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Stationary Solutions for a Schrödinger-Poisson

System in R3 ∗

Khalid Benmlih

Abstract

Under appropriate, almost optimal, assumptions on the data we prove
existence of standing wave solutions for a nonlinear Schrödinger equation
in the entire space R3 when the real electric potential satisfies a linear
Poisson equation.

1 Introduction

Consider the time-dependent system which couples the Schrödinger equation

i∂tu = −1
2
∆u+ (V + Ṽ )u (1.1)

with initial value u(x, 0) = u(x), and the Poisson equation

−∆V = |u|2 − n∗. (1.2)

The dopant-density n∗ and the effective potential Ṽ are given time-independent
reals functions. There are many papers dealing with the physical problem mod-
elled by this system from which we mention Markowich, Ringhofer & Schmeiser
[8]; Illner, Kavian & Lange [3]; Nier [9]; Illner, Lange, Toomire & Zweifel [4],
and references therein.

In this work we are mainly concerned with the proof of standing waves
(actually ground states) of (1.1)–(1.2) in the entire space R3, i.e. solutions of
the form

u(x, t) = eiωtu(x)

with real number ω (frequency) and real wave function u. Hence we are inter-
ested in the stationary system

−1
2
∆u+ (V + Ṽ )u+ ωu = 0 in R3 (1.3)

−∆V = |u|2 − n∗ in R3 (1.4)
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66 Stationary Solutions for a Schrödinger-Poisson System

under appropriate, almost optimal, assumptions on Ṽ and n∗. We suppose first
that Ṽ ∈ L1

loc(R3) and n∗ ∈ L6/5(R3).
Let us remark that if V0 is such that −∆V0 = −n∗ then (0, V0) is a solution

of the system (1.3)-(1.4). But here, we deal with solutions (u, V ) in H1(R3) ×
D1,2(R3) such that u 6≡ 0.

F. Nier [9] has studied the system (1.3)-(1.4). He has showed the existence
of a solution for small data i.e. when ‖Ṽ ‖L2 and ‖n∗‖L2 are small enough.
Conversely to our approach here, he has began by solving (1.3) for a fixed V
and investigate the Poisson equation then obtained.

In this paper we solve first explicitly the Poisson equation (1.4) for a fixed
u in H1(R3). Next we substitute this solution V = V (u) in the Schrödinger
equation (1.3) and look into the solvability of

−1
2
∆u+ (V (u) + Ṽ )u+ ωu = 0 in R3. (1.5)

Using the explicit formula of V (u), this equation appears as a Hartree equation

studied by P.L. Lions [6] in the case where n∗ ≡ 0 and Ṽ (x) := −2/|x|. The fact
that Ṽ in [6] converges to zero at infinity plays a crucial role to prove existence
of solutions. However, in this paper we show that a slight modification of the
arguments used in that paper allows us to prove existence of a ground state
in the case Ṽ satisfying (1.7), (1.9) and n∗ not necessarily zero (but satisfying
(1.8) and (1.9) as below).

Before giving our hypotheses on Ṽ and n∗ let us define a decomposition
which will be useful in the sequel.

Definition 1.1 We say that g satisfies the decomposition (1.6) if:

(i) g ∈ L1
loc(R3),

(ii) g ≥ 0, and

(iii) There exists q0 ∈ [3/2,∞] : ∀λ > 0 ∃g1λ ∈ Lq0(R3), qλ ∈]3/2,∞[ and
g2λ ∈ Lqλ(R3) such that

g = g1λ + g2λ and lim
λ→0

‖g1λ‖Lq0 = 0. (1.6)

For convenience, we use throughout this paper the following notations:

• ‖.‖ denotes the norm ‖.‖L2 on L2(R3),

• IA denotes the characteristic function of the set A ⊂ R3,

• [F ≤ λ] denotes the set {x;F (x) ≤ λ} for a function F and λ ∈ R.

Let us give now two examples of functions satisfying the conditions in Definition
1.1.

Example 1.2 The following two functions satisfy the decomposition (1.6):

(i) g(x) := 1/|x|α for some 0 < α < 2.

(ii) |g| where g is a function in Lr(R3) for some r > 3/2.
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Proof. To prove (i) we write, for λ > 0,

1
|x|α

:=
1
|x|α

I[|x|>1/λ]︸ ︷︷ ︸
g1λ

+
1
|x|α

I[|x|≤1/λ]︸ ︷︷ ︸
g2λ

.

