2001-Luminy conference on Quasilinear Elliptic and Parabolic Equations and Systems,
Electronic Journal of Differential Equations, Conference 08, 2002, pp 133-154.
http://ejde.math.swt.edu or http://ejde.math.unt.edu

ftp ejde.math.swt.edu (login: ftp)

Singular p-harmonic functions and related
quasilinear equations on manifolds *

Laurent Véron

Abstract

We give here an overview of some recent developments in the study of
the description of singular solutions of

—V.(|VulP V) +elul tu =0

in RV \ {0}, where p > 1, € {0,1,-1} and ¢ > p — 1.

1 Introduction

Let Q be a domain in R containing 0, N > 2, and let
A:QxRxRY = RY and B:QxRxRY =R,

be two Caratheodory functions. Then a classical problem is the study of the
behaviour near 0 of a solution u of

—V.A(z,u,Vu) + B(z,u, Vu) =0 (1.1)

in * = Q\ {0}. Besides the well known linear case, the first striking results
in the nonlinear case were obtained by Serrin in 1964 in a series of celebrated
articles [11, 12]. Under the assumptions

(i) A(@,rQ).Q=clQl

(i) |A(,r, Q)] < o] QPP + 3 (1.2)

(iii)  |B(w,r, Q)| < cal Q™" + eslr|" ! + e
for any (z,7,Q) € Q@ x R x RY +— RY where the ¢; are positive constants
and N > p > 1. Serrin’s results assert that any nonnegative weak solution u
of (1.1) in ©Q* belonging to Wli)Cp(Q*) is either extendable by continuity as a
)N VVI})CP (©2)-solution of the same equation in whole 2, or satisfies

u(z)
tp()
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0 < <67, (1.3)
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134 Singularities and quasilinear equations on manifolds

near 0, for some positive #, in which formula the functions p, are defined in
RV \ {0} by

(p—N)/(p—1) i1 N
up<>{'“"' fl<p<hV, (1.4)

In(1/]z|) if p=N.

A series of extensions were obtained in the eighties in the case

Az, m,Q) = Q" *Q,

where the diffusion operator V.A(x, u, Vu) is called the p-Laplace: by Kichenas-
samy and Véron [9] in the case B(z,r, Q) = 0; Vazquez and Véron [17], Friedman
and Véron [5] in the case B(x,r, Q) = |r|? ' with ¢ > p—1; Guedda and Véron
[7], Bidaut-Véron [1], Serrin and Zou [13] in the case B(z,r,Q) = —|r|*"'r, al-
ways in assuming q¢ > p — 1. We shall present below an overview or the results
of these different authors, writing the equation (1.1) in the form

—V.(|VulP"2Vu) + elu|" " u = 0, (1.5)

with e =1, —1 or 0. We put emphasis on separable solutions that are solutions
of the form

u(r,o) = rPw(o), (r,0) € (0,00) x SN1.
Thus 8 = B, = p/(¢+ 1 — p) and the relation
—Vo. ((w2 + |ng|2)p/2_1vgw) +elw|'w
= Bo((By+ D)= 1) +1 = N)(&* + |Vow)P*
holds on SNV~1. This equation is not the usual Euler equation of a functional,

which makes it more difficult study. However, we give a few results of existence
and uniqueness of solutions.

2 Singular p-harmonic functions
By looking for radial solutions of the p-Laplace equation
—V.(|Vul[P~2Vu) = 0, (2.1)
in RV \ {(0)}, we find that the only solutions are the functions
u = Cipy+ Ch
where the C; are arbitrary constants.The first result obtained by Kichenassamy

and Véron in [9] pointed out that any nonnegative singular p-hamonic functions
is asymptotically radial near its singularities. They proved the following result.
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Theorem 2.1 Assume 1 < p < N and u € Wl’p(Q*) s monnegative and

loc

satisfies (2.1) in Q. Then there exists v € Ry such that
u—ypp € Liz (). (2.2)
Moreover

tim |z| Y PTVG (0 — ) (2) = 0, (2:3)

z—0

and the following equation holds in the sense of distributions in §2
—V.(IVul|P~2Vu) = e 7P~ 0o, (2.4)
for some positive constant cy .
The proof is based on the a priori estimate
u(x) < Cp(a)

for 0 < |z| < R, for some C > 0 and R > 0 (this follows from Serrin’s result),
the scaling transformation

T (u)(§) = u(r)/u(r)

and a version of the strong maximum principle which was first noticed by Tolks-
dorff [14]. Actually, the positivity assumption can be relaxed and replaced by

w/py € L (Br). (2.5)

since Serrin’s result asserts that any nonnegative singular p-harmonic function
does satisfy this estimate. As a consequence, existence and uniqueness of a
solution to the singular Dirichlet problem

~V.(IVul~Vu) = enp [Py, in D'(Q),

2.6
u=g¢g, onJf, (26)

can be proved.

Corollary 2.2 Assume 1 < p < N, Q is bounded with a C? boundary, g €
L®(0Q) N WI=VPP(9Q) and v € R. Then there exists a unique u € C(Q*)
such that |[Vul’~" € LY(Q) satisfying (2.6) and (2.5). Moreover (2.2) and (2.3)
hold.

