical exponent linked to the p-Laplacian, and we set

$$q^* = q/(q-p+1),$$

(hence $q^* = q'$ if p = 2). In Section 3 we prove our main result:

Theorem 1.3 Let $\nu \in \mathcal{M}_{h}^{+}(\Omega)$ and $\lambda \geq 0$. Assume that problem

$$\begin{aligned} -\Delta_p u &= u^q + \lambda \nu, \quad in \ \Omega, \\ u &= 0, \quad on \ \partial\Omega, \end{aligned} \tag{1.5}$$

has a nonnegative entropy solution (hence $u^q \in L^1(\Omega)$). Then for any $R > pq^*$, there exists $C = C(N, p, q, R, \Omega) > 0$ such that

$$\lambda \int_{\Omega} \varphi d\nu + \int_{\Omega} u^{q} \varphi \, dx \le C \Big(\int_{\Omega} \varphi^{1-R} |\nabla \varphi|^{R} dx \Big)^{pq^{*}/R}, \tag{1.6}$$

for any $\varphi \in W_0^{1,p}(\Omega) \cap W^{1,s}(\Omega)$ (s > N) such that $0 \le \varphi \le 1$ in Ω . And for any $\alpha < 0$, there exists $C = C(\alpha, N, p, q, R, \Omega) > 0$ such that

$$\int_{\Omega} (u+1)^{\alpha-1} |\nabla u|^p \varphi \, dx \le C \Big(1 + \int_{\Omega} u^q \varphi \, dx \Big) \Big(\int_{\Omega} \varphi^{1-R} |\nabla \varphi|^R dx \Big)^{p/R}.$$
(1.7)

This Theorem gives a priori estimate not only of the size of the measure, but also of the integral $\int_{\Omega} u^q \varphi \, dx$, independently on u. In the case p = 2, this was first remarked by [12] when $\mu = 0$; it was the starting point for proving L^{∞} universal estimates. It was also used in [7] and [8] for obtaining a priori estimates with a general measure μ . As a consequence we deduce the following:

Theorem 1.4 If problem (1.5) has a solution, then, for any $R > pq^*$, there exists $C = C(N, p, q, R, \Omega) > 0$ such that

$$\lambda \int_{K} d\nu \leq C \; (\operatorname{cap}_{1,R}(K,\Omega))^{pq^{*}/R}, \quad \text{for every compact set } K \subset \Omega.$$
(1.8)

and if ν has a compact support in Ω , there exists $C = C(N, p, q, R, \mu) > 0$ such that

$$\lambda \int_{K} d\nu \leq C \; (\operatorname{cap}_{1,R}(K,\mathbb{R}^{N}))^{pq^{*}/R}, \quad \text{for every compact set } K \subset \Omega.$$
(1.9)

In particular, if $q > \overline{P}$, then ν does not charge the point sets. Moreover for any $1 \leq s < N/pq^*$, there exists a function $\nu \in L^s(\Omega)$ such that for any $\lambda > 0$, problem (1.5) admits no solution.

In Section 4, we mention some partially or fully open problems linked to this study. We refer to [5] for more complete results for problem (1.1) with possible signed measure μ , and for the problem with an absorption term

$$-\Delta_p u + |u|^{q-1} u = \mu, \quad \text{in } \Omega, u = 0, \quad \text{on } \partial\Omega.$$
(1.10)

2 Entropy solutions

First recall some well-known results concerning the problem

$$-\Delta_p u = \mu, \quad \text{in } \Omega, u = 0, \quad \text{on } \partial\Omega,$$
(2.1)

with $\mu \in \mathcal{M}_b(\Omega)$. We set

$$P_0 = \frac{2N}{N+1}, \quad P_1 = 2 - \frac{1}{N},$$

so that $1 < P_0 < P_1$, and $P > P_0 \iff \overline{P} > 1$. When $p > P_1$, problem (2.1) admits at least a solution u in the sense of distributions, such that $u \in W_0^{1,r}(\Omega)$ for any $1 \leq r < \overline{P}$. In the general case, one can define a notion of entropy or renormalized solutions in four equivalent ways, see [11], which allow to give a sense to the gradient in any case: they are solutions such that $\nabla T_k(u) \in L^1_{loc}(\Omega)$ for any k > 0, where

$$T_k(s) = \begin{cases} s, & \text{if } |s| \le k, \\ k \operatorname{sign}(s), & \text{if } |s| > k, \end{cases}$$
(2.2)

and the gradient of u, denoted by $y = \nabla u$ is defined by

$$\nabla(T_k(u)) = y \times \mathbb{1}_{\{|u| \le k\}} \quad \text{a.e. in } \Omega.$$
(2.3)

