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On the L∞-regularity of solutions of nonlinear

elliptic equations in Orlicz spaces ∗

Lahsen Aharouch, Elhoussine Azroul, & Abdelmoujib Benkirane

Abstract

Our main result is a maximum principle bounding the absolute values
of the solution in terms of the supremum of the absolute values of the
boundary data.

1 Introduction

Let Ω be a bounded Lipshitz domain in Rn (n ≥ 1), let M(t) be an N -function
i.e. continuous, convex, with M(t) > 0 for t > 0, M(t)/t → 0 as t → 0 and
M(t)/t →∞ as t →∞, and m(t) be its right derivatives. Consider the nonlinear
boundary-value problem

Au = −div a(∇u) = f in Ω
u = θ in ∂Ω

(1.1)

with prescribed boundary datum θ, where a = {ai, 1 ≤ i ≤ n} is a vector of
Carathéodory functions defined on Rn satisfying the hypotheses

(H1) |a(ξ)| ≤ λ1m(|ξ|) for all ξ ∈ Rn and some positive constant λ1.

(H2) a(ξ).ξ ≥ λ2|ξ|m(|ξ|) for all ξ ∈ Rn and some positive constant λ2.

Definition 1.1 Let θ ∈ W 1LM (Ω) and f ∈ L1(Ω). A function u ∈ W 1LM (Ω)
is called a weak solution of the boundary-value problem (1.1) if u−θ ∈ W 1

0 LM (Ω)
and ∫

Ω

a(∇u).∇ϕ =
∫

Ω

f.ϕ for all ϕ ∈ C∞0 (Ω).

Here W 1
0 LM (Ω) and W 1LM (Ω) denote the Orlicz-Sobolev Spaces associated to

the N -function M (see section 2).
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2 On the L∞-regularity

Recently, Fuchs and Gongbao proved in [6, Theorem 1.1] that if u is a weak
solution of (1.1) with the second member f lies in L∞(Ω), and sup∂Ω θ(x) < ∞,
then u is bounded from above; i.e.,

sup
Ω

u(x) ≤ const(sup
∂Ω

θ(x), ‖u‖L1(Ω), n, |Ω|,M, ‖f‖L∞Ω), λ1, λ2) < ∞.

For this, the authors have supposed additionally to (H1)-(H2) that the N -
function M satisfies the ∆2-condition near infinity.

The aim of this paper is to prove (Theorem 3.2) the previous statement for
the general operators,

Au = −div(a(x, u,∇u)) (1.2)

without assuming the ∆2-condition. To do this, we replace the hypothesis (H1)
by the more general growth condition,

|a(x, s, ξ)| ≤ c(x) + k1P
−1

M(k2|s|) + k3M
−1

M(k4|ξ|) (1.3)

and the hypothesis (H2) by

a(x, s, ξ)ξ ≥ αM(
|ξ|
β

). (1.4)

(see section 3). To generalize theorem of [6], in our case, we need to prove the
following approximating result (see theorem 3.2)

W 1,1
0 (Ω) ∩W 1LM (Ω) = W 1

0 LM (Ω).

which guaranties that ϕ = max(u − k, 0) can be taken as a test function (for
details see theorem 3.2).

When M(t) = |t|p (p > 1) (i.e., a satisfies the polynomial growth condition),
the regularity result of the solution of (1.1) are investigated in [14] and [11].
Non-standard examples of M(t) which occur in the mechanics of solids and
fluids are M(t) = t ln(1 + t), M(t) =

∫ t

0
s1−α(arsinh s)αds (0 ≤ α ≤ 1) and

M(t) = t ln(1 + ln(1 + t)) (see [8, 9, 10, 6]) for more details). When Au = −∆u
(corresponding to the Poisson equation), the reader is referred to [3], where the
regularity of u is studied in Orlicz Spaces with respect to the second member f
(in particular where f is a measure).

Finally. note that some problems of the calculus of variations (see [6, remark
1.2]) can be lead to the equation (3.1) as in section 3, contributions in this sense
include the works [5, 2].

2 Preliminaries

2-1 Let M : R+ → R+ be an N -function, i.e. M is continuous, convex, with
M(t) > 0 for t > 0, M(t)/t → 0 as t → 0 and M(t)/t →∞ as t →∞.