Another consequence is the following singular Liouville type result.

Corollary 2.3 Assume 1 < p < N, and u € CY*(RN \ {0}) is p-harmonic in
RN\ {0} and satisfies |u(z)| < aluy(x)| + b, for some positive constants a and
b. Then there exist two real numbers v and B such that

u= o, + 3.
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If we look for singular p-harmonic functions v in R™ \ {0} under the form
u(z) = ol Pw(e/le]) = rPu(o), (2.7)
where (r,0) € (0,00) x SV~! are the spherical coordinates, then
Vo ((BPw? + |Vow[H) P22V ,0) = A(2w? + |V,w|*)P2/20,  (2.8)

where V,. is the divergence operator acting on C'* vector fields on the unit (N-
1)-sphere SV~1 and V, is the tangential gradient, identified with the covariant
derivative on SV~! for the Riemannian structure induced by the imbedding of
SN=Linto RY, and

A=B((B+1(P-1)+1-N).

When N = 2 and w(z/|z|) = w(p) is a 27- periodic function, equation (2.7)
becomes

(Bw? +wi)(”_2)/2w¢)w +H((B+1)(p—1) - BB W +w2) P22 = 0. (2.9)
Putting ¥ = w,/w, and By = (2 —p)/(p — 1) yields to

I6] B+1 _
(vm s )t

This equation is completely integrable [9], and the following result is proved.

Theorem 2.4 Assume p > 1, then for each positive integer k there exist a By
and wi : R — R with least period 27 /k, of class C* such that

u(z) = |z wi(z/|x)), (2.10)
is p-harmonic in R? \ {0}; By is the positive root of
B+1)?=0+1/k)* (B2 +B(p-2)/(p-1)). (2.11)
The couple (Bx,wy) is unique, up to translation and homothety over wy.

In the case of regular p-harmonic functions in the plane, which means that
the exponent = —( in (2.7) is negative, the stationary equation becomes

(B2a2+02)72/23,) +((F-1)(p—1)-DBF +62) /% = 0. (212)
Kroll and Mazja [8] obtained the complete set of solutions of (2.12):

Theorem 2.5 For each positive integer k there exists a couple (Bk,djk), unique
up to translation and homothety over wy such that

z = u(@) = |o|* o/ |2]), (2.13)

is p-harmonic in R2. The exponent By, is the root larger than 1 of the algebraic
equation

(B-172 = =1/k)? (F - 5l —2)/(p-1)). (2.14)
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The derivation of regular or singular p-harmonic functions follows in higher
dimension under a splitted form. For example, if N = 3 with (z1, 22, x3) the
canonical coordinates in R3, we put

x1 =rcospsing, x9=rsingsinfd, x3=rcosb,

where r > 0, ¢ € [0,27], 6 € [0, 7]. Equation (2.8) takes the form

_9 (sin 0 (B°w?® +wj +sin™? Gwi)(pd)ﬂ wg)

“os (sin_1 0 (62w2 + wi +sin~? Gwi) (p=2)/2 w¢> (2.15)
=B(B(p — 1) +p—3)sinf (fw? + wj +sin"*Hw?) =272,

We set

w(p, ) =sin™P 0 v(p) = sin® 6 v(y),

then v satisfies (2.12). Thanks to Theorem 2.5 the set of singular (resp. regular)
p-harmonic functions under the form

u(r, p,0) =r Psin™? 0 v(p),
resp.
u(r, ¢, 0) =17 sin® 6 v(p),

is explicitly known. Another way for constructing non-isotropic singular p-
harmonic functions is to use Tolksdorf’s shooting method [14].

Theorem 2.6 Let S C SN~! be a connected and open, with a C? relative
boundary 0S. Then there exist a unique couple (3,w), with 3 > 0, w € C*(S),

w > 0 in S, vanishing on 0S, with maximal value 1 such that the function u
defined by (2.7) is p-harmonic in RN \ {0}.

Proof Put Kg(R,R') = {(r,0) : 0 € S, R<r < R'} and Bs(R,R') =
{(r,o0): 0 €8S, R<r < R'}. Let g be defined by

(2) = 2— |z if x| <2,
T =0 if |z] > 2.

For n > 2 we denote by u,, the unique solution of

—V.(|[Vun [P *Vu,) =0 in Kg(1,n),
u, =g on Bg(l,n).

Since Hopf maximum principle holds [14], w,, is positive in Kg(1,n). The se-
quence {u,} is increasing and locally bounded in the C’llo’f topology of Kg(1,00).
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Thus it converges in C, (Kg(1,00) to some u which is positive and satisfies

—V.(|VulP7*Vu) =0 in Kg(1,00),

u=g on Bg(1,00), (2.16)
lim wu(z)=0.
|z|— o0
The function
R— C(R)= sup u(z)
w€Ks(1,00)

is decreasing and the supremum is achieved for |z| = R. One of the key idea is
called the equivalence principle [14, Lemma 2.1], Lemma 2.1, which asserts that

u(Rx) < (1 —¢e(R—1))u(x), (2.17)

for some € > 0 and any R € (1,2). Thus there exists £ > 0 such that C(R) <
kC(2R) for any R > 3. Then

Vu(z)] < C(z])le| ™", and  |Vu(z) = Vu(a')| < C(|z)«|"' "z — 2|,
for some C' > 0 and 1 < |z| < |2/|. Putting
up(z) = u(Rz)/C(R),

it follows that for any compact subset K of Kg(0,00)\{0} there exists C'(K) > 0
such that

lurllcrox) < C(K).