Elementary calculations give

‖g1λ‖q0
Lq0 =

4π
αq0 − 3

(λ)αq0−3 and ‖g2λ‖q
Lq =

4π
3− αq

(
1
λ

)3−αq.

Hence it suffices to choose any finite numbers q0 , q such that 3/2 < q < 3/α <
q0.
To show (ii) write, as above,

|g| := |g|I[|g|≤λ]︸ ︷︷ ︸
g1λ

+ |g|I[|g|>λ]︸ ︷︷ ︸
g2λ

.

It is clear that ‖g1λ‖L∞ ≤ λ (q0 = ∞) and ‖g2λ‖Lr ≤ ‖g‖Lr (qλ = r). �

Hypotheses. In what follows we assume that

Ṽ + ∈ L1
loc(R3) and Ṽ − satisfies the decomposition (1.6) , (1.7)

where Ṽ +(x) := max(Ṽ (x), 0) and Ṽ −(x) := max(−Ṽ (x), 0). We suppose also
that

n∗ ∈ L1 ∩ L6/5(R3) (1.8)

and finally if we denote by

%(x) := 2Ṽ (x)− 1
2π

∫
R3

n∗(y)
|x− y|

dy

we assume that

inf
{∫

R3

(
|∇ϕ|2 + %(x)ϕ2

)
dx,

∫
R3
|ϕ|2 = 1

}
< 0. (1.9)

Remark that in the case of [6] (where n∗ ≡ 0 and Ṽ (x) := −2/|x|), all the
three hypotheses above are satisfied. Indeed, (1.7) and (1.8) follow from (i) of
Example 1.2. Moreover, if we consider Φ(x) := e−2|x| then it verifies

−∆Φ− 4
Φ
|x|

= −4Φ,

and consequently

inf
{∫

R3
|∇ϕ|2 − 4

∫
R3

ϕ2

|x|
dx,

∫
R3
|ϕ|2 = 1

}
< 0
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i.e.(1.9) is satisfied also.

Our main result is the following. We prove that the Schrödinger–Poisson
system (1.3)-(1.4) has a ground state, minimizing the energy functional corre-
sponding to (1.5), given by (see Lemma 2.2):

E(ϕ) :=
1
4

∫
R3
|∇ϕ|2dx+

1
4

∫
R3
|∇V (ϕ)|2dx+

1
2

∫
R3
Ṽ ϕ2dx+

ω

2

∫
R3
ϕ2dx (1.10)

Theorem 1.3 Under the assumptions (1.7), (1.8), and (1.9) there exists ω∗ > 0
such that for all 0 < ω < ω∗ the equation (1.5) has a nonnegative solution u 6≡ 0
which minimizes the functional E:

E(u) = min
ϕ∈H1(R3)

E(ϕ).

The remainder of this paper is organized as follows: In section 2 we present
some preliminary lemmas which will be useful in the sequel. In section 3, we
conclude by proving our main result.

2 Preliminary results

In this section we present a few preliminary lemmas which shall be required in
several proofs. Recall (cf. [7, Theorem I.1] or [10, p.151]) that D1,2(R3) is the
completion of C∞0 (R3) for the norm

‖ϕ‖D1,2 =
( ∫

R3
|∇ϕ|2 dx

)1/2

.

By a Sobolev inequality, D1,2(R3) is continuously embedded in L6(R3), an equiv-
alent characterization is

D1,2(R3) :=
{
ϕ ∈ L6(R3); |∇ϕ| ∈ L2(R3)

}
.

For the solvability of the Poisson equation (1.3) we state the following lemma.

Lemma 2.1 For all f ∈ L6/5(R3), the equation

−∆W = f in R3 (2.1)

has a unique solution W ∈ D1,2(R3) given by

W (f)(x) =
1
4π

∫
R3

f(y)
|x− y|

dy . (2.2)
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Proof. The existence and the uniqueness of the solution of (2.1) follow from
corollary 3.1.4 of reference [5], by minimizing on D1,2(R3) the functional

J(v) =
1
2

∫
R3
|∇v|2dx−

∫
R3
fvdx.

For this, using Hölder’s and Sobolev’s inequalities we check easily that J is
coercive (that is J(vn) → +∞ as ‖vn‖D1,2 → ∞), strictly convex, lower semi-
continuous and C1 on D1,2(R3). Hence J attains its minimum at W ∈ D1,2(R3)
which is the unique solution of (2.1).

