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Strongly nonlinear elliptic problem without
growth condition *
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Abstract

We study a boundary-value problem for the p-Laplacian with a non-
linear term. We assume only coercivity conditions on the potential and
do not assume growth condition on the nonlinearity. The coercivity is
obtained by using similar non-resonance conditions as those in [1].

1 Introduction

Consider the boundary-value problem

—Apu = f(z,u)+h inQ,

1.1
u=0 on 09, (L.1)

where © is a bounded domain of RN, —A,: Wy*(Q) — W1 (Q) is the p-
Laplacian operator defined by

Apu = div(|VulP~?Vau), 1<p< .

The p-Laplacian is a degenerated quasilinear elliptic operator that reduces to
the classical Laplacian when p = 2. The notation (.,.) stands hereafter for the
duality pairing between W1 () and W, *(€2). While f: @ x R — R is a
Carathéodory function and h € W=7 (Q).

Consider the energy functional ®: VVO1 P(Q)) — R associated with the problem

<I>(u):%/Q|Vu|pdx7/QF(x,u)dxf<h,u>,

where F(z,s) = [ f(x,t)dt. We are interested in conditions to be imposed on

the nonlinearity f in order that problem (1.1) admits at least one solution u(x)

for any given h. Such conditions are usually called non-resonance conditions.
When the nonlinearity satisfies a growth condition of the type

If(z,8)| < als|? ' +b(z) forall seR, and a.e. in Q, (1.2)
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42 Strongly nonlinear elliptic problem without growth condition

with ¢ < p* where the Sobolev exponent p* = NN—Q) when p < N and p* = +00
when p > N and b(x) € L®")'(Q), the functional ® is well defined and is of class
C!, Ls.c. and its critical points are weak solutions of (1.1) in the usual sense.
However, when this growth condition is not satisfied, ® is not necessarily of
class C! on WO1 P(Q2) and may take infinite values. The first eigenvalue of the

p-Laplacian characterized by the variational formulation

. fQ |vu|p 1,p
)\1 = )\1(pr) = mln{W dm, (S WO’ (Q) \ {O}}
Q
is known to be associated to a simple eigenfunction that does not change sign
[4].
A procedure used to treat (1.1) when the nonlinearity lies asymptotically on
the left of A\; consists in supposing a “coercivity” condition on F' of the type

lim sup pF(,s)

N < Ay for almost every x € Q (1.3)
s—+o0 S

and minimizing ® on Wy*(€2). The minimum being a weak solution of (1.1)
in an appropriate sense [1, 2, 3]. Another way is to obtain a priori estimates
on the solutions of some equations approximating (1.1) and to show that their
weak limit is indeed a weak solution.

Note that with the help of the conditions (1.2) and (1.3), we know since the
work of Hammerstein (1930) that (1.1) admits a weak solution that minimizes
the functional ® on Wy?(Q). The condition (1.3) does not imply a growth
condition on f unless f(x,u) is convex in u (see for example [5]).

In [1], Anane and Gossez supposed only a one-sided growth condition with
respect to the Sobolev (conjugate) exponent that do not suffice to guarantee the
differentiability of ®, which may even take infinite values. Nevertheless, they
showed that any minimum of ® solves (1.1) in a suitable sense.

Here, we assume 1 < p < oo and only that f maps L* () into L*(Q); i.e.,

sup [f(., )] € Lip.(Q), VR>0 (1.4)
[s|I<R

and a coercivity condition of the type (1.3). We prove that any minimum u of
®, which is not of class C' on Wol’p(Q) and may take infinite values too, is a
weak solution of (1.1) in the sense

/ |Vu|P~2VuVo dz = / f(z,w)vdz + (h,v),
Q Q

for v in a dense subspace of WO1 P(Q). This result is proved by Degiovanni-
Zani [2] in the case p = 2.

In the autonomous case f(x,s) = f(s), De Figueiredo and Gossez [6] have
proved the existence of solutions for any h € L>(Q) by a topological method.
They supposed only a coercivity condition and established that

/|Vu|p72Vqudx:/f(x,u)vdx+<h,v>
Q Q
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for all v € Wy () N L>(Q) U {u} but the solution obtained may not minimize
®. Indeed, an example is given in [6] in the case p = 2 and an other one is given
in [3] where p may be different from 2.

Note that in our case, the condition (1.4) implies no growth condition on f
as it may be seen in the following example.

Example Consider the function

fla,s) = d@i(““(’?)mﬁ)exp(%“@+'“) i |s| > 1

2
£(10s* — 9) if |s] <1,

where d(z) € LL (Q) and d(z) > 0 almost everywhere in (2, so that

loc

2cos( &2 s|— .
F(x,s) = —d(z)exp (¥) P (HTl> ifs) 21
—d(z)% (~5s% +9) if |s| < 1.

Then F(z,s) < 0 for all s € R almost everywhere in Q. So, ® is coercive.
Nevertheless, as we can check easily, f satisfies no growth condition.

