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Description of regional blow-up in a

porous-medium equation ∗

Carmen Cortázar, Manuel del Pino, & Manuel Elgueta

Abstract

We describe the (finite-time) blow-up phenomenon for a non-negative
solution of a porous medium equation of the form

ut = ∆um + um

in the entire space. Here m > 1 and the initial condition is assumed
compactly supported. Blow-up takes place exactly inside a finite number
of balls with same radii and exhibiting the same self-similar profile.

1 Introduction

This paper deals with the description of the blow-up phenomenon in the porous-
medium equation in RN , N ≥ 1,

ut = ∆um + um

u(x, 0) = u0(x)
(1.1)

where m > 1 and u0(x) is a compactly supported, not identically zero nonneg-
ative function whose regularity will be specified later. This gives rise to the
interesting phenomenon of regional blow-up, meaning this blow-up taking place
only in a compact set with nonempty interior.

The purpose of this note is to describe the blow-up in (1.1) in the following
sense: we show that for any initial condition the solution u develops (exactly) a
finite number of similar spherical hot spots: more precisely, there is a finite num-
ber of disjoint balls with common radii R∗ outside which the solution remains
uniformly bounded, while inside each of them it develops a common self-similar
radially symmetric profile (T̄ − t)−1/(m−1)w∗(r), where r is the distance to the
center of these balls and w∗ is a strictly positive function.
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86 Description of regional blow-up

The presence of regional blow-up in this equation was first observed and
studied in the case N = 1 in [11]. The elliptic problem found when searching
by separation of variables a solution of the form

u(x, t) = (T̄ − t)−1/(m−1)θ(x)

has been studied for radial symmetry in [2, 3, 4, 15].
The result contained in this paper is a sequel of the work [5] where the

following partial result was established: Let T̄ > 0 be the time at which blow-
up occurs. Let tn be any sequence tn ↑ T̄ . Then there is a subsequence of tn
which we still denote tn, and a nontrivial compactly supported solution w(x) of
the elliptic equation

∆wm + wm − 1
m− 1

w = 0, (1.2)

such that (T̄ − tn)1/(m−1)u(x, tn) → w(x) uniformly.
On the other hand, it was established in [3] that the support of any finite

energy solution w of (1.2) consists of a finite number of disjoint balls of the
same radii and that the solution is radially symmetric inside each of them. This
radially symmetric solution w∗(|x|) turns out to be unique, as established in [4].
Thus w can be written as

w(x) =
k∑

j=1

w∗(|x− xj |), (1.3)

where, if R∗ is the radius of the support of w∗, |xi − xj | ≥ 2R∗ for i 6= j.
Let BU(u0) be the set of blow-up points of u, namely the set of points x

for which there are sequences xn → x and tn → T̄ such that u(xn, tn) → +∞.
It was also shown in [5] that this set is compact and it is precisely constituted
by the union of the supports of all possible limiting w’s. The important point
unsolved in [5] was whether there is an actual unique blow-up profile, rather
than oscillation between different limiting configurations. The question turns
out to be rather subtle, and we answer it affirmatively in the following result.

Theorem 1.1 Let u(x, t) be the solution of (1.1), where u0(x) is compactly
supported, continuous and such that um

0 ∈ H1(RN ). Let T̄ > 0 be the blow-up
time of this solution. Then there are points x1, . . . xk ∈ RN such that

lim
t→T̄

(T̄ − t)1/(m−1)u(x, t) =
k∑

j=1

w∗(|x− xj |)

uniformly. Here w∗(|x|) is the unique compactly supported, radially symmetric
solution of (1.2). If R∗ is the radius of its support then we also have |xi−xj | ≥
2R∗ for i 6= j. Moreover u(x, t) remains uniformly bounded up to its blow-up
time on compact subsets of RN \

⋃k
j=1 B̄(xj , R

∗). In other words,

BU(u0) =
k⋃

j=1

B̄(xj , R
∗).
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Next we describe the proof of the above results. Let us introduce the change
of variables

v(x, t) = (T̄ − τ)1/(m−1)u(x, τ)
∣∣
τ=T̄ (1−e−t)

. (1.4)

It is readily checked that v is globally defined in time and satisfies the equation

vt = ∆vm + vm − 1
m− 1

v (1.5)

v(x, 0) = T̄ 1/(m−1)u0(x). (1.6)