By uniqueness, W is the Newtonian potential of f and has (cf. [1, p.235])
an explicit formula given by (2.2). Furthermore, multiplying (2.1) by W and
integrating we obtain

‖∇W‖2 =
∫

R3
f(x)W (x)dx.

After using Hölder and Sobolev inequalities we get

‖∇W‖ ≤ S
1/2
∗ ‖f‖L6/5 (2.3)

where S∗ is the best Sobolev constant in

‖v‖2
L6(R3) ≤ S∗‖∇v‖2

L2(R3). (2.4)

Hence the linear mapping f 7→W is continuous from L6/5(R3) into D1,2(R3).

�

Now in order to find a solution of equation (1.5), we are going to show that
the operator

v 7→ −1
2
∆v + (W (|v|2 − n∗) + Ṽ )v + ωv

is the derivative of a functional I : H1(R3) → R and hence equation (1.5) has a
variational structure. To this end, we have the following lemma (see also [3])

Lemma 2.2 Let n∗ ∈ L6/5(R3). For ϕ ∈ H1(R3) we denote by V (ϕ) :=
W (|ϕ|2 − n∗) the unique solution of (2.1) when f := |ϕ|2 − n∗ . Define

I(ϕ) :=
1
4

∫
R3
|∇V (ϕ)|2dx.

Then I is C1 on H1(R3) and its derivative is given by

〈I
′
(ϕ), ψ〉 =

∫
R3
V (ϕ)ϕψdx ∀ψ ∈ H1(R3). (2.5)
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Proof. Note that if ϕ ∈ H1(R3) then, by interpolation, |ϕ|2 ∈ L6/5(R3). So
taking f = |ϕ|2−n∗ and multiplying the equation (2.1) by V (ϕ) := W (|ϕ|2−n∗)
we deduce that ‖∇V (ϕ)‖2 =

∫
f(x)V (ϕ)(x)dx, and hence in view of (2.2) we

get

I(ϕ) =
1

16π

∫ ∫
(|ϕ|2 − n∗)(x)(|ϕ|2 − n∗)(y)

|x− y|
dx dy. (2.6)

Using this expression, we show easily that (2.5) holds for the Gâteaux differential
of I i.e. for all ϕ, ψ ∈ H1(R3)

lim
t→0+

I(ϕ+ tψ)− I(ϕ)
t

=
∫

R3
V (ϕ)ϕψ dx,

and that the mapping ϕ 7→ ϕV (ϕ) is continuous on H1(R3). Thus I is Frechet
differentiable and C1 on H1(R3) and its derivative satisfies (2.5). �

At certain steps of our proof of Theorem 1.3, we need some estimates for
which we will use the next inequalities.

Lemma 2.3 (i) If θ ∈ Lr(R3) for some r ≥ 3/2 then ∀δ > 0,∃Cδ > 0 such that∫
R3
θ(x)|ϕ(x)|2dx ≤ δ‖∇ϕ‖2 + Cδ‖ϕ‖2 ∀ϕ ∈ H1(R3) (2.7)

(ii) For all ϕ ∈ D1,2(R3) and y ∈ R3 one has∫
R3

|ϕ(x)|2

|x− y|2
dx ≤ 4‖∇ϕ‖2 (2.8)

(iii) For any δ > 0 and all y ∈ R3∫
R3

|ϕ(x)|2

|x− y|
dx ≤ δ‖∇ϕ‖2 +

4
δ
‖ϕ‖2 ∀ϕ ∈ H1(R3) (2.9)

Proof. In order to prove (i) we show first that (2.7) holds for any θ ∈ L∞+L3/2

and conclude since Lr(R3) ⊂ L∞(R3)+L3/2(R3) for all r ≥ 3/2. Let θ = θ1+θ2
with θ1 ∈ L∞ and θ2 ∈ L3/2. Then for each λ > 0 we have∫