For any p > 1 there exists at least an entropy solution of (2.1), and it is unique if $\mu \in L^1(\Omega)$. Moreover any entropy solution satisfies the equation in the sense of distributions. The role of P_0 and P_1 is shown by the estimates

$$u^{p-1} \in L^s(\Omega)$$
, for any $1 \le s < N/(N-p)$,
 $|\nabla u|^{p-1} \in L^r(\Omega)$, for any $1 \le r < N/(N-1)$.

Thus the gradient is well defined in $L^1(\Omega)$ if and only if $p > P_1$ and u itself is in $L^1(\Omega)$ if and only if $p > P_0$.

Recall that any measure $\mu \in \mathcal{M}_b(\Omega)$ can be decomposed as

$$\mu = \mu_0 + \mu_s^+ - \mu_s,$$

where $\mu_0 \in \mathcal{M}_{0,b}(\Omega)$, set of bounded measures such that

$$\mu_0(B) = 0$$
 for any Borel set $B \subset \Omega$ such that $\operatorname{cap}_{1,p}(B,\Omega) = 0;$ (2.4)

and μ_s^+, μ_s^- are nonnegative and concentrated on a set E with cap $_{1,p}(E, \Omega) = 0$. If $\mu \in \mathcal{M}_b^+(\Omega)$, then μ_0 is nonnegative, and $\mu = \mu_0 + \mu_s^+$.

We will use one of the four equivalent definitions of solution: u is an entropy solution if u is measurable and finite a.e. in Ω , and

$$T_k(u) \in W_0^{1,p}(\Omega) \quad \text{for every } k > 0,$$

$$(2.5)$$

and the gradient defined by (2.3) satisfies

$$|\nabla u|^{p-1} \in L^r(\Omega), \text{ for any } 1 \le r < N/(N-1),$$
 (2.6)

and u satisfies

$$\begin{split} \int_{\Omega} |\nabla u|^{p-2} \nabla u . \nabla (h(u)\varphi) dx &= \int_{\Omega} h(u)\varphi d\mu_0 \\ &+ h(+\infty) \int_{\Omega} \varphi d\mu_s^+ - h(-\infty) \int_{\Omega} \varphi d\mu_s^-, \end{split}$$

for any $h \in W^{1,\infty}(\mathbb{R})$ and h' has a compact support, and any $\varphi \in W^{1,s}(\Omega)$ for some s > N, such that $h(u)\varphi \in W_0^{1,p}(\Omega)$.

In the same way, for given $\mu = \mu_0 + \mu_s^+ \in \mathcal{M}_b^+(\Omega)$, a nonnegative entropy solution u of problem (1.1) will be a measurable function u such that $u^q \in L^1(\Omega)$ and u is an entropy solution of problem

$$-\Delta_p u = \mu - u^q \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial\Omega.$$

In particular

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla (h(u)\varphi) dx + \int_{\Omega} u^q h(u)\varphi \, dx = \int_{\Omega} h(u)\varphi d\mu_0 + h(+\infty) \int_{\Omega} \varphi d\mu_s^+,$$

for any h and φ as above.