From [5, Proposition 4.1], v is a bounded function and given a sequence tn →
+∞ there is a subsequence, which we denote in the same way, and a nontrivial,
compactly supported solution of (1.2) so that

v(x, tn)m → w(x)m as n→∞,

both in uniform and H1-senses. Thus our task in establishing Theorem 1.1 is
precisely to prove that the limit w(x) is actually the same along every sequence
tn → +∞. Here w(x) has the form (1.3), and for the sake of simplicity we restrict
ourselves in what follows of this paper only to the case k = 1. The proof for
k > 1 is similar if |xi−xj | > 2R∗ for all i 6= j, only to the expense of some extra
notation. Instead, if |xi−xj | = 2R∗ for some i 6= j, the situation is substantially
more involved. The complete proof is contained in the forthcoming work [7].
It should be mentioned that conditions for one-ball blow-up (i.e. k = 1) are
provided in [5]. For instance, if the support of the initial condition is contained
in a ball of radius less than R∗ this is the case. The one-ball blow up can be
shown to be stable, with basically the same proof below. This means that if
an initial condition u0 leads to blow-up with k = 1 in Theorem 1.1, then this
is the case for all sufficiently close initial data, where the limiting ball is also
close to that associated to u0. Instead, the two-ball blow-up is not stable as
the following example shows. Let us fix points x1 and x2 with |x1 − x2| > 2R∗.
Then the function

u(x, t) = (T̄1 − t)−1/(m−1)w∗(|x− x1|) + (T̄2 − t)−1/(m−1)w∗(|x− x2|)

solves equation (1.1) for 0 < t < min{T̄1, T̄2}. If T̄1 = T̄2, then two-ball blow-up
takes place, which however disappears as soon as T̄1 and T̄2 differ, no matter
how close they are. This example suggests that one-ball blow-up may actually
hold for “generic” initial data.

The main feature of equation (1.5) is the presence of a Lyapunov functional
for it, namely

J(z) =
1
2

∫
(|∇zm|2 − z2m)dx+

m

m2 − 1

∫
zm+1dx. (1.7)

In fact we have that the mapping t 7→ J(v(·, t)) is decreasing on t > 0 and

lim
t→+∞

J(v(·, t)) = J(w).
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Here and in what follows the integral symbol without limits specified means
integration on the whole RN . The presence of this functional implies that limit
points of the trajectory must be steady states. The problem of uniqueness of
asymptotic limits in nonlinear heat equations under the presence of a Lyapunov
functional has been analyzed in a number of works. A general result due to L.
Simon [24] shows the uniqueness of the limit for uniformly parabolic equations
in a uniform real analytic setting on a compact manifold. Analiticity cannot be
lifted in general in this result, at least in the non-autonomous setting, as shown
in [22]. Needless to say, the compactly supported setting we deal with makes
our situation highly non uniformly analytic.

Related uniqueness results in parabolic problems, nondegenerate and de-
generate, are contained in the works [1, 6, 8, 9, 10, 13, 17, 16, 20]. In [6], a
re-normalization method based on L. Simon’s ideas, used in classifying singu-
larities in an elliptic problem in [18] was adapted to a semilinear heat equation.
The general framework of this method is what we will use here. Alternative
methods for degenerate equations of porous-medium type, in one and higher
dimensions, have been devised in [9], [10]. Those techniques do not apply to the
nonlinearity of equation (1.6), in particular those in [10], based on analyticity,
because of the presence of compactly supported steady states. This is explicitly
commented in [10] and posed as an open question.

2 Proof of the main results

For functions v1 and v2 defined on RN we consider the “distance” between them
defined as

d(u1, u2) =
( ∫

(u1(x)m − u2(x)m)(u1(x)− u2(x))dx
)1/2

.

We observe that there is a constant D > 0 for which

d(u1, u3) ≤ D( d(u1, u2) + d(u2, u3) ).