R3
θ(x)|ϕ(x)|2dx ≤‖θ1‖L∞‖ϕ‖2 + λ

∫
[|θ2|≤λ]

|ϕ|2dx+
∫

[|θ2|>λ]

|θ2||ϕ|2dx

≤ (‖θ1‖L∞ + λ) ‖ϕ‖2 + ‖θ2‖L3/2([|θ2|>λ])‖ϕ‖2
L6

≤ (‖θ1‖L∞ + λ) ‖ϕ‖2 + S∗‖θλ
2 ‖L3/2‖∇ϕ‖2

where S∗ is the best Sobolev constant in (2.4) and θλ
2 denotes θλ

2 := θ2I[|θ2|>λ].
It is clear that |θλ

2 | ≤ |θ2| for all λ > 0 and that θλ
2 → 0 pointwise a.e. when

λ→ +∞. Since θ2 ∈ L3/2 then by Lebesgue convergence theorem we infer that
‖θλ

2 ‖L3/2 converges to zero. Hence for any δ > 0 there exists Kδ > 0 such that
if λ ≥ Kδ one has S∗‖θλ

2 ‖L3/2 ≤ δ. Choosing Cδ := ‖θ1‖L∞ + Kδ we deduce
that (2.7) holds for all θ ∈ L∞(R3) + L3/2(R3).
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Regarding (ii), (2.8) is the classical Hardy inequality (see [2]).
Finally, to show (iii) for all δ > 0 and any y ∈ R, we write∫

R3

|ϕ(x)|2

|x− y|
dx =

∫
|x−y|< δ

4

|ϕ(x)|2

|x− y|2
|x− y|dx+

∫
|x−y|≥ δ

4

|ϕ(x)|2

|x− y|
dx

≤δ
4

∫
R3

|ϕ(x)|2

|x− y|2
dx+

4
δ

∫
R3
|ϕ(x)|2dx

and (2.9) holds by using Hardy inequality (2.8). �

Remark 2.4 Note that Ṽ − satisfies the inequality (2.7) i.e. ∀δ > 0∃Cδ > 0
such that∫

R3
Ṽ −(x)|ϕ(x)|2dx ≤ δ‖∇ϕ‖2 + Cδ‖ϕ‖2 ∀ϕ ∈ H1(R3). (2.10)

Indeed, by (1.7) Ṽ − satisfies the decomposition (1.6). Then for a fixed λ > 0
we have

Ṽ − = Ṽ −1λ + Ṽ −2λ

where for i = 1, 2, Ṽ −iλ ∈ Ls(R3) for some s ∈ [3/2,∞] (s = q0 or s = qλ). Hence
by Lemma 2.3 each Ṽ −iλ satisfies the inequality (2.7) and consequently Ṽ − also.

To finish this section we state the following convergence Lemma.

Lemma 2.5 Let ψ ∈ Lr(R3) for some r > 3/2. If vn ⇀ 0 weakly in H1(R3)
then ∫

R3
ψ(x)v2

n(x)dx→ 0 as n→ +∞

Proof. Consider the subset of R3, Aλ := [|ψ| > λ] and a compact subset K of
Aλ suitably chosen later. We write∫

R3
|ψ|(x)v2

n(x)dx =
∫

R3−Aλ

|ψ|v2
ndx+

∫
Aλ−K

|ψ|v2
ndx+

∫
K

|ψ|v2
n dx

≤ λ‖vn‖2 + ‖ψ‖Lr(Aλ−K)‖vn‖2
L2r′ (R3)

+ ‖ψ‖Lr(R3)‖vn‖2
L2r′ (K)

≤ λC0 + C1‖ψ‖Lr(Aλ−K) + ‖ψ‖Lr(K)‖vn‖2
L2r′ (K)

where 1
r′ + 1

r = 1. In the last inequality we used that (vn)n is bounded in
H1(R3) (note that 2 < 2r′ < 6). For a given arbitrary δ > 0, we fix first λ such

that λC0 ≤
δ

3
. Next we choose a compact subset K ⊂ Aλ such that

C1‖ψ‖Lr(Aλ−K) ≤
δ

3
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and finally since vn ⇀ 0 in H1(R3) and 2 < 2r′ < 6 then up a subsequence
‖vn‖2

L2r′ (K)
converges to 0 and therefore there exists Nδ ∈ N such that for all

n ≥ Nδ we get

‖ψ‖Lr(K)‖vn‖2
L2r′ (K)

≤ δ

3
which completes the proof. �

3 Proof of Theorem 1.3

Now we are in position to prove our main result. To this end, we shall minimize
the energy functional