Thus there exist a sequence R,, — oo and a p-harmonic function v* in Kg(0, c0)
such that ur, — u* in the C} _ topology of Kg(0,00) \ {0}. Moreover u* > 0,

and Vu* # 0 because of (21715)C
In order to prove that there exists 4 > 0 such that
u*(r,0) = r~Pu*(1,0), (2.18)
we define
Y r =sup {C >0:Cu*(z) <u"(Rx), Vo € Kg(0,00) \ {O}} .

Note that ¥ exists because of (2.17). If we assume now that the equality

Yru*(z) = u*(Rx), (2.19)
does not hold in K(0,00), then

Yru*(z) < u*(Rx), (2.20)
from the strong maximum principle and Hopf lemma. Thus the function

0(p) = ‘min u*(Rzx)/u*(z),

z|=p
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is strictly monotone and either (i) lim,_, 0(p) = X, or
The treatment of the two cases is similar, then we assume (i). For any p,
there exists o, € S such that

0(p) = u*(Rpo,)/u*(poy).

We can extract a sequence {R,, } such that lim R, /R = 0. Thus we set
ng— 00

MNk41

pry = Rn,/Rn,., and assume that Op,, — 00 € S, by compactness. Because

. . C(Rnyy )Ju(Ry,, Rop,)
1 9 n — 1 k+1 k+1 k ,
o Olen) = I & R)ulB, . om,)

it implies
Yr=u"(R,00) < u"(1,00), (2.21)
which contradicts (2.20).
The last point is to prove that

Yr=R" (2.22)

for some 3 > 0. Clearly R+ Y is C! (as u*) and decreases. For k € N, there
holds
Ypeut(z) = vt (RFz) = (Bg)*u* ().

Then Ype = (Xg)*. Consequently, for any m € N,, Xpi/m = (S)*/™, and
finally
Yre = (XR)%,

for any positive a.. A straightforward consequence is that (2.22) holds for some
B> 0. If we set
w(o) =u*(1,0), (2.23)

then w satisfies (2.8) in S, where it is positive, and vanishes on 05.
Uniqueness of the couple (5, w) with supgw = 1 follows from the equivalence
principle.

Remark Although the extension is far from being obvious, the regularity re-
quirement on the domain S can be relaxed. It is possible to replace it by the
assumption that 0.5 is piecewise smooth. In dimension 3, Hopf lemma at a cor-
ner is replaced by an expansion in terms of conical functions as in Theorem 2.6.
In higher dimension the proof goes by induction. However, uniqueness of the
couple (B, w) is not clear. From this observation, we can construct p-harmonic
functions in RY \ {0} under the form (2.7) with a finite symmetry group G
generated by reflections through hyperplanes. Taking S to be a fundamental
simplicial domain of G, we construct (3,w) in S and then extend w to the whole
sphere by reflections through the edges.

It is natural to imbed this problem in a more general setting, by replac-
ing (SN~ go) by a compact and complete d-dimensional Riemannian manifold
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(M, g). Let V4. and V, be respectively the divergence operator acting on vector
fields on M and the gradient operator. For 3 € R consider the equation

= V. (870 + 19,6722 )
= B((B+1)(p— 1) = d)(B*¢* + Va0 )P~ 2 2y (2.24)
Definition We denote by &,(M) the set of couples (3,1) € R x C'(M)
satisfying (2.24) and call it the p-quasi-spectrum of M.
Theorem 2.7 If (3,¢) € 6,(M), then either 3((8+1)(p—1) —d) =0 and ¢
is any constant, or B((B+1)(p—1) —d) > 0 and

/M(ﬁ2¢2 + |vgw|2)(pf2)/2wdvg =0. (2.25)

Proof From (2.24),
BB+ 1)(p—1) - d) /M<ﬁ2w2 V)P D 2du, = 0. (2.26)

Thus if the integral term is not zero S((6+1)(p — 1) —d) = 0. Clearly if 5 = 0,
¥ is a constant. If 5 #0, (64 1)(p — 1) = d and from (2.24) there holds

V- (8202 + [V, 2/29,9) o,

which implies

—2)/2
/M (ﬁQwQ + |vg¢|2)(p )/ ‘ng‘deg =0.
Thus ¢ is constant. Moreover if 3((8+1)(p — 1) —d) = 0 any constant satisfies

(2.24). Assume now that 3((8+1)(p—1)—d) # 0. Then (2.25) holds. Moreover
—2)/2
| (@0 190 " Vs,

=B+ D= 1) = d) [ (304 9,070 0y, (220)
and the inequality S((6+1)(p — 1) — d) > 0 follows.