3 Proofs and comments

Proof of Theorem 1.3 Let $\mu = \lambda \nu = \mu_0 + \mu_s^+$, where $\mu_0 \in \mathcal{M}_{0,b}(\Omega)$ and μ_s^+ is singular, and let $\alpha \in (1-p,0)$ be a parameter. For any k > 0, we set $u_k = T_k(u)$, and, for any $\varepsilon \in (0,k)$,

$$h_{\alpha,k,\varepsilon}(r) = (T_k(r^+) + \varepsilon)^{\alpha} = \begin{cases} \varepsilon^{\alpha}, & \text{if } r \le 0, \\ (r+\varepsilon)^{\alpha}, & \text{if } 0 \le r \le k, \\ (k+\varepsilon)^{\alpha}, & \text{if } r \ge k. \end{cases}$$

We choose in (2) the test functions $h = h_{\alpha,k,\varepsilon}$, and $\varphi \in W_0^{1,p}(\Omega) \cap W^{1,s}(\Omega)$, with s > N and $\varphi \ge 0$ in Ω , and obtain

$$\begin{split} &\int_{\Omega} (u_{k} + \varepsilon)^{\alpha} \varphi d\mu_{0} + (k + \varepsilon)^{\alpha} \int_{\Omega} \varphi d\mu_{s}^{+} + \int_{\Omega} (u_{k} + \varepsilon)^{\alpha} u^{q} \varphi \, dx \\ &+ |\alpha| \int_{\Omega} \int_{\Omega} (u_{k} + \varepsilon)^{\alpha - 1} |\nabla u_{k}|^{p} \varphi \, dx \\ &= \int_{\Omega} (u_{k} + \varepsilon)^{\alpha} |\nabla u|^{p - 2} \nabla u . \nabla \varphi \, dx \\ &\leq \int_{\Omega} (u_{k} + \varepsilon)^{\alpha} |\nabla u_{k}|^{p - 1} |\nabla \varphi| dx + \int_{\{u \ge k\}} (u_{k} + \varepsilon)^{\alpha} |\nabla u|^{p - 1} |\nabla \varphi| dx \\ &\leq \frac{|\alpha|}{2} \int_{\Omega} (u_{k} + \varepsilon)^{\alpha - 1} |\nabla u_{k}|^{p} \varphi \, dx + C \int_{\Omega} (u_{k} + \varepsilon)^{\alpha + p - 1} \varphi^{1 - p} |\nabla \varphi|^{p} \, dx \\ &+ (k + \varepsilon)^{\alpha} \int_{\{u \ge k\}} |\nabla u|^{p - 1} |\nabla \varphi| dx, \end{split}$$

where $C = C(\alpha) > 0$.

Now from Hölder inequality, setting $\theta = q/(p-1+\alpha) > 1$,

$$\begin{split} \int_{\Omega} (u_k + \varepsilon)^{\alpha + p - 1} \varphi^{1 - p} |\nabla \varphi|^p \, dx \\ &\leq \Big(\int_{\Omega} (u_k + \varepsilon)^q \varphi \, dx \Big)^{1/\theta} \Big(\int_{\Omega} \varphi^{1 - p\theta'} |\nabla \varphi|^{p\theta'} dx \Big)^{1/\theta'}. \end{split}$$

In particular for any k > 1,

$$\frac{|\alpha|}{2} \int_{\Omega} \int_{\Omega} (u_k + \varepsilon)^{\alpha - 1} |\nabla u_k|^p \varphi \, dx$$

$$\leq C \Big(\int_{\Omega} (u_k + \varepsilon)^q \varphi \, dx \Big)^{1/\theta} \Big(\int_{\Omega} \varphi^{1 - p\theta'} |\nabla \varphi|^{p\theta'} \, dx \Big)^{1/\theta'} + \int_{\{u \ge k\}} |\nabla u|^{p-1} |\nabla \varphi| \, dx.$$
(3.1)

Letting ε tend to 0, we get

$$\frac{|\alpha|}{2} \int_{\Omega} u_k^{\alpha-1} |\nabla u_k|^p \varphi \, dx \leq C \Big(\int_{\Omega} u_k^q \varphi \, dx \Big)^{1/\theta} \Big(\int_{\Omega} \varphi^{1-p\theta'} |\nabla \varphi|^{p\theta'} \, dx \Big)^{1/\theta'} \\
+ \int_{\{u \geq k\}} |\nabla u|^{p-1} |\nabla \varphi| \, dx.$$
(3.2)