E(ϕ) :=
1
4

∫
|∇ϕ|2dx+ I(ϕ) +

1
2

∫
Ṽ ϕ2dx+

ω

2

∫
ϕ2dx

whose critical points correspond, on account of Lemma 2.2, to solutions of (1.5).
Using (2.6), we may decompose E(ϕ) as

E(ϕ) = E1(ϕ)− E2(ϕ) + E3(ϕ) + E(0) (3.1)

where

E1(ϕ) :=
1
4

∫
|∇ϕ|2 dx+

1
2

∫
Ṽ +ϕ2dx+

ω

2

∫
ϕ2 dx

E2(ϕ) :=
1
2

∫
Ṽ −ϕ2 dx+

1
8π

∫ ∫
n∗(y)
|x− y|

ϕ2(x) dx dy

E3(ϕ) :=
1

16π

∫ ∫
ϕ2(x)ϕ2(y)
|x− y|

dx dy

E(0) :=
1

16π

∫ ∫
n∗(x)n∗(y)
|x− y|

dx dy.

The proof of Theorem 1.3 is divided into the four following Lemmas:

Lemma 3.1 Let ω > 0 and c ∈ R. If the set [E ≤ c] is bounded in L2(R3) then
it is also bounded in H1(R3).

Proof. By the expression (3.1), E(ϕ) ≤ c implies in particular

1
4
‖∇ϕ‖2 − E2(ϕ) ≤ c0 (3.2)

where c0 := c − E(0) and since the other terms are nonnegative. To estimate
E2(ϕ) we use (2.9) which gives for any δ > 0,∫ ∫

R3×R3

n∗(y)
|x− y|

ϕ2(x)dxdy ≤
(
δ‖∇ϕ‖2 +

4
δ
‖ϕ‖2

)
‖n∗‖L1 .
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Using this inequality, Remark 2.4 and choosing δ such that δ
(

1
2 + ‖n∗‖L1

8π

)
< 1

8
we obtain

E2(ϕ) ≤ 1
8
‖∇ϕ‖2 +K0‖ϕ‖2 (3.3)

where K0 is a positive constant. In Consequence (3.2) gives

1
8
‖∇ϕ‖2 ≤ K0‖ϕ‖2 + c0.

Lemma 3.2 For all ω > 0 and c ∈ R the set [E ≤ c] is bounded in L2(R3).

Proof. Assume by contradiction that there exists a sequence (uj)j ⊂ H1(R3)
such that E(uj) ≤ c and ‖uj‖ → +∞. Let vj := uj/‖uj‖ then ‖vj‖ = 1 and
from E(uj) ≤ c we get

1
4

∫
|∇vj |2dx− E2(vj) + E3(vj)‖uj‖2 +

ω

2
≤ c0
‖uj‖2

. (3.4)

By using the estimate (3.3) for ϕ := vj we obtain

1
8
‖∇vj‖2 + E3(vj)‖uj‖2 +

ω

2
≤ c0
‖uj‖2

+K0. (3.5)

Since ω and E3(vj) are nonnegative, this inequality implies that (vj)j is bounded
in H1(R3) and that E3(vj)‖uj‖2 is also bounded; i.e.( ∫ ∫

R3×R3

v2
j (x)v2

j (y)
|x− y|

dxdy
)
‖uj‖2 ≤ c1.

Let then v ∈ H1(R3) be such that for a subsequence of vj , noted again vj , we
have vj ⇀ v weakly in H1(R3), vj → v pointwise almost everywhere and v2

j

converging to v2 strongly in Lp
loc(R3) for any 1 ≤ p < 3. By Fatou’s Lemma we

deduce that∫ ∫
R3×R3

v2(x)v2(y)
|x− y|

dxdy ≤ lim inf
j→+∞

∫ ∫
R3×R3

v2
j (x)v2

j (y)
|x− y|

dx dy

≤ lim inf
j→+∞

c1
‖uj‖2

= 0

and therefore v ≡ 0. On the other hand, it follows from (3.4) that
ω

2
− E2(vj) ≤

c0
‖uj‖2

. (3.6)

Set
h(x) := Ṽ −(x) + V ∗(x) (3.7)

where V ∗(x) := 1
4π

∫ n∗(y)
|x−y|dy is the Newtonian potential of n∗ given by Lemma

2.1 . Then (3.6) is equivalent to

ω −
∫

R3
h(x)v2

j (x)dx ≤ 2c0
‖uj‖2

. (3.8)
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Using successively the hypothesis (1.7) and Lemma 2.5 we may show that∫
R3
h(x)v2

j (x)dx→ 0 as j → +∞. (3.9)

Passing to the limit in (3.8) we infer that ω ≤ 0 which is a contradiction. In
conclusion, any (uj)j ⊂ H1(R3) such that E(uj) ≤ c is bounded in L2(R3). �

Lemma 3.3 For any ω > 0 the functional E is weakly lower semi-continuous
on H1(R3) and attains its minimum on H1(R3) at u ≥ 0.