The theorem stated in the previous section (in the case k = 1) will be a
direct consequence of the following result,

Proposition 2.1 There exist positive numbers T and C such that if v is a
solution of equation (1.6) defined on 0 ≤ t < +∞, such that for some sequence
tn → +∞, setting

vn(x, t) ≡ v(x, tn + t), wn(x) = w∗(|x− xn|),

one has
ηn ≡ sup

t∈[0,T ]

d(vn(t), wn) → 0 as n→∞. (2.1)

Then there exists a point x̄n with |x̄n − xn| ≤ Cηn and

sup
t∈[0,T ]

d(vn(t), w̄n) ≤ ηn

2
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for all n sufficiently large, and where w̄n(x) = w∗(|x− x̄n|).

As a consequence, we obtain the validity of the following fact: There exist
positive numbers T , δ, C and t∗with the following property:

Let v(x, t) be a solution of (1.6), defined in 0 < t < ∞ as in the statement
of the theorem. Consider a point x1 and set w(x) = w∗(|x− x1|). Assume that
t0 > t∗ is such that

η = sup
t0≤t≤t0+T

d(v(t), w) < δ.

Then there exists a points x̄1 with |x̄1 − x1| ≤ Cη such that

sup
t0+T≤t≤t0+2T

d(v(t), w̄) ≤ η

2
,

where w̄(x) = w∗(|x− x̄1|).
Let us see how Theorem 1.1 (for k = 1) follows from this assertion. Let ε

be given and let us write w as w(x) = w∗(|x − x1|). Let δ0 < δ, with δ the
number predicted by Proposition 2.1. Assume that for some t0 > t∗ we have
η1 ≡ supt0≤t≤t0+T d(v(t), w) ≤ δ0, where T and t∗ are the numbers given by
Proposition 2.1. We find then that there is a point x2 with |x1 − x2| ≤ Cη1
such that η2 ≡ supt0+T≤t≤t0+2T d(v(t), w2) ≤ η1

2 . where w2(x) = w∗(|x − x2|).
Since η2 ≤ η1/2 < δ, we can apply again Proposition 2.1 to find a point x3

with now |x3 − x2| ≤ C η1
2 such that η3 = supt∈[t0+2T,t0+3T ] d(v(t), w3) ≤ η1

4
where w3(x) = w∗(|x − x3|). Iterating this procedure we find a sequence xj ,
j = 1, 2, . . . such that |xj+1 − xj | ≤ C η

2j and

sup
t∈[t0+jT,t0+(j+1)T ]

d(v(t), wj) ≤
η1
2j

with wj(x) = w∗(|x− xj |).
Now let t be any number greater than t0. Then t ∈ (t0 +jT, t0 +(j+1)T ] for

some j. Using that w∗ is Hölder continuous we see that d(w,wj) ≤ C|xj − x1|a
for some a,C > 0. Moreover, |xj − x1| ≤ C

∑∞
l=1 η12

−l = Cη1, hence

d(v(t), w) ≤ A{(η1)2 + Caηa
1}.

We conclude that there is a δ > 0 such that if η1 < δ, then d(v(t), w) < ε for
all t > t0. Finally, from [5, Proposition 4.1], there is a sequence sk → ∞ such
that v(x, sk + τ) → w(x) for some nontrivial solution of (1.2), uniformly in x
and for τ in bounded intervals, in particular for τ ∈ [0, T ]. We recall that the
space support of v is contained inside a ball independent of the time variable.
It follows that, given ε > 0, there is indeed a number t0 > 0 such that η1 < δ.
Since ε is arbitrary, we have actually established that w is the unique limit point
of the trajectory v(·, t), and the proof of the theorem is complete. �

The remaining of this paper will be devoted to the proof of Proposition 2.1.
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3 Preliminaries

Let vn be a sequence as in the statement of Proposition 2.1. Then we have that
vn(x, t)m −wn(x)m → 0 in L∞ and H1-senses in RN , uniformly locally in time
t ∈ [0,∞), as it follows from the results in [5]. For T > 0 fixed, which we will
choose later, we use in what follows the following notation.