Remark It should be interesting to study the links between &, (M) and the
geometry of M, in particular the infimum of the S((8 4+ 1)(p — 1 — d). Since
we conjectured that the set of such 3 is unbounded, as on the sphere, their
asymptotic distribution could be of interest. In the particular case where p =
d + 1, the (d + 1)-quasi-spectrum of M is the set of couples (3,) such that v
is a solution of

V. (8262 + [V, 0029 ) = A5 (820% + [V yuf?) D2y, (2.28)

As in the case p = 2, it should be interesting to study the invariance properties
of &441(M) with respect to the conformal transformations of M.
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3 Equations with strong absorption

In this section we assume N > p > 1 and ¢ > p— 1. If we look for solutions u of
(1.5) with € = 1 under the form (2.7) then 8 = p/(¢+1—p) = 5, and w solves

—V,. ((ﬂng + ‘vaw|2)(p72)/2vaw) + Mq—lw _ Aq(ﬂ§w2 + |Vc,w|2)(p72)/2w,
(3.1)
in SV, where

A= Bol(By + Dl =)+ 1= N) = (A ) (S - V) 32)

Since
2\ (p— 9 .
/SN—l ((53&)2 + ‘VJW| )(P 2/ (‘ng| - )‘qw2> + |w|qJr ) do = 0,

there is no solution if Ay < 0 or equivalently if ¢ > N(p—1)/(N — p). This fact
corresponds to a removability result which was proved by Vazquez and Véron
[17].

Theorem 3.1 Let 2 be an open subset of RY containing 0, Q* = Q\ {0},
N>p>1,¢>N(p—1)/(N—p)=p” and g a continuous real valued function
satisfying

lim infr_p#g(r) >0, and limsup |r|7p#g(r) < 0. (3.3)

=00 r——oo

If u € C() NW,SP(Q%) is a weak solution of

loc
V. (|Vu|p_2Vu) Yglu) =0, inQF (3.4)

it can be extended to ) as a continuous solution of the same equation in whole
Q.

On the contrary, if p — 1 < ¢ < p*, the function

x> us(2) = Y pgla] ", (3.5)
with D —1 Pq 1/(g+1-p)
'VN,p,q:((q+1_p)p (q_|_1_p_N>) ) (3.6)
is a singular solution of
—V.(|[VulP~2Vu) 4 |u|? u = 0. (3.7)

in R\ {0}. Friedman and Véron provided in [5] a full classification of singular
nonnegative solutions of this equation.
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Theorem 3.2 Let 2 be an open subset of RY containing 0, Q* = Q \ {0},
N>p>1l,andp—1<q<p?, p—1<qifp=N. Ifuc CY Q) is a
nonnegative solution of (8.7) in Q*, the following dichotomy occurs.

(i) Bither lim |2 u(x) = 15 p.q-
xr—

(i1) Either there exists v > 0 such that lirr%)u(x)/,up(x) =7y, and u satisfies

—V.([VulP72Vu) + |u|*'u = en ply P20, in D'(Q). (3.8)

(iii) Or u can be extended to whole Q as a C solution of (3.7) in Q.

Proof By scaling we can always assume that B; C . The starting point is
an a priori estimate of Keller-Osserman type due to Vazquez [16]: if u is any
solution of (3.7) in Bf = {z € RY : 0 < |z| < 1}, there exists a positive
constant K = Ky, , such that

ju(x)| < Kla|™, (3.9)
for any 0 < |z| < 1/2. By writting (3.7) under the form
—V.(|VulP~2Vu) + d(x)uP~* = 0,

with d(x) = u9™1~P and using the Trudinger’s estimate [15] in Harnack in-
equality, it follows that there exists some A = A(N,p, ¢) > 0 such that

max u(z) < A min u(z),
|z|=r |z|=r

for any 0 < r < 1/4.

Step 1 Assume that u(z)/p,(x) is not bounded in a neighborhood of 0. The
previous estimate implies that there exists a sequence r,, — 0 such that

lim min w(x)/pp(r,) = co.

n—0 |z|=r,

Consequently, for any k > 0 there exists some ny such that for n > ny the
function u is bounded from below in By \ B,., by the solution v, of the Dirichlet
problem
—V.(|Vu,[P2Vu,) + |v\anlvn =0, in By \B,,,
vp(z) =0 if |z| =1, (3.10)
v () = kpp(ry) if |z] =7y,

Note that v, is positive, radial and bounded from above by kg, (). Since ¢ < p#
the absorption term v satisfies

1 1
/ virN"ldr < k:q/ ,ug(r)qufldr,
T 0

n
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independently of n. This is sufficient to derive that there exists

lim v, =,
7n—0

where v = vy, is a radial solution of

—V.(IVu[P~2V) + [v|" "o =0, in By \ {0},
v(iz) =0 if |z] =1, (3.11)
v(x) = kpy(x) if |z] — 0.
Actually, v is nonnegative, radial, bounded from above by u and solves
~V.(|[Vu[P72Vv) +v1 = ey kP16,  in D'(By). (3.12)

When k — oo, v(y) increases and converges to some v(«) which is a positive
and radial solution of (3.7) in B} such that

1m0 (o) (1) / 11y (1) = 00 (3.13)

Moreover
ooy ([2]) < u(@) < ug(x) = Ynpgle| ™™ in B (3.14)

The analysis of the behavior of v(,) near r = 0 is done either by a technical
O.D.E. analysis, or a scaling invariance method based on uniqueness of the
radial solution of (3.11) (see [4] for a proof in the case p = 2). From this
analysis follows

rhi% rﬁw(oo)(r) =VNpgq- (3.15)