Choosing now h(u) = 1 in (2), with the same φ , we find

$$\begin{split} \int_{\Omega} \varphi d\mu_{0} &+ \int_{\Omega} \varphi d\mu_{s}^{+} + \int_{\Omega} u^{q} \varphi \, dx = \int_{\Omega} |\nabla u|^{p-2} \nabla u . \nabla \varphi \, dx \\ &\leq \int_{\Omega} u_{k}^{(\alpha-1)/p'} |\nabla u|^{p-1} u_{k}^{(1-\alpha)/p'} |\nabla \varphi| dx + \int_{\{u \ge k\}} |\nabla u|^{p-1} |\nabla \varphi| dx \\ &\leq \left(\int_{\Omega} u_{k}^{\alpha-1} |\nabla u_{k}|^{p} \varphi \, dx \right)^{1/p'} \left(\int_{\Omega} u_{k}^{(1-\alpha)(p-1)} \varphi^{1-p} |\nabla \varphi|^{p} dx \right)^{1/p} \\ &+ \int_{\{u \ge k\}} |\nabla u|^{p-1} |\nabla \varphi| dx. \end{split}$$
(3.3)

Since q > p - 1, we can fix $\alpha \in (1 - p, 0)$ such that $\tau = q/(1 - \alpha)(p - 1) > 1$. From (3.2) and (3.3), we derive

$$\begin{split} &\int_{\Omega} \varphi d\mu + \int_{\Omega} u^{q} \varphi \, dx \\ &\leq \Bigl(\int_{\Omega} u_{k}^{\alpha-1} |\nabla u_{k}|^{p} \varphi \, dx \Bigr)^{1/p'} \Bigl(\int_{\Omega} u_{k}^{q} \varphi \, dx \Bigr)^{1/\tau p} \Bigl(\int_{\Omega} \varphi^{1-\tau' p} |\nabla \varphi|^{\tau' p} dx \Bigr)^{1/\tau' p} \\ &\quad + \int_{\{u \geq k\}} |\nabla u|^{p-1} |\nabla \varphi| dx \\ &\leq \Bigl(C \Bigl(\int_{\Omega} u_{k}^{q} \varphi \, dx \Bigr)^{1/\theta} \Bigl(\int_{\Omega} \varphi^{1-p\theta'} |\nabla \varphi|^{p\theta'} dx \Bigr)^{1/\theta'} + \int_{\{u \geq k\}} |\nabla u|^{p-1} |\nabla \varphi| dx \Bigr)^{1/p'} \\ &\quad \times \Bigl(\int_{\Omega} u_{k}^{q} \varphi \, dx \Bigr)^{1/\tau p} \left(\int_{\Omega} \varphi^{1-\tau' p} |\nabla \varphi|^{\tau' p} dx \Biggr)^{1/\tau' p} + \int_{\{u \geq k\}} |\nabla u|^{p-1} |\nabla \varphi| dx. \end{split}$$

Now we can let k tend to ∞ , since $u^q + |\nabla u|^{p-1} \in L^1(\Omega)$. It follows that

$$\int_{\Omega} \varphi d\mu + \int_{\Omega} u^{q} \varphi \, dx \leq C \Big(\int_{\Omega} u^{q} \varphi \, dx \Big)^{1/p'\theta + 1/\tau p} \tag{3.4} \\
\times \Big(\int_{\Omega} \varphi^{1-p\theta'} |\nabla \varphi|^{p\theta'} dx \Big)^{1/p'\theta'} \Big(\int_{\Omega} \varphi^{1-\tau'p} |\nabla \varphi|^{\tau'p} dx \Big)^{1/\tau'p},$$

with a new $C=C(\alpha,N,p,q).$ Since $1/\theta'p'+1/\tau'p=1/q^*=1-(1/\theta p'+1/\tau p),$ we find in particular

$$\begin{split} \left(\int_{\Omega} u^{q} \varphi \, dx\right)^{1-(p-1)/q} \\ = \left(\int_{\Omega} u^{q} \varphi \, dx\right)^{(1/p'\theta'+1/\tau'p)} \\ \leq C \left(\int_{\Omega} \varphi^{1-p\theta'} |\nabla \varphi|^{p\theta'} \, dx\right)^{1/p'\theta'} \left(\int_{\Omega} \varphi^{1-\tau'p} |\nabla \varphi|^{\tau'p} \, dx\right)^{1/\tau'p}. \end{split}$$