φn(x, t) ≡ vn(x, t)− wn(x)
ηn

. (3.1)

Then φn satisfies the equation
∂φn

∂t
= m∆(w̃m−1

n φn) +mw̃m−1
n φn −

1
m− 1

φn (3.2)

where

w̃n(x, t)m−1 ≡
∫ 1

0

(wn(x) + t(vn(x, t)− wn(x)))m−1dt. (3.3)

Let us observe that, by definition of the number ηn we have that

(m
∫
wn(x, t)m−1φn(x, t)2dx)1/2 ≤ 1

for all t ∈ [0, T ]. In the limit wn must converges (up to subsequences) to a
steady state w of equation (1.2). Then w(x) = w∗(|x−x1|) for certain x1 ∈ RN .
In what follows we shall assume, with no loss of generality that x1 = 0

These facts suggest that on interior sets of the support B of the limit w(x)
of the wn we should see convergence in certain sense of φn to a solution of the
degenerate parabolic equation

φt = m∆(wm−1φ) +mwm−1φ− 1
m− 1

φ. (3.4)

By a weak solution of equation (3.4), we understand a function φ which is smooth
in the interior of B = B × (0,∞), and satisfies (3.4) there, such that moreover∫ s

0

∫
B

(m|∇(wm−1φ)|2m(wm−1φ)2 +
1

m− 1
φ2)dxdt < +∞ for all s > 0.

(3.5)

Lemma 3.1 There is a subsequence of φn which we denote in the same way,
for which φn(x, t) → φ(x, t) (up to a subsequence) in the uniform C1-sense over
compact subsets of B. Moreover, φ is a weak solution of (3.4).

Before proving Lemma 3.1 we introduce some notation. Let us write wn =
w∗(|x− xn|) and consider the functions

ψn =
vm

n − wm
n

ηn
. (3.6)

Gn =
1
η2

n

{ v
m+1
n

m+ 1
− wm+1

n

m+ 1
− wm

n (vn − wn)}. (3.7)

Hn =
(m− 1)(vm+1

n − wm+1
n ) + (m+ 1)(vnw

m
n − vm

n wn)
η2

n

. (3.8)
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It is easily checked the existence of constants C1 and C2, depending only on m
such that the following inequalities hold:

C1Gn ≤
(vm

n − wm
n )(vn − wn)
η2

n

≤ C2Gn. (3.9)

We have the validity of the following relation:∫
∂

∂t
Gn ≤

1
m2 − 1

∫
Hn. (3.10)

In fact, let J be the Lyapunov functional for (1.5) given by (1.7). Let us set
I = 2(J(vn) − J(wn)). Then I ≥ 0. After integrating by parts and using the
equations satisfied by vn and wn we get

I = −
∫
vnt(vm

n −wm
n )− 1

m− 1

∫
(vn+wn)(vm

n −wm
n )+

2m
m2 − 1

∫
(vm+1

n −wm+1
n ).

Now, we have that η2
n

∂Gn

∂t = vnt(vm
n − wm

n ), so

I = −η2
n

∫
∂Gn

∂t
+

1
m− 1

∫
(vnw

m
n − vm

n wn) +
1

m+ 1

∫
(vm+1

n − wm+1
n ).

Using the definition of Hn, inequality (3.10) follows.
Let us observe the following consequence of (3.10): since

∫
Gn(x, 0) ≤ C,

and by definition |Hn| ≤ CGn, then there exist constants a, b > 0 such that for
all n, t, ∫

Gn(x, t) ≤ beat. (3.11)

Proof of Lemma 3.1. Let us now analyze the convergence of φn. We note
that ψn defined by (3.6) satisfies the equation

(φn)t = ∆ψn + ψn −
1

m− 1
φn. (3.12)

Integrating (3.12) against ψn, recalling that ∂
∂tGn = ψn

∂φn

∂t , we obtain

∂

∂t

∫
Gndx =

∫
∂φn

∂t
ψndx = −

∫
|∇ψn|2dx+

∫
ψ2

n −
1

m− 1

∫
φnψn. (3.13)

Note that given t > 0, there exists C(t) > 0 such that∫ t

0

∫
(|∇ψn(·, s)|2 + |ψn(·, s)|2)ds ≤ C(t) (3.14)

for all n. In fact, let us recall that∫
Gn(s, x)dx ≤ beas.
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Since the function v is bounded we see that |ψn| ≤ C|φn|. Hence, using (3.9),
we get that ψn φn < CGn and ψ2

n ≤ CGn. Now integrating relation (3.13) in
time, between s = 0 and s = t and using relation (3.11) we get (3.14).

