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A polyharmonic analogue of a Lelong theorem

and polyhedric harmonicity cells ∗

Mohamed Boutaleb

Abstract

We prove a polyharmonic analogue of a Lelong theorem using the
topological method presented by Siciak for harmonic functions