Consequently
lim [ () = .0 (3.16)

Step 2 Assume that u(x)/uy(z) is bounded near 0 (in this case, we need
not impose the positivity of ). In such a case the absorption term |u|? 'u
is dominated by Cpug for some C' > 0. By using the same scaling methods,
estimates on Vu, and the strict comparison principle as in the proof of Theorem

2.1, it can be proved that there exists a real number v such that
lim w(z)/pp(x) =7, (3.17)
and
tim () V0D (u(z) — () = 0. (3.18)
Thus v satisfies (3.8). If v = 0, then

[u(@)] < maxfu(y)l, V€ B,
y =
by the maximum principle. Thus u is C1'® by the regularity theory of quasilinear
equations. O
The construction of nodal singular solutions of (3.7) under the form (2.7) is
done by a shooting technique, as for the p-Laplace equation.
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Theorem 3.3 Let 0 < p—1< q < p* and S C SV~ be a domain with a C?
relative boundary 0S. Let B = Bs > 0 be the exponent defined in Theorem 2.6.
If B, > g there exists a positive solution w of (8.1) in S which vanishes on 0S.

Proof: Step 1 Construction of an approximate solution. For ¢ > 0 small
enough denote by u = u. the unique solution of

-V. (\Vu|p_2Vu> + ' fu =0, in Kg(1,00),

u=-¢g’, ondKs(1,00), (3.19)

limsup |z|"u(z) < cc.
|z|—o00

By the monotone operator theory, u is unique and satisfies 0 < u < .
Step 2 Construction of a minorant subsolution. Let w = wg be the corre-

sponding second element of the couple (8,w) = (8s,ws) obtained in Theorem
2.6. Put 6 = 3,/Bs. We claim that for § > 0 small enough, the function

(r,0) — ws(x) = ws(r,0) = rP6wh (o) (3.20)
satisfies
—V.(Vw P2 ) + |ws| ' w <0, in Kg(1,00),
|Vws| 5 ) + |ws] 5 < s5(1,00) (3.21)
ws =0, on Bg(1l,00).
Set

Lws =—V. <|Vw5|p_2Vw5) + |ws | ws.
Then L(ws) = r~9%%T (§wf), where
T(n) = =Vo. ((820% + Vonl)7=2/29 ) =Xy (820249 n|) #2724y,
Putting n = dw¥,
(3207 + Vo) P22 = gr=2gr =2, 000D (202 4 |V,0]*) 0=D/2,
and
Vo ((B20% + [Von[*)P=2/2 )
:5p—19p—1va_(wg?fl)(pfl)(ﬁ%w%+ |ngs|2)(”_2)/2vaws>
zép_lﬁp_lwgefl)(pfl)vg.((ﬁ%w% + |vaws|2)(f’—2)/2vgws)
+(0—1)(p— )" 1071wl (BRE + [Vows ) P22V pws

But

Vo (B +[Vowsl") /2 W s ) = As(F + [Vows )0 s,
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with Ag = (8s +1)(p — 1) + 1 — N). Thus,
O PT() = 6 4w TV (Gh0 + [Vows ) P2
x (025 = M) = 0(0 = 1)(p — 1)|Vows ).
Since s — A\g = B4(Bs — By)(p — 1) = —=f30(0 — 1)(p — 1),
81T ()
SR — (p—1)(0 — 1)0PLwg VP TY T (R + [Vows PP
< ST — (p— 1)(0 - )Y,

by assumption @ > 1, therefore there exists 6 > 0 such that 7 (n) < 0. Moreover
it can also be assumed that dw% < e. Then ws(z) < u(x) if |z| = 1 and ws < u
in Kg(1,00) by the maximum principle. Henceforth

dw§(x/|2) < ol u(@) < ynpg 0 Ks(1,00). (3.22)

Step 3 For R > 0, define the function ur by ugp = R%wu(Rx). The function
up satisfies (3.7) in Kg(1/R,0). By the degenerate elliptic equation regular-
ity theory, the set of functions {ugr} remains bounded in the C’llo’f-topology of

Kg(0,00)\{0}. Let 0 < R < R’, in order to compare ug and ug in Kg(1/R, o0)
we recall that g(x) = (2 — |z|)4. The relation

RP(2 - Re)} < B2 - Rjz|)}*  for |a| > 1/R,
implies
A (@~ Bl) <0 for Js| > 1/R,
If and only if
8,R(2 - Rlz|)}" (2= 2RJz|) <0 for |z|>1/R,
which holds true. By the maximum pinciple
R' >R = ur <ug € Ks(1/R,c0). (3.23)

Thus there exists a function v* such that ug decreases and converges to u*
as R — oo in O} (Kg(0,00) \ {0}). The function u* is a solution of (3.7) in
Ks(0,00) which vanishes on Bg(0,00). Because of (3.22), u* satisfies

sw(z/|z)) < |z’ u*(z) < ynpq in Kg(0,00). (3.24)
Finally,
B}im RPau(Rr, o) = u*(r,0) = r P Rlim (Rr)Pau(Rr, o) = r~Pau*(1,0).
Putting w = u*(1,0) completes the proof. O

In the next theorem we prove that the condition 8, > Bg is sharp.