2 Theoretical approach

We will show that when (1.4) is fulfilled, any minimum u of ¢ is a weak solution
of (1.1) in an acceptable sense.
Definition The space L (£?) is defined by
LE(Q) = {v e L>(Q); v(z) =0 a.e. outside a compact subset of Q}.
For u € Wy (Q), we set
Vu={ve Wy P(Q) NLP(Q); ue Lo({z e Q; v(z) # 0h}.

Proposition 2.1 (Brezis-Browder [7]) If u € Wy*(Q), there ezists a se-
quence (un)n C WyP() such that:

(i) (un)n C WoP(2) N LF(R).
(ii) |un(z)] < |u(z)] and u,(x).u(x) >0 a.e. in Q.
(iii) un — u in Wy'(2), as n — oo.
The linear space V,, enjoys some nice properties.

Proposition 2.2 The space V,, is dense in Wol’p(ﬂ). And if we assume that
(1.4) holds, then

Ay ={p e WyP(Q); f(z,u)p € LHQ)}

s a dense subspace of Wol’p(Q) as V, C A,. More precisely, Brezis-Browder’s
result holds true if we replace Wy (2) N L () by V.
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Proof It suffices to show that V,, is dense in Wol’p(Q) and that V,, € A, when
(1.4) holds.
The density of V, in W, *(Q): We have to show that for any ¢ € W, (),
there exists a sequence (o), C V,, satisfying (11) and (iii). This is done in two
steps. First, we show it is true for all <p e Wy P(Q) N LE(). Then, using
Proposition 2.1, we show it is true in Wy (Q).
First Step: Suppose © € WyP(Q) N L(Q) and consider a sequence (O,,), C
Cs°(R) such that:
(1) supp ©y, C [-n, 7],
(2)0,=1on[-n+1,n-1],
3)0<©,<1lonRand
(4) 165, (s)] < 2.

The sequence we are looking for is obtained by setting

on(x) = (0, 0ou)(z)p(z) for a.e. z in Q.

Indeed, let’s check the following three statements

(a) ¢n € Vi,

(b) len(2)] < |o(z)| and n(z)p(z) > 0 ae. in Q and

(C> ©n — @ in W()LP(Q)

For (a), since ¢ € LF(£2), we have that ¢, € L () and it’s clear by (4) that
©n € WyP(Q). Finally, by (1), u(z) € [-n,n] for a.e. z in {z € Q; p,(z) # 0}
The assumption (b) is a consequence of (3 ) For (c), by (2), on(z ) o(z) a

in Q and

o) = 0,u() T ple) + O (ue) 52— F2 e
And by (4),
a@”(x)‘gﬂ ou I)“ ‘+’ ‘ELP(Q)

Finally, by the dominated convergence theorem we get (c).
Second Step: Suppose that ¢ € W P(Q). By Proposition 2.1, there is a
sequence (¥,,), C Wy P(Q) satisfying (i ), (ii) and (iii).

For k =1,2,..., there is ny € N such that ||¢n, — ¢||1, < 1/k. Since ¢, €
Wol’p(Q)ﬁLgo(Q), by the first step, there is ) € V,, such that |¢g(z)| < [¢n, (2)]
and g (x)y, (x) > 0 almost everywhere in Q and ||ox — ¥n,ll1p < 1/k, so
that (o) is the sequence we are seeking. Indeed, |k ()| < |thn, (z)| < |p(z)],
w;]gfv)w(f) 2 0ae. inQand [[or—¢()|[1p < ok =V ll1p+[¥n, —0(@)]l1p <
2/k.

The inclusion V,, C A,: Indeed, for ¢ € V,, set £ = {x €0 p(x) # 0} SO

that
[f(z,u)el = [f(@,u)xpe()|
< max {|f(z,s)p(@)]; [s] < |JullLoo(m) }

where x g is the characteristic function of the set E. By (1.4), the last term lies
to L1(Q), so that p € A,. O
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Theorem 2.3 Assume (1.4). If u € W) P(Q) is a minimum of ® such that
F(x,u) € LY(Q), then

(i) [o|VulP=2VuVedr = [, f(x,u)pdr+ (h,d) for all ¢ € A,.

(i) f(x, u) e WL (Q) in the sense that the mapping T : V,, — R : T(¢) =
fQ x,u)pdx is linear, continuous and admits an unique extension T to
the whole space WP (£2).

(iii) {(f( = o flz,u)pdz Vo e A,.
(iv) —Apu = f(z,u) +h in W1 (Q).

Remark There are in In [1] some conditions that guarantee the existence of
a minimum w of ® in W,"*(€2) and consequently F(z,u) € L'(Q).

Proof of Theorem 2.3 We will prove that the assertion (i) holds for all
¢ €V, as a first step, then prove (iii), (iv) and (i). Let ¢ € V,, and s € R such
that 0 < s < 1. There exists 8 = 3(z, s, ¢, u) € [—1,1] such that

F(z,u+sp)— F
| ;

@) | pe,u + Bo)]
< max {|f(z,0)$(@)]; |t] < Jull () + 0]l 10 }-

where E = {z € Q; ¢(z) #0 a.e. }. Since F(z,u) € L*(Q), by (1.4), we have
F(z,u+ sp) € L*(Q) for all 0 < s < 1. On the other hand

i T ul(@) + 56(2)) — F(z, u(z))

s—0 S

= f(z,u(z))¢ a.e. in Q.
It follows from Lebesgue’s dominated convergence that

o P+ 56) = Fla,u)

s—0 S

= f(x,u)¢ strongly in L' ().