Proof. First, to show that the functional E is weakly lower semi-continuous,
remark that in the expression (3.1) the term E1 and E3 are continuous and
convex (therefore weakly lower semi-continuous). Then we just have to prove
that u 7→

∫
R3 h(x)u2(x)dx is weakly sequentially continuous on H1(R3) where

h is defined by (3.7). Consider uj ⇀ u weakly in H1(R3) and write∫
h(x)u2

j (x)dx =
∫
h(x)(uj − u)2dx+ 2

∫
h(x)u(uj − u)dx+

∫
h(x)u2dx.

Taking (uj − u) instead of vj in (3.9) we infer that∫
R3
h(x)(uj − u)2dx→ 0 as j →∞.

Moreover, similarly to the proof of (3.9) we show that∫
R3
h(x)u(uj − u)dx→ 0 as j →∞,

and consequently∫
R3
h(x)u2

j (x)dx→
∫

R3
h(x)u2(x)dx as j →∞.

This means that u 7→
∫

R3 h(x)u2(x)dx is weakly sequentially continuous on
H1(R3) and therefore E is weakly lower semi-continuous on H1(R3).

Next, if we denote µ := inf
{
E(ϕ);ϕ ∈ H1(R3)

}
and (un)n ⊂ H1(R3) a

minimizing sequence then by Lemmas 3.1 and 3.2, (un)n is bounded in H1(R3)
and therefore there exists u ∈ H1(R3) such that un ⇀ u weakly in H1(R3). The
functional E being weakly lower semi-continuous on H1(R3) we have

E(u) ≤ lim inf
n→+∞

E(un) = µ

and consequently E(u) = µ. Since E is C1 on H1(R3) then E
′
(u) = 0 and in

view of Lemma 2.2, u is a solution of the equation (1.5).
Let us remark finally that by a simple inspection we have E(|u|) ≤ E(u) and

therefore we may assume that u ≥ 0 . �

Lemma 3.4 There exists ω∗ > 0 such that if 0 < ω < ω∗ then E(u) < E(0)
and thus u 6≡ 0.
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Proof. Assuming (1.9), there exist µ1 < 0 and ϕ1 ∈ H1(R3) such that∫
|ϕ1|2 = 1 and ∫

R3
|∇ϕ1|2dx+

∫
R3
%(x)ϕ2

1(x)dx < µ1.

From (3.1) we observe that∫
R3
|∇ϕ|2dx+

∫
R3
%(x)ϕ2(x)dx = 4E1(ϕ)− 4E2(ϕ)− 2ω

∫
R3
ϕ2(x)dx.

Then the last inequality gives

E1(ϕ)− E2(ϕ)− ω

2
<

µ1

4
.

Now, for t > 0 and using again (3.1) we compute easily

E(tϕ1)− E(0) = t2E1(ϕ1)− t2E2(ϕ1) + t4E3(ϕ1)

<
t2

4
[
(µ1 + 2ω) + 4t2E3(ϕ1)

]
.

Hence, if (µ1 + 2ω) < 0 there exists t∗ > 0 small enough such that for all
0 < t ≤ t∗,

(µ1 + 2ω) + 4t2E3(ϕ1) < 0 .

In other words, setting ω∗ := −µ1/2 then if 0 < ω < ω∗ we have E(tϕ1) < E(0)
for 0 < t ≤ t∗. Since E(u) := inf{E(ϕ);ϕ ∈ H1(R3)}, this implies that E(u) <
E(0) and consequently u 6≡ 0. The proof of Theorem 1.3 is thus complete. �

Remark 3.5 If n∗ is nonnegative then we may replace the assumption (1.9) by
the next one

inf
{∫

|∇ϕ|2dx+ 2
∫
Ṽ (x)ϕ2dx;

∫
|ϕ|2 = 1

}
< 0

which does not depend on n∗ and implies obviously (1.9).
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