Theorem 3.4 Let 0 < p—1< q < p* and S C SV~ be a domain with a C?
relative boundary 0S. If B, < Bg there exists no solution w of (8.1) in S which
vanishes on 0S.
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Proof Assume w is a solution of (3.1). If § = 8,/08s, then 0 < 6 < 1. If we
denote again 1 = dw, for some § > 0, it follows from the proof of Theorem
3.3-Step 2 that, for any § > 0,

01T () = TR
+p = D=0 wd VT BEE + [Vows[)P2 > 0.
We take § = dp as the smallest parameter such that n = ns > w. Notice that
such a choice is always possible since w € C1(S), the normal derivative of wg
on the relative boundary 05 is negative from the Hopf boundary lemma and

therefore w? (o) > c(dist(c,d8)? for some ¢ > 0. We shall distinguish according
there exists og € S such that

n(o) > w(o), Vo €S, and n(oy) = w(oo), (3.25)

or not. If (3.25) holds true, which is always the case if Gg > 3,4, the function
1) = 1 — w is nonnegative in S, not identically 0 and achieves its minimal value
0 in an interior point og. Let g = (g;;) be the metric tensor on SNV =1, We write
in local coordinates o; around oy,

dp Oy
2 ik
|vs0‘ Z 80' adk

Ko T (V) - S (V).

if we lower the indices by setting X* Z ¢"*X;. From the Mean Value Theo-

7
rem, we obtain

Ow
2 2 (p-2)/2 9%
(B3 + Vo) "

—Z +bz(77 w),

On
(Bgm* + IVonl) 22 5

where
b= -2 (Bt i)+ Vot —a)P)
X(w—&—t(n_w))%g—w))’
and
oh = (-2 (B tm-w) + Vet -)P)
At =) 5 O b1 =)

0o; 0oy,

k

487 (82w 4100 - )2+ Vol + - w))
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Since the graph of 7 and w are tangent at oy,
n(oo) = w(og) = P >0 and Vn(og) = Vw(oy) = Q.

Thus ()2
boo) = (p-2) (ER+1QF) T RQs

and
of(o0) = (73 +1Q1%) " (8182 P8 +1Q1°) + (0 - 2)Q; §gﬂm).
Now
Tl - T
Z o [Vl (3R + 1V E 7 2 — (020 + Vo) B 52
A, ((ﬁ2n2+lvon\2)g’

T S )

+ZC +C’(n w)

<ﬂ2w2 + \v W) E ) 4t — ),

Mzaw[j }+Zc +Cm-w),

where the C; and C' are continuous functions and
i
Vgl Zg ‘ol

The matrix (a;» (00)) is symmetric, definite and positive since it is the Hessian
of the strictly convex function

1 /2 1 , p/2
X:(X17,Xn_1)l—>5<P02—|—|X|2) :};(Pg_‘_zg]kX]Xk) )
7,k

Therefore, (aé-) has the same property in some neighborhood of o(, and the

same holds true with (aﬁ). Finally the function ¢ = n — w is nonnegative,
vanishes at oy and satisfies

i[& 81’/’ ]+ ZC -+ Cytp 2 0. (3.26)

1
\/g%aag 1 do;

Then 9 = 0 in a neighborhood of S. Since S is connected, v is identically 0,
which a contradiction.
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If (3.25) does not hold, then § = 1 and that the graphs of 7 and w are tangent
at some point og of the relative boundary 0S. Proceeding as above and using
the fact that dn/0v exists and never vanishes on the boundary, we see that
¥ = n — w satisfies (3.26) with a strongly elliptic operator in a neighborhood
N of gg. Moreover ¥ > 0 in N, 9¥(og) = 0 and 9¢/dv(op) = 0. This is a
contradiction, which ends the proof.

Remark The existence result of Theorem 3.3 is valid if S is no longer a C?
domain but a domain with a piecewise regular boundary since only the exis-
tence of (Bg,ws) is needed. We conjecture that the condition 8, > (g is still
necessary. As is section 2, we can construct nodal solutions of (3.1) with a finite
symmetry group G generated by reflections through hyperplanes. Taking S to
be a fundamental simplicial domain of G, we construct (5,w) in S and then
extend w to the whole sphere by reflections through the edges. It follows that
there exists nodal singular solutions of (3.7) in RY \ {0}.

Remark Under the assumptions of Theorem 3.3, we conjecture that unique-
ness of the positive solution w of (3.1) which vanishes on 95 holds. If § = SNV —1
and p—1 < ¢ < p*, an application of the maximum principle (or a consequence
of Theorem 3.2) implies that the only positive solution of (3.1) on SN¥~! is the
constant function yn p 4.

4 Equations with a source term
If we look for solutions of
V.(IVu"*Vu) + ul* 'u =0 (4.1)
under the form (2.7), then 8 =p/(¢+ 1 —p) = §, and w solves
Vo (8202 4 [Vowl)P™2/29 0] + ] w4 A (B20% + Vo) P~/ 20 = 0,

(4.2)
on SV~1 with )\, defined by (3.2). By integrating (4.2) we get

Aq /SN?l(ﬂSwZ + | Vow?) P2 20de +/ lw|! wdo = 0.