The N -function conjugate to M is defined as M(t) = sup{st−M(t), s ≥ 0}.
We will extend these N -functions into even functions on all R.
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The N -function M is said to satisfy the ∆2-condition if, for some k

M(2t) ≤ kM(t) ∀t ≥ 0. (2.1)

When this inequality holds only for t ≥ some t0 > 0, M is said to satisfy the
∆2-condition near infinity. Moreover, we have the following Young’s inequality

∀s, t ≥ 0, st ≤ M(s) + M(t) (2.2)

Let P and M be two N -functions. P << M means that P grows essentially
less rapidly than M , i.e. for each ε > 0, P (t)

M(εt) → 0 as t →∞ This is the case if
and only if

lim
t→∞

M−1(t)
P−1(t)

= 0

2-2 Let Ω be an open subset of Rn. The Orlicz class KM (Ω) [resp. The
Orlicz space LM (Ω)] is defined as the set of (equivalence classes of) real-valued
measurable functions u on Ω such that,∫

Ω

M(u(x))dx < +∞ (resp.
∫

Ω

M(
u(x)

λ
)dx for some λ > 0).

LM (Ω) is a Banach space under the norm

‖u‖M = inf{λ > 0 :
∫

Ω

M(
u(x)

λ
)dx ≤ 1}

and KM (Ω) is a convex subset of LM (Ω). The closure in LM (Ω) of the set of
bounded measurable functions with compact support in Ω is denoted by EM (Ω).
2-3 We now turn to the Orlicz-Sobolev spaces, W 1LM (Ω) [resp. W 1EM (Ω)]
is the space of functions u such that u and its distributional derivatives up to
order 1 lie in LM (Ω) [resp. EM (Ω)]. It is a Banach space under the norm

‖u‖1.M =
∑
|α|≤1

‖Dαu‖M

Thus, W 1LM (Ω) and W 1EM (Ω) can be identified with subspaces of the product
of N +1 copies of LM (Ω). Denoting this product by ΠLM , we will use the weak
topologies σ(ΠLM ,ΠEM ) and σ(ΠLM ,ΠLM ).

The space W 1
0 EM (Ω) is defined as the (norm) closure of the Schwartz space

D(Ω) in W 1EM (Ω) and the space W 1
0 LM (Ω) as the σ(ΠLM ,ΠEM ) closure of

D(Ω) in W 1LM (Ω). Now, we recall the following concept.

Definition 2.1 A domain Ω has the segment property if for every x ∈ ∂Ω
there exists an open set Gx and a nonzero vector yx such that x ∈ Gx and if
z ∈ Ω ∩Gx, then z + tyx ∈ Ω for all 0 < t < 1.

Recall that if Ω is a bounded Lipshitz domain it satisfies the segment prop-
erty (see [1]).
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3 Main results

Let Ω be a bounded Lipshitz domain in Rn. Our first aim of this section is
to prove the following result which play an important role in the proof of the
regularity result (Theorem 3.2). Note that some ideas of the proof of Theorem
3.1 are inspired from the analogous of Theorem 1.3 of [12].

Theorem 3.1 Let M be an N -function, Ω be a bounded open domain of RN

satisfying the segment property. Then

W 1,1
0 (Ω) ∩W 1LM (Ω) = W 1

0 LM (Ω).

Proof. We use the notation

ũ =

{
u in Ω
0 in RN\Ω

Step 1 We show that, W 1,1
0 (Ω) ∩W 1LM (Ω) ⊂ W 1

0 LM (Ω).

Let u ∈ W 1,1
0 (Ω) ∩ W 1LM (Ω), set K =: {x ∈ Ω, u(x) 6= 0}

RN

(closure in RN ).
Then K is a compact in RN , and K ⊂ Ω.

If K ⊂ Ω. Let jε a mollifier function, the convolution jε ∗ u belongs in
C∞0 (Ω), for all 0 < ε < dist(K, ∂Ω). By [12, Lemma 6] we get jε ∗ u → u in
W 1LM (Ω) for σ(ΠLM ,ΠLM ), as ε → 0+, this proves that u ∈ W 1

0 LM (Ω).
If K ∩ ∂Ω 6= ∅. For all x ∈ ∂Ω, let Gx and yx be respectively the open set

and the nonzero vector given by Definition 2.1. Set F = K ∩ (Ω\ ∪x∈∂Ω Gx),
then F is a subset compact of Ω. Hence there exist an open G0 such that
F ⊂ G0 ⊂⊂ Ω. Since K is compact, we can found finitely sets Gx; (let us
rename them G1, . . . , Gk) such that K ⊂ G0 ∪ · · · ∪ Gk. Moreover, as in the
proof of [1, Theorem 3.18], we can construct some open sets G̃0, G̃1, . . . , G̃k

which cover K, such that G̃j ⊂ Gj for every j. Now, let Θ = {θj , 0 ≤ j ≤ k} be
a partition of unity subordinate to {G̃j , 0 ≤ j ≤ k} and put uj = θju, for every
j = 0, . . . , k. We have u =

∑k
j=0 uj and suppuj ⊂ G̃j , for every j = 0, . . . , k.