Since u € Wol’p(ﬂ) is a minimum point of ®, we get

B(u+ 56) — B(u)
s
then, we get (i) for all ¢ € V,.
The linear mapping defined by T'(¢) = fQ f(z,u)¢ is continuous, because
for all ¢ € V,,

>0 forall0<s <1,

T(¢)|:|/Q|VUI”’2VuV¢*<h,¢>| (lealZ2" + 1l 1. ) 611,

By Proposition 2.2, T admits an unique extension T to the whole space WO1 P(Q).
Henceforth, we will make the identification f(z,u) =T. Since

(—Apu, ¢) = (f(z,u),¢) — (h, @) Vo€V,
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we conclude (iv). Let ¢ € W, ?(Q) such that f(z,u)p € L'(Q), ie. ¢ € Ay.
By Proposition 2.2 there exists (¢,) C V,,. We can suppose that ¢, — ¢ almost
everywhere, |f(z,u)¢n| < [f(z,u)¢| and f(z,u)¢pn — f(z,u)d a.e.. By the

dominated convergence theorem,

f(xvu)¢n - f(a:,u)qS in Ll(Q)

Since (f(z,u), n) = [, f(x, )y for all n € N and f(z,u) € W1 (Q) we get
(iii). Finally, () is an immediate consequence of (iii) and (iv). O

3 Description of the space A,
Now, we will see some condition that guarantee some properties of A,,.

Proposition 3.1 Assume (1.4). Let u be a minimum of ® in Wy (Q) with
F(z,u) € LY(Q). And let ¢ € WyP(Q), v € L'(Q) such that f(z, u( ))p(x) >
v(x) or f(z,u(x))o(z) <wv(x) a.e in ), then ¢ € A,.

Proof Suppose f(z,u(z))p(xz) > v(z) a.e. in Q (the same argument works if
flz,u(x)p(z) < v(zr) ae. in Q). By Proposition 2.2, there exists (¢,) C Vi,
such that ¢, — ¢ in Wy *(Q), |¢,] < |¢| and ¢, (2)p(x) > 0 a.e. in Q. We have

f(@,u(x))pn () = f+(x w(x))on(x) — (2, u(z))dn ()
> —fH (@, u(2))¢” (2) — f~ (2, u(x))¢" (x)

> —v (z).

By Fatou lemma, we have

oo < /Q f . u(@))éx) < liming /Q F (@, u(@))pn(x)
= limninf<f(m,u),¢n> < 00,

which implies f(z,u)¢p € L'(Q), i.e. u € A,. O

Corollary 3.2 Ifn, m1 and 12 in Li (), such that one of the following con-
ditions is satisfied:

(1) f(z,u(z)) > n(x) a.e. in Q
(2) f(z,u(z)) <n(x) a.e. in Q

(3) f(z,u(z)) <ni(z) ae in{x e Q; ulr) <0} and f(z,u(x)) > n2(z) a.e.
in {z € Q; u(zr) > 0},
(
)

(4) f(z,u(z)) > ni(z) a.e. in{x € Q; u(r) <0} and f(z,u(x)) < na(z) ae.
in {z € Q; u(z) > 0}.

Then f(x,u) € LL (Q) and consequently L () N Wy P(Q) C A,,.
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Proof Assume (3) (the same argument works for (4)). Let ¢ € C°(€). We
set 9 = {z € Q; u(x) < —lae}, Q2 = {z € Q; |u(x) < 1ae} and
Q3 = {2 € Q; u(z) > 1 a.e.}. It suffices to prove that f(z,u)|¢|xq, € L*(Q) for
i=1,2, 3. By (1.4) we have f(z,u)¢xq, € L*(2). Let § € C*(R) :

if s > 1,
<O(s) <1 if0<s<1,
if s <0.

0(s) =

S O =

It is clear that (6 o u)|¢| € W, *(€) and that

fla,u(2)) (0 o u(@))|¢(@)| > (0 0 u(x))|d(x)|n2(x) € L ().

By Proposition 3.1, we have f(z,u)(0 o u)|¢| € L'(Q), then f(z,u)pxa, €
L'(Q) (the same argument to prove f(x,u)pxqo, € L*(2)). We conclude that
f(z,u)p € L1 (Q) for all ¢ € C°(R), which implies f(z,u) € Li ().

Now assume (1) (the same argument works for (2)). For all ¢ € C*(2)
we have f(x,u)l¢| > n(z)|¢| € LY(Q), then f(x,u)|l¢| € L*(Q); therefore,

f(z,u)¢ € L' (). Then we conclude that f(z,u) € LL (). O

loc
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