SN-1

Therefore, there exists no positive solution if A; > 0, or equivalently ¢ < N(p —
1)/(N —p) (it is always assumed that ¢ > p —1). In the range 1 < p < N and
g > N(p—1)/(N — p) the constant function

wo = (31 (N = gf) /1P

is a solution of (4.2), and a natural question is to look for nonconstant solutions.
As in Section 2, we imbed this problem in the more general setting of a compact
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d-dimensional Riemannian manifold (M, g) without boundary. For § and A € R
consider the equation

~V,. ((6%2 + |ng\2)(p*2)/2vgw) + )\(ﬂQwQ + |vgw|2)(pf2)/2w = |w|q71w.
(4.3)
We shall assume A > 0 in order for the constant solution

w, = (51772)\)1/(%1717)

to exist. We assume also that the starting equation is super-quasilinear in the
sense that 8 > 0 and ¢ > g+ 1 —p. We can linearize (4.3) in a neighborhood of
ws, and we obtain

d

295 (B @e +10) + Vg w: + 1) )P D/29, (. +t0))

t=0
— gp—2, p—2
= B8P WP Ay

d _ 9
= (B0 + 10 19, (0 + 1)) 0+ 10)) | = (0= Dl
d

Gt =aelle

dt =0
Since w, = (BP~2\)V/(4+1=P) the linearized equation is
—Dgp=(q+1-p)rp. (4.4)

where A, = V;V' is the laplacian on M.

Theorem 4.1 Let py be the first nonzero eigenvalue of Ay, and assume it is
simple. Then for any X > pu1/(q¢ +1 — p) equation (4.3) admits a nonconstant
positive solution wy.

Proof The existence of a global and unbounded branch of bifurcation B =
{(A\wy)} € R x CYM) issued from (u1/(q + 1 — p),w,) follows from the ap-
plication in the space C''(M) of the classical bifurcation theorem from a simple
eigenvalue. O

Remark The condition on the simplicity of ©; can be avoided in many cases
where symmetries occur. When (M, g) = (SV71,go), we have the parametric
representation

SN — {5 = (cosp,sinpa’) : ¢ €[0,7], 0" € SN2},

and

2— N

Agnv-1w = sin>™N cpi(sin -2 goa—w) +sin™2 pAgn—2w.

dg dp
If we only consider function depending on ¢ (they are called zonal functions),
p1 = N — 1 is a simple eigenvalue. Moreover any eigenspace of SV~! contains
a l-dimensional sub-eigenspace of functions depending only on . Therefore
all the corresponding eigenvalues are simple. Thus from each of the couples
(ur/(q+ 1 = p),w,) is issued a C! curve of positive solutions (A, wy) with A >

pr/(q+1—p).
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Open question An interesting problem is to find sufficient conditions besides
A < p1/(g+ 1 —p) and probably ¢ < dp/(d — p) — 1, in order the constant w,
be the only positive solution of (4.3). We believe additional conditions linked
to the curvature should be found (see [6], [2], [10] in the case p = 2).

We define the critical Sobolev exponent g. by

Np-1
o= Np __Ne-D+p (4.5)
N—p N—p
A particular case of equation (4.1) is when ¢ = g.. Then

p
N-—-p’

N —
By = L and A, =—p2.
p c

g t1—p=
The critical equation is therefore

Vo (8207 + Vw2271V o) + ol = B2 (82 w? + Vw20 = 0,

(4.6)
on SN¥~1. A natural question is to explore the connection between the positive
solutions of (4.6) and the positive solutions of

—V.<|Vu|p72Vu>v =v% in RY. (4.7)

Notice that the radial solutions of this equation, depending of a parameter a > 0,
are known:

N —p. p_1\ (N-p)/P* _\ e=N)/p
val(z) = (Na(rf)p 1) (a+|x|p/<p 1>) . (48)

The solutions of (4.6) are the critical points of the functional

_ 1 j2_ 1
T = [ (S TP - el o (49)
where ¢ € WHP(SN-1),

Remark Let 0 <p—1<gq < q.and S C SV71, it would be interesting to
construct positive solutions w of (4.2) in S which vanish on 0S. In the case
p = 2, the equation becomes

—ANow=F4(Bg+2— Nw+w?, inls,

4.10
w=20, on d5S, ( )

where A, is the Laplace-Beltrami operator on the sphere and 8, = 2/(q —
1). The solutions are constructed by a standard minimization process with a
constraint. If 1 < ¢ < (N 4+1)/(N — 3), a necessary and sufficient condition for
the existence of such a solution is

ﬂq<ﬁ$7
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and in that case Bg = A(S) is the first eigenvalue of A, in Wy?(S). When
p # 2, this method no longer works. However under the same condition

By < PBs and ¢ < g,

(adapted to the case of a general p) we have been able to prove the existence of
positive super and subsolutions to equation (4.2). Unfortunately we do not know
if they are ordered. We conjecture that, in the subcritical case, the condition
B4 > Bs is a necessary and sufficient condition for the existence of positive
solutions to (4.2).