So, it suffices to show that any uj belongs in W 1
0 LM (Ω ∩ Gj). Since G̃0 ⊂ Ω,

as in the case K ⊂ Ω above we prove that u0 ∈ W 1
0 LM (Ω ∩Gj).

Since uj ∈ W 1LM (Ω ∩ Gj) for all j ≥ 1 we claim that ũj ∈ W 1LM (RN )
(indeed: the function ũj lies in W 1,1

0 (RN ) due to uj ∈ W 1,1
0 (Ω∩Gj). Moreover,

∇ũj = ∇̃uj in the distributional sense and a.e. on RN . On the other hand,
ũj ∈ LM (RN ) and∇ũj ∈ (LM (RN ))N , because uj ∈ W 1LM (Ω∩Gj)). Let Kj =
suppuj and uj,t = ũj(x− tyj), with 0 < t < min{1, |yj |−1 dist(G̃j , G

c
j)}, where

yj be the nonzero vector associated to the set Gj (see Definition 2.1). We claim
that suppuj,t ⊂ Ω ∩Gj , for all t satisfying 0 < t < min{1, |yj |−1 dist(G̃j , G

c
j)}.

In fact, by the segment property, we have

suppuj,t = Kj + tyj ⊂ (Gj ∩ Ω) + tyj ⊂ Ω.
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On the other hand, let x ∈ supp uj,t. Then dist(x, G̃j) ≤ dist(x, x − tyj) +
dist(x− tyj ,Kj) + dist(Kj , G̃j) = dist(x, x− tyj),
which implies that,

dist(x, G̃j) ≤ dist(x, x− tyj) = |tyj |.

Then, dist(x, G̃j) < dist(G̃j , G
c
j), hence x ∈ Gj .

Since uj,t ∈ W 1
0 LM (RN ) and supp uj,t ⊂ Ω∩Gj , in virtue of lemma 1.5 of [12],

we see that uj,t → 0 in W 1LM (Ω ∩Gj) for σ(ΠLM ,ΠLM ) as t → 0. Moreover,
by using lemma 1.6 of [12] we can approximate uj,t by a sequences of elements
of D(Ω ∩Gj)), W 1LM (Ω ∩Gj) for σ(ΠLM ,ΠLM ), hence gives the result.

Step 2 We shall prove that, W 1
0 LM (Ω) ⊂ W 1,1

0 (Ω) ∩W 1LM (Ω).
Let u ∈ W 1

0 LM (Ω), by theorem 1.4 of [13] there exists un ∈ D(Ω) and λ > 0
such that ∫

Ω

M(
Dαun −Dαu

λ
) dx → 0 as n → ∞ ∀ |α| ≤ 1.

By using Jensen’s inequality, we have

M(
1

meas(Ω)

∫
Ω

(
Dαun −Dαu

λ
) dx) ≤ 1

meas(Ω)

∫
Ω

M(
Dαun −Dαu

λ
) dx

for n large enough. Then,

M(
1

meas(Ω)

∫
Ω

(
Dαun −Dαu

λ
) dx) → 0, as n → ∞ ∀ |α| ≤ 1,

which gives, since M−1 is right continuous in R+,∫
Ω

|Dαun −Dαu| dx → 0 as n →∞ ∀ |α| ≤ 1.

This completes the proof. �

Let M and P be two N -functions such that P << M . Consider the Leray
Lions operator A defined from D(A) ⊂ W 1

0 LM (Ω) → W−1LM (Ω) by

Au = −div(a(x, u,∇u)),

where a : Ω×R×Rn → Rn is a Carathéodory function satisfying for a.e. x ∈ Ω,
all s ∈ R and all ξ 6= ξ∗ ∈ Rn:

(H1’) |a(x, s, ξ)| ≤ c(x) + k1P
−1

M(k2|s|) + k3M
−1

M(k4|ξ|)

(H2’) a(x, s, ξ)ξ ≥ αM( |ξ|β ) for some positive constants k1, . . . , k4, α and β,
where c(x) belongs to EM (Ω).



6 On the L∞-regularity

Consider the nonlinear boundary-value problem

−div(a(x, u,∇u)) = f in Ω
u ≡ θ in ∂Ω.

(3.1)

Our objective is the following.