As a consequence of the last result, the sequence ψn can be assumed, after
passing to a subsequence, weakly convergent in L2((0, S);H1(RN )) for each
S > 0. Let ψ(x, s) be this limit. Recall that we are assuming w(x) = w∗(|x|) , so
that the support of w is the ball B = B(0, R∗). Then if we define φ = w−(m−1)ψ
on B = B × (0,∞) then∫ S

0

∫
B

|∇(wm−1φ)|2 + |wm−1φ|2 < +∞

for each S > 0. We recall that φn satisfies the equation

(φn)t = ∆(anφn) + anφn − φn (3.15)

where an=(vm
n −wm)/(

vn−w) . Then an → mwm−1 uniformly. Hence over compacts of B
the coefficient an is uniformly positive and bounded. The standard theory for
quasilinear nondegenerate parabolic equations, see [19], gives that this conver-
gence is also uniform in the C1-sense over compacts of B, so that ∇an is also
bounded there. Again the theory for nondegenerate parabolic equations in [19]
provides uniform estimates for C1,α norms over compacts of B, from where C1

convergence follows. The fact that φ is a weak solution of (3.4) is now easily
checked. �

Let us consider the eigenvalue problem

m∆(wm−1φ) +mwm−1φ− 1
m− 1

φ+ λφ = 0. (3.16)

with φ such that wm−1φ ∈ H1(B) and w
m−1

2 φ ∈ L2(B). Here w(x) = w∗(|x|)
and B = B(0, R∗).

Concerning this problem, we have the validity of the following result.

Lemma 3.2 There is only a finite number of negative eigenvalues (repeated
according to multiplicity)

λ1 ≤ λ2 ≤ . . . ≤ λk < 0,

with associated eigenfunctions φ1, . . . , φk, normalized so that
∫

B
φiφjw

m−1 =
δij . Besides, the only eigenfunctions of (3.16) for λ = 0 are linear combinations
of the functions ∂w

∂xi
.

Let N be the finite-dimensional vector space spanned by all eigenfunctions
in H associated to non-positive eigenvalues. Then there exists a number λ∗ > 0
such that

λ∗
∫

B

wm−1|φ̃|2 ≤
∫

B

m( |∇(wm−1φ̃)|2 +m|wm−1φ̃|2 − wm−1

m− 1
φ̃2)dx

for all φ̃ ∈ H with
∫
wm−1φ̃ζ = 0, for all ζ ∈ N .
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The proof of the above lemma, which can be found in [7] is based on stan-
dard compactness arguments in Sobolev spaces. The fact that wm−1 vanishes
quadratically on the boundary of its support plays a role here.

We can state now the following lemma.

Lemma 3.3 Let φ(x, t) be the function found in Lemma 3.1, then

φ(x, t) =
k∑

j=1

Dje
−λjtφi(x) +

N∑
i=1

Ci
∂w(x)
∂xi

+ θ(x, t), (3.17)

where θ(x, t) converges to zero as t→ +∞, exponentially uniformly inside com-
pact sets of the set A

Proof: Let us consider the expansion in B,

φ(x, 0) =
k∑

i=1

Diφi +
N∑

i=1

Ci
∂w

∂xi
+ θ(x)

where ∫
B

θφiw
m−1 =

∫
B

θ
∂w

∂xj
wm−1 = 0 (3.18)

for all i, j. Now let us consider the function

φ̃(x, t) = φ(x, t)−
k∑

i=1

Die
−λitφi −

N∑
i=1

Ci
∂w

∂xi
.

Let us observe that∑
C2

i +
∑

D2
i ≤

∫
B

wm−1φ2(x, 0)dx ≤ 1.

Clearly φ̃(x, t) satisfies equation (3.4). We claim that∫
B

φ̃(·, s)φiw
m−1 =

∫
B

φ̃(·, s) ∂w
∂xj

wm−1 = 0

for all s > 0. In fact, if we set for instance ϕ(s) =
∫

B
φ̃(·, s)φiw

m−1, then
ϕ′(s) = −λiϕ(s). Since ϕ(0) = 0, the claim follows. Now, let us set η(s) =∫

B
wm−1φ̃(·, s)2. Then

η′(s) = −2
∫

B

m(|∇(wm−1φ̃)|2 −m(wm−1φ̃)2 +
wm−1

m− 1
φ̃2)dx.