We want to mention another quasilinear equation of Emden type which
admits specific solutions:

—V.(|VuP~?Vu) = Ae*, (4.11)
with A > 0. If we look for particular solutions of (4.11) under the form
u(r,o) = alnr 4+ bw(o) + k,
where «, b and k are constants, one finds « = —p and
0o ([2 + 21V owl2)" 2710 w) 4+ A — p(N = p) [p? + 82|V ow]2]"* 7 =0
on SV1. A necessary condition for the existence of a solution is
p—N <O0. (4.12)

Assuming this condition, we take b = p and get
Va-<[1 + |Vaw\2]p/2_lvgw> —(N—p) [1 I |ng|2]p/2_1 4 AptPekePe = 0.
Now choose k = In(pP~tA71). Assuming 1 < p < N, then w satisfies

vg.([1 + |vc,w\2]”/2*1vaw) S (N=p) 1+ |[Vow]”? T 4 e =0 (4.13)

on SV, In the particular case p = 2, N = 3, this is the equation of conformal
change of structures on S?, and the set of all solutions can be endowed with
a structure of a 3-dim non-compact Lie group. We believe that the case p =
N — 1 =n should play a similar algebraic role. The corresponding equation is

VU.([l + Vw2

Vow) = [1+|Vow?]"* 7 4 e =0 (414)
on SN-L

Inthecase 1l <p< Nandp—1<qg< N(p—1)/(N —p) = p”, the classi-
fication of isolated singularities of positive solutions of (4.1) has been initiated
by Guedda and Véron [7], under the priori bound assumption (4.18), and then
completed by Bidaut-Véron [1].
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Theorem 4.2 Let Q) be an open subset of RN containing 0, Q* = Q\ {0},
l<p<Nandp—1<q<p?, and let u € C*(Q*) be a nonnegative solution
of (4.1) in Q*. Then the following dichotomy occurs.

(i) Either there exists o > 0 such that lir%u(x)/up(x) = a, and u satisfies
xTr—

~V.(|Vu|P~2Vu) — u? = cy ,aP" 16y,  in D'(Q). (4.15)
(ii) Or u can be extended as a Ct solution of (4.1) in Q.

The general proof of this result is based upon the extension obtained in [1]
of the Brezis-Lions lemma [3] dealing with singular super-harmonic functions.

Lemma 4.3 Letl <p < N andu € C’(Q*)ﬂVVéCp(Q*) with V. (|Vu|p_2Vu> €
Ll

e (%) is a nonnegative solution of

v. <|Vu|p_2Vu) <o, (4.16)

a.e. in Q and in the sense of distributions in Q*. Then uP~! € MIZJC/(N_I))(Q),
Vu" e M/ Y

loc

g € L () such that

(), and there exists a nonnegative constant 3 and some

—V. (|vu|”*2vu) = g+ B, (4.17)
in the sense of distributions in €.

From this result and using some test functions introduced by Serrin in [11],
Harnack inequality and a method due to Benilan, it is possible to derive the
key estimate that is satisfied by any positive solution u of (4.1) in this range of
values of ¢ : there exists some C' > 0 such that

u(@) < Cpy(a), (4.18)

holds in a neighborhood of 0. With this estimate, a scaling methods similar to
the one used in [5] ends the proof. Actually, in [7], a more general convergence
result is proved: if 1 <p < N, p—1 < g < p* (no condition if p = N) and
u € C1(Q*) is a signed solution of (4.1) in Q* such that

u(z)] < Cpp(),

near 0, then either
(i’) there exists « # 0 such that lir%u(x)/up(x) = «, and u satisfies
xTr—

—V.(IVulP72Vu) — |u)* 'u = enplal’2ady,  in D'(Q). (4.19)

(ii’) Or u can be extended as a C! solution of (4.1) in Q.

In the case ¢ > p*, the classification of isolated singularities of radial solu-
tions of (4.1) has been performed by Guedda and Véron [7]. Latter on Guedda
and Véron’s results have been extended by Bidaut-Véron [1], with no restriction
on ¢, but always when dealing with radial solutions.
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Theorem 4.4 Let p* < p < q., and let u € CY(B}) be a radial solution of
(4.1) in Bf. Then the following occurs.
(i) Either u is a reqular solution of (4.1) in B.

(i1) Either
u(w) = (B (N — qB) Y/ @z,

or
u(z) = — (NN — qBg) /@1 =P |z P,

(iii) Or |z|”"u(z) is not constant and
lim [z u(e) = (85~ (N — q8y) "/ @+ =P 7,

or
B ) =~V = a4

The results related to the cases p”* = p, p = Np/(N —p) — 1 and p >
Np/(N — p) — 1 can be found in [1]. For a long time, the non-radial case
appeared out of reach up to the recent work of Serrin and Zou [13]. In this
striking paper they proved, among other results, that Gidas and Spruck classical
a priori estimate in the case p = 2, N/(N — 2) < ¢ < g, [6] still holds in the
range p > 1 and p# < p < Np/(N — p) — 1 (under a form appropriate to the
p-Laplace operator).

Any positive solution u of (4.1) in Q* satisfies

u(z) < Cla| P, (4.20)

near 0.

The proof is an extremely clever (but difficult) adaptation of the proof given by
Gidas and Spruck. Among other results Serrin and Zou provide also a descrip-
tion of entire solutions of the same equation in RY.
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