Consequently

$$\int_{\Omega} u^{q} \varphi \, dx$$

$$\leq C \Big(\int_{\Omega} \varphi^{1-p\theta'} |\nabla \varphi|^{p\theta'} dx \Big)^{\tau' p/(\tau' p+p'\theta')} \Big(\int_{\Omega} \varphi^{1-\tau' p} |\nabla \varphi|^{\tau' p} dx \Big)^{p'\theta'/(\tau' p+p'\theta')}.$$

Notice that $\tau < q/(p-1) < \theta$, then from Hölder inequality,

$$\begin{split} \int_{\Omega} \varphi^{1-p\theta'} |\nabla\varphi|^{p\theta'} dx &\leq \Big(\int_{\Omega} \varphi^{1-\tau'p} |\nabla\varphi|^{\tau'p} dx\Big)^{\theta'/\tau'} \Big(\int_{\Omega} \varphi \, dx\Big)^{1-\theta'/\tau'} \\ &\leq C \Big(\int_{\Omega} \varphi^{1-\tau'p} |\nabla\varphi|^{\tau'p} dx\Big)^{\theta'/\tau'}, \end{split}$$

with a new constant $C = C(N, p, q, \alpha, \Omega)$, since $0 \le \varphi \le 1$. Therefore

$$\int_{\Omega} u^{q} \varphi \, dx \le C \Big(\int_{\Omega} \varphi^{1-\tau' p} |\nabla \varphi|^{\tau' p} dx \Big)^{q^{*}/\tau'}, \tag{3.5}$$

with a new constant C > 0. Moreover, from (3.4) and (3.5),

$$\int_{\Omega} \varphi d\mu \le C \Big(\int_{\Omega} \varphi^{1-\tau'p} |\nabla \varphi|^{\tau'p} dx \Big)^{(q^*-1+1/p'+1/p)/\tau'},$$

then

$$\int_{\Omega} \varphi d\mu + \int_{\Omega} u^{q} \varphi \, dx \le C \Big(\int_{\Omega} \varphi^{1-\tau' p} |\nabla \varphi|^{\tau' p} dx \Big)^{q^{*}/\tau'}.$$

We can choose $|\alpha|$ sufficiently small, such that

$$pq^* < p\tau' = q/(q-p+1-|\alpha|(p-1)) \le R;$$

thus we deduce (1.6) from Hölder inequality. Also, for any $\alpha < 0$, with $|\alpha|$ small enough, from (3.1), taking $\varepsilon = 1$ and letting k tend to ∞ , we obtain

$$\begin{split} &\frac{|\alpha|}{2} \int_{\Omega} \int_{\Omega} (u+1)^{\alpha-1} |\nabla u|^{p} \varphi \, dx \\ &\leq C \Big(\int_{\Omega} (u+1)^{q} \varphi, dx \Big)^{1/\theta} \Big(\int_{\Omega} \varphi^{1-p\theta'} |\nabla \varphi|^{p\theta'} dx \Big)^{1/\theta'} \\ &\leq C \Big(1 + \int_{\Omega} u^{q} \varphi \, dx \Big) \Big(\int_{\Omega} \varphi^{1-R} |\nabla \varphi|^{R} dx \Big)^{p/R}. \end{split}$$

Then (1.7) follows for any $\alpha < 0$.

When p = 2, Theorem 1.1 naturally gives a stronger result, since any set with 1, R - capacity zero for some R > 2q' has also a 2, q'- capacity zero, see [1]. The capacity involved in Theorem 1.3 is of order 1 instead of 2, because we cannot use the full duality argument of the linear case. However, observe that a point set has a 1, 2q'- capacity zero if and only if q > N/(N-2), that means if and only if it has a 2, q'- capacity zero. **Proof of Theorem 1.4** Let $\psi_n \in \mathcal{D}(\Omega)$ such that $0 \leq \psi_n \leq 1$ and $\psi_n \geq \chi_K$ and $\|\psi_n\|_{W^{1,R}(\Omega)}^R$ tends to $\operatorname{cap}_{1,R}(K,\Omega)$ as *n* tends to ∞ . Choosing $\varphi = \psi_n^R$ in (1.6), we deduce that