Theorem 3.2 Let u ∈ W 1LM (Ω) denotes a weak solution of (3.1) and assume
that f is in L∞(Ω). Then sup∂Ω θ < ∞ implies that u is bounded from above
i.e.

sup
Ω

u ≤ const(sup
∂Ω

θ, ‖u‖L1(Ω), n, |Ω|,M, ‖f‖L∞(Ω), α, β) < ∞.

Remark 3.1 Note that the statement of Theorem 3.2 holds for any N -function
M. In particular for the following critical cases:

M(t) = t log(1 + t) and M(t) = et − t− 1.

We state the following lemmas which are needed below.

Lemma 3.1 ([5]) Let k0 > 0, γ > 0, ε > 0 and α ∈ [0, 1 + ε] denote constants
and suppose that u ∈ L1(Ω) satisfies the estimate∫

Ak

(u− k)dx ≤ γkα|Ak|1+ε,

for all k ≥ k0, where Ak denotes the set of points x ∈ Ω for which u(x) >
k. Then supΩ u is bounded by a finite constant depending on γ, ε, α, k0 and
‖u‖L1(Ak0 ).

Proof of Theorem 3.2 Let k0 = sup∂Ω θ < ∞ and let u be a weak solution
of (3.1). Let us remark that by the lemma 3.1, it suffices to show that∫

Ak

(u− k)dx ≤ const(n, |Ω|,M, ‖f‖L∞(Ω), α, β)|Ak|1+
1
n ∀k ≥ k0. (3.2)

Observe that ∫
Ak

f(u− k)dx ≤|Ak|1/n
( ∫

Ak

|u− k|
n

n−1 dx
)n−1

n

≤c(n)|Ak|1/n

∫
Ak

|∇u|dx.

(3.3)

On the other hand, we have∫
Ak

|∇u|dx ≤
∫

Ak

β
|∇u|

β
dx ≤

∫
Ak

(M(β) + M(
|∇u|

β
))dx

≤M(β)|Ak|+
∫

Ak

M(
|∇u|

β
)dx.

(3.4)
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Moreover by theorem 3.1, the function ϕ = max(u − k, 0) lies in the space
W 1

0 LM (Ω). Hence ϕ is admissible in (3.1) and we obtain,∫
Ak

M(
|∇u|

β
)dx ≤ 1

α

∫
Ak

f(u− k)dx. (3.5)

The right hand side of this inequality can be estimated with Hölder’s inequality
and the imbedding W 1.1

0 (Ω) ↪→ L1∗(Ω) as follows:

1
α

∫
Ak

f(u− k)dx ≤ 1
α
‖f‖∞|Ak|1/n(

∫
Ak

|u− k|
n

n−1 dx)
n−1

n

≤2β

α
c(n)‖f‖∞|Ak|1/n

∫
Ak

|∇u|
2β

dx.

Using Young’s inequality we can write

1
α

∫
Ak

f(u− k)dx ≤M(
2β

α
c(n)‖f‖∞|Ak|1/n)|Ak|+

∫
Ak

M(
|∇u|
2β

)dx

≤M(
2β

α
c(n)‖f‖∞|Ak|1/n)|Ak|+

1
2

∫
Ak

M(
|∇u|

β
)dx.

(3.6)

Then the conclusion follow immediately from (3.3)–(3.6).

Remark 3.2 The method used in the proof of the above theorem gives also
infΩ u > −∞ provided that θ is bounded from below. In particular, boundedness
of θ implies u ∈ L∞(Ω) (compare with remark 1.1 [6]).

Example Let M(t) = e|t| − |t| − 1, we set a(x, s, ξ) = (ai(x, s, ξ))1≤i≤n such
that

ai(x, s, ξ) =

{
e|ξi|−|ξi|−1

|ξi| sign ξi if |ξi| 6= 0

0 if |ξi| = 0 .

Then M(t) and a(x, s, ξ) satisfy the conditions (1.3) and (1.4). Note that the
N -function M(t) does not satisfy the ∆2-condition.

Remark 3.3 Let m(t) the right derivative of M(t). Then m(t) and a(x, s, ξ)
don’t satisfy the condition (H2). Indeed, take ξ = (0, . . . , 0, n, 0, . . . , 0), n ∈ N.
Then we have a(x, s, ξ)ξ = en − n − 1, and |ξ|m(|ξ|) = n(en − 1). But for all
constant C > 0 there exists n large enough, such that en−n−1

n(en−1) < C.
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linéaires, Dunod, Paris, (1969).

Lahsen Aharouch (e-amil: lahrouche@caramail.com)
Elhoussine Azroul (e-mail: elazroul@caramail.com)
Abdelmoujib Benkirane (e-mail: abenkirane@fsdmfes.ac.ma)
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