Since φ̃ satisfies the above orthogonality relations, it follows from Lemma 3.2
that

η′(s) ≤ −2λ∗η(s),

with λ∗ > 0, and hence
η(s) ≤ η(0)e−2λ∗s.

Also, η(0) ≤ 1. Finally, linear parabolic regularity implies that exponential
decay at this rate for φ̃ also holds uniformly on compact subsets of B. �
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4 Analysis near the boundary

In last section we have found the validity of convergence of φn to φ essentially
in the interior of the support of the limiting w. Here we will show estimates
which provide control of φn near the boundary of the support of w. Our main
purpose is to show that the contribution of the region near the boundary on the
integral of Gn is basically negligible.

Lemma 4.1 Let ε > 0 be given. Then there exist numbers 0 < r0 < R∗ and
s∗ > 0 such that for each given s̄ ≥ s∗ and all n sufficiently large we have

sup
s∈[s∗,s̄]

∫
{|x|>r0}

Gn(s, x)dx < ε.

The proof is divided into two steps.
Step 1: We make the following claim:

There exist numbers A and c, depending only on m, with the fol-
lowing property: Given ε > 0 and 0 < r0 < R∗, with r0 sufficiently
close to R∗ and any t > 0, we have that for all n sufficiently large,∫

|x|≥r1

Gn(x, t)dx ≤

A
[
e−ct + ε+ w

3m−3
2

∗ (r0) sup
(s,r)∈[0,t]×[r0,r1]

∫
|x|=r

φ2(x, s)dσ
]

(4.1)

where r1 = (r0 +R∗)/2.

To prove this claim we set Dn = {x/|x− xn| ≥ r0}, and define for x ∈ Dn

g(x) = wm
∗ (ar0)− wm

∗ (a|x− xn|), a ≡ 2R∗

R∗ + r0
> 1.

Let us multiply equation (3.12) by ψn(x, t)g(x) and integrate on Dn. Since g
vanishes on the boundary of this region, recalling that (Gn)t = ψn(φn)t, we find

∂

∂t

∫
Dn

Gn(x, t)g(x)dx

= Bn(t) +
∫

Dn

ψ2
n

2
∆g(x)dx+

∫
Dn

{−|∇ψn|2 + ψ2
n −

1
m− 1

φnψn}g(x) dx.

(4.2)

where

Bn(t) = −a∂w
m
∗

∂r
(ar0)

∫
|x−xn|=r0

ψ2
n

2
dσ.

Now, ∆wm
∗ = w∗

m−1 − wm
∗ ≥ 0 for |x| ≥ r0 if r0 is sufficiently close to R∗, hence

we assume ∆g(x) ≤ 0 on Dn. Using these observations and (4.2) we get

∂

∂t

∫
Dn

Gn(x, t)g(x)dx ≤ Bn(t) +
∫

Dn

{ψ2
n −

1
m− 1

φnψn}g(x) dx.



Carmen Cortázar, Manuel del Pino, & Manuel Elgueta 95

On the other hand, recalling the definition of ψn, estimate (3.10) then reads

0 ≤ −
∫
∂Gn

∂t
+

1
m− 1

φnψn −
2

m− 1
Gn. (4.3)

We obtain then that∫
Dn

∂Gn

∂t
(g(x) + wm

∗ (ar0))

≤ Bn(t)+
1

m− 1

∫
Dn

φnψn(wm
∗ (ar0)−g(x))+

∫
Dn

{ψ2
ng(x)−

2wm
∗ (ar0)
m− 1

Gn.}.

(4.4)

Here we observe that wm
∗ (ar0)−g(x) = 0 on Fn = {a|x−xn| ≥ R∗}. Now, given

t∗ > 0 we have that vn → w uniformly on [0, t∗]×RN . Thus, if r0 is sufficiently
close to R∗ we obtain that ψ2

n ≤ 1
(m−1)Gn for |x| ≥ r0 and 0 < t < t∗ for large

n. Hence

ψ2
ng(x)−

2wm
∗ (ar0)
m− 1

Gn ≤ − (wm
∗ (ar0) + g(x))
(2(m− 1))

Gn.

on this region. Substituting this information into relation (4.4), we obtain the
following differential inequality for all sufficiently large n.