$$\lambda \int_{K} d\nu \leq C \Big(\int_{\Omega} |\nabla \psi_n|^R dx \Big)^{pq^*/R} \leq C \, \|\psi_n\|_{W^{1,R}(\Omega)}^R \, ,$$

with new constants $C = C(N, p, q, R, \Omega)$, and (1.8) follows. If ν has a compact support X in Ω , then (1.9) holds after localization on a neighborhood of X. Assume moreover that $q > \overline{P}$, then we can choose R such that $pq^* < R < N$. Thus any point set $\{\underline{a}\}$ of Ω has a 1, R - capacity zero, hence $\nu(\{a\}) = 0$. Moreover taking $K = \overline{B(x_0, r)}$ with r > 0 small enough, we derive

$$\lambda \int_{B(x_0,r)} d\nu \le Cr^{N-R},\tag{3.6}$$

with $C = C(N, p, q, R, x_0, \Omega)$. For any $1 \leq s < N/pq^*$, we can construct a function $\nu \in L^s(\Omega)$ with a singularity in $|x - x_0|^{-k}$ with $pq^* < k < N/s$, and with compact support in Ω , such that for any $\lambda > 0$, $\lambda \nu$ does not satisfy (3.6) for $pq^* < R < k$. Then there exists no solution of problem (1.5).

4 Open problems

Problem 1: Can we obtain sufficient conditions of existence?

In the subcritical case $q < \overline{P}$, at least when $p > P_0$, the existence of solutions of problem (1.1), with possibly signed measure μ , is shown in [13]. In the supercritical case, the problem is entirely open, even for L^s functions. In particular it would be interesting to extend to the case $p \neq 2$ a consequence of Theorem 1.1:

Theorem 4.1 ([3]) Assume that $N \ge 3$, and $\nu \in L^s(\Omega)$, for some $s \ge 1$. If q > N/(N-2) and $s \ge N/2q'$, or q = N/(N-2) and s > N/2q', then problem (1.2) has a solution for λ small enough.

Problem 2: Can we solve problems (2.1) and (1.5) if μ is not bounded?

Let us begin by the case without reaction term. For any $x \in \Omega$, denote by $\rho(x)$ the distance from x to $\partial\Omega$. When p = 2, problem (2.1) is well posed in fact for any measure μ , possibly unbounded, such that $\int_{\Omega} \rho d|\mu| < \infty$: it admits a unique integral solution

$$u(x) = G(\mu) = \int_{\Omega} \mathcal{G}(x, y) d\mu(y), \qquad (4.1)$$

where \mathcal{G} is the Green kernel. And u is also the weak solution of the problem in the sense that $u \in L^1(\Omega)$ and

$$\int_{\Omega} u(-\Delta\xi) dx = \int_{\Omega} \xi d\mu, \qquad (4.2)$$

for any $\xi \in C^1(\overline{\Omega})$ vanishing on $\partial\Omega$ with $\nabla\xi$ is Lipschitz continuous, see [7]. The case where μ is a function f, such that $\int_{\Omega} \rho f dx < \infty$, was first considered by Brézis, see [17]. The problem is open when $p \neq 2$: up to now we have no existence results concerning equation (2.1) when μ may be unbounded, even in the case $p > P_1$, where the definition of the gradient does not cause any problem.

Now let us consider the problem with source term. When p = 2, it was studied in [14] and specified in [9]:

Theorem 4.2 ([14]) Let $\nu \in \mathcal{M}^+(\Omega)$, $\nu \neq 0$ such that $\int_{\Omega} \rho d\nu < \infty$. Then problem (1.2) has a solution such that $G(u^q) < \infty$, a.e. in Ω , for any $\lambda \geq 0$ small enough, if and only if there exists C > 0 such that

$$G(G^q(\nu)) \le CG(\nu), \quad a.e. \text{ in } \Omega.$$

$$(4.3)$$

Notice that condition $G(u^q) < \infty$ a.e. in Ω , is satisfied as soon as $\int_{\Omega} \rho f u^q dx < \infty$, and the solutions are taken in the integral sense. More recently new existence results and a priori estimates were given in [8], covering the case of measures μ such that $\int_{\Omega} \rho^{\gamma} d\mu < \infty$ for some $0 \le \gamma \le 1$. Condition (4.3) allows to obtain a supersolution, and then a solution by using an iterative scheme. It is available for much more general linear operators, see [14] and [16]. It seems to be difficult to extend to nonlinear ones, since it is based on a representation formula. However Kalton and Verbitski [14] also gave necessary and sufficient in terms of capacity with weights, extending the result of [2] to general measures:

Theorem 4.3 ([14]) Let $\nu \neq 0$ be a nonnegative Radon measure on Ω . Then problem (1.2) has a solution for any $\lambda \geq 0$ small enough if and only if there exists C > 0 such that

$$\int_{K} d\nu \leq C \operatorname{cap}_{2,q',\rho}(K), \quad \text{ for every compact set } K \subset \Omega,$$

where

$$\operatorname{cap}_{2,q',\rho}(K) = \inf \left\{ \int_{\Omega} w^{q'} \rho^{1-q'} dx : w \ge 0, \quad Gw \ge \rho \chi_K \quad a.e. \text{ in } \Omega \right\}.$$

One can ask if results of this type can be obtained for the p-Laplacian, using capacities of order 1 with suitable weights.

References

- D. R. Adams and L. I. Hedberg, Functions spaces and potential theory, Grundlehren der Mathematischen wissenchaften, Springer Verlag, Berlin, 314 (1996).
- [2] D. Adams et M. Pierre, Capacitary strong type estimates in semilinear problems, Ann. Inst. Fourier, 41 (1991), 117-135.

- [3] P. Baras and M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré, Anal. non Lin. 2 (1985), 185-212.
- [4] M-F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Arc. Rat. Mech. Anal. 107 (1989), 293-324.
- [5] M-F. Bidaut-Véron, Removable singularities and existence for a quasilinear equation with absorption or source term and measure data, Adv. in Nonlinear Studies (to appear).
- [6] M-F. Bidaut-Véron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math., 84 (2001), 1-49.
- [7] M-F. Bidaut-Véron and L. Vivier, An elliptic semilinear equation with source term involving boundary measures: the subcritical case, Revista Matematica Iberoamericana, 16 (2000), 477-513.
- [8] M-F. Bidaut-Véron and C. Yarur, Semilinear elliptic equations and systems with measure data: existence and a priori estimates, Advances in Diff. Equ., 7 (2002), 257-296.
- H. Brézis and X. Cabré, Some simple nonlinear PDE's without solutions, Boll. Unione Mat. Ital. 8 (1998), 223-262.
- [10] H. Brézis and P.L. Lions, A note on isolated singularities for linear elliptic equation, Math. Anal. Appl. Adv. Math. Suppl. Stud. 7A (1981), 263-266.
- [11] Dal Maso, F. Murat, L. Orsina and A. Prignet, *Renormalized solutions of elliptic equations with general measure data*, Ann. Sc. Norm. Sup. Pisa, 28 (1999), 741-808.
- [12] De Figuereido, P.L. Lions and R.D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures et Appl., 61 (1982), 41-63.
- [13] N. Grenon, Existence results for some semilinear elliptic equations with measure data, Ann. Inst. H. Poincaré, 19 (2002), 1-11.
- [14] N. Kalton and I. Verbitsky, Nonlinear equations and weighted norm inequalities, Trans. Amer. Math. Soc., 351, 9 (1999), 3441-3497.
- [15] P. L. Lions, Isolated singularities in semilinear problems, J. Diff. Eq., 38 (1980), 441-450.
- [16] I. Verbitski, Superlinear equations, potential theory and weighted norm inequalities, Nonlinear Analysis, Funct. Spaces Appl., Vol. 6. (1999), 223-269.
- [17] L. Véron, Singularities of solutions of second order quasilinear equations, Pitman Research Notes in Math., Longman Sci. & Tech. 353 (1996).

MARIE-FRANÇOISE BIDAUT-VÉRON Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 6083, Faculté des Sciences, Parc de Grandmont, 37200 Tours, France e-mail: veronmf@univ-tours.fr