Y ′n(t) ≤ Bn(t) +Wn(t)− cYn(s), 0 < t < t∗,

where c is a positive constant depending only on m and

Yn(t) =
∫

Dn

Gn(x, t)(wm
∗ (ar0) + g(x)),

Wn(t) =
1

m− 1

∫
Dn\Fn

φnψn(wm
∗ (ar0)− g(x)).

It follows that

Yn(s) ≤ Yn(0)e−ct + e−ct

∫ t

0

ecs(Bn(s) +Wn(s))ds. (4.5)

We will estimate the right hand side of (4.5). First, we see that Bn(s) → B(s)
and Wn(s) →W (s) uniformly on compact sets where

B(s) = −a∂w
m
∗

∂r
(ar0)

∫
|x|=r0

m2w
2(m−1)
∗ (r0)

φ2

2
dσ,

and
W (s) =

m

m− 1

∫
r0≤|x|≤ r0+R∗

2

φ2 (wm−1
∗ (|x|) (wm

∗ (ar0)− g(x)).

Now,

(wm)′(r0)w2m−2(r0) =
2

m− 1
(w

m−1
2 )′(r0)wm(r0)w

3m−3
2 (r0),
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and w(ar0) < w(r0) , for r0 close enough to R∗, so that

|B(s)| ≤ Cwm(r0)w
3m−3

2 (r0)
∫
|x|=r0

φ2dσ.

On the other hand,

|W (s)| ≤ C(wm−1
∗ (r0)wm

∗ (ar0)(
R∗ − r0

2
) sup

r∈[r0,
r0+R∗

2 ]

∫
|x−xi|=r

φ2dσ

Since ∂
∂rw

m−1
2

∗ (R∗) < −c < 0, we have

R∗ − r0
2

≤ Cw
m−1

2
∗ (r0)

for some C > 0 depending only on m, provided that r0 is sufficiently close to
R∗. From these facts and (4.5) we see that for given ε > 0 and t > 0,

Yn(t) ≤ Yn(0)e−ct + ε+ Cwm
∗ (r0)w

3m−3
2

∗ (r0) sup
[0,t]

sup
r∈[r0,

r0+R∗
2 ]

∫
|x|=r

φ2dσ,

for all sufficiently large n, where we have used again that w∗(ar0) < w∗(r0).
Finally it is easily checked that 1 ≤ w∗(r0)

w∗(ar0)
≤ C for some constant C indepen-

dent of r0 close to R∗. Since g(x) = wm
∗ (ar0) for |x| ≥ r0+R∗

2 , the resulting
inequality (4.1) then follows.
Step 2: As a second step in the proof we claim that in the expansion (3.17),
we have Di = 0 for i = 1, . . . , k.

We have that
∫
Gn(x, t)dx ≤ 1

m2−1

∫ t

0

∫
Hn + C, for certain number C in-

dependent of t. Let us fix a number r0 close to R∗ as in the first step and set
r1 = r0+R∗

2 . We also write

Br1 = {x/|x| ≤ r1}.

Then there is a constant D > 0 depending on r0 such that

|Hn| ≤
D

η2
n

|vn − w|3 on Br1 ,

from where it follows that
∫ t

0

∫
Br1

Hn → 0 as n → ∞, for each fixed t. Then
recalling that |Hn| ≤ CGn, we find that for some C > 0 independent of r0 and
all sufficiently large n,∫

Br1

Gn(x, t)dx ≤ C[
1

m2 − 1

∫ t

0

∫
RN\Br1

Gn + 1].

Then, passing to the limit, recalling that Gn converges uniformly in Br1 × [0, t]
to mwm−1φ2, we get∫

Br1

mwm−1φ2(x, t)dx ≤ lim sup
n→∞

C(
∫ t

0

∫
RN\Br1

Gn + 1).
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Now, from the expression (3.17) for φ, we obtain

φ(x, t) =
k∑

j=1

Dje
−λjtφi(x) +O(1).

with O(1) uniformly bounded in time and space inside Br1 . It follows that∫
A∇∞

wm−1φ2(x, t)dx =
k∑

j=1

D2
j e
−2λjt +O(1).

On the other hand, we can find numbers A and c which depend only on m so
that

lim sup
n→∞

∫
RN\Br1

Gn(x, s)dx

≤ A{e−cs+w
3m−3

2
∗ (r0) sup{

∫
|x|=r

φ2(x, s)dσ : s ∈ [0, t], r ∈ [r0, r1], 1 ≤ i ≤ k}.

(4.6)

It can also be proved that if φi is an eigenfunction corresponding to a negative
eigenvalue of (3.16), then |φi(x)| ≤ Cw(|x|) 3−m

2 , hence

w
3m−3

2 (r0) sup{
∫
|x|=r

φ2dσ : s ∈ [0, t], r ∈ [r0, r1], 1 ≤ i ≤ k}

≤ Cw(r0)
m+3

2

k∑
j=1

D2
j e
−2λjt +O(1), (4.7)

where C is independent of r0. Combining the above relations, we get then that
for certain constant C

k∑
j=1

D2
j e
−2λjt ≤ Cw(r0)

m+3
2

k∑
j=1

D2
j e
−2λjt +O(1),

where C is independent of r0. Since w(r0) may be chosen arbitrarily small, we
obtain a contradiction from this last relation for all t sufficiently large if any of
the Dj ’s was not zero. This completes the second step.

The result of the lemma follows now easily from combining steps one and
two. �

5 Proof of Proposition 2.1

We define x̄in = ηn(C1, . . . , CN ). Then |x̄n| ≤ Cηn with C = C(m). Let us
write w̄n(x) = wm

∗ (x+ x̄n). We want to estimate the quantity

In(s) =
∫

(vn(x, s)m − w̄n(x)m)(vn(x, s)− w̄n(x))dx
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Let us consider r ∈ [0, R∗], to be determined later, and set Br = {|x| < r}.
Then

In(s) =
∫

Bδ

(vm
n − w̄m

n )(vn − w̄n)dx+
∫

RN\Bδ

(vm
n − w̄m

n )(vn − w̄n)dx

= I1
n(s) + I2

n(s).

We have

I1
n(s) ≤ C[

∫
Br

(vm
n − wm

n )(vn − wn)dx+
∫

Br

(w̄m
n − wm

n )(w̄n − wn)dx].

Now, from 3.9, we get∫
Br

(vm
n − wm

n )(vn − wn)dx ≤ Cη2
n

∫
Br

Gn(x, s)dx,

again with C = C(m). Corollary 4.1 then implies that if r is chosen close enough
to R∗, depending on m, and s ≥ s∗, with s∗ also depending only on m then for
all n sufficiently large

C

∫
Br

Gn(x, s)dx <
1
8
.

Also,
C(w̄m

n − wm
n )(w̄n − wn) ≤ Kη2

n

withK depending onm and k only. Therefore, taking r closer toR∗, if necessary,
we get

C

∫
Br

(w̄m
n − wm

n )(w̄n − wn)dx ≤ η2
n

8

if n is large enough. Putting these two estimates together we see that if we
choose T ≥ s∗, then

I1
n(s) ≤ η2

n

4
for all s ∈ [T, 2T ] provided that n is sufficiently large. On the other hand, we
recall that

vn(x, s) = wn(x) + ηnφn(x, s),

so that we can write

vn(x, s) = wn(x) + ηn

N∑
i=1

Ci
∂w∗
∂xi

(x) + ηnθ(x, s) + (φn(x, s)− φ(x, s)),

where θ decays exponentially in compact sets of A.
Now, since r has been already fixed it follows that w̄n(x) = w∗(x−xn + x̄n)

and

lim
n→∞

η−2
n

∫
RN\Br

(vm
n − w̄m

n )(vn − w̄n)dx = m

∫
RN\Br

wm−1(x)θ2(x, s) dx
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uniformly on s on compact subsets of (0,∞). Since θ(x, s) decays exponentially
we have that there are positive numbers A and a, depending only on m, such
that

I2
n(s) ≤ η2

nAe
−at.

Consequently we have

In(s) ≤ η2
n(

1
4

+Ae−aT )

for all s ∈ [T, 2T ]. Making T larger if necessary (depending only on m) we
obtain that the quantity between brackets is less than 1/2. This concludes the
proof of the Proposition. �
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[6] C. Cortázar, M. del Pino, M. Elgueta. The problem of uniqueness of the
limit in a semilinear heat equation Comm. in Part. Diff. Equations 24,
(1999), 2147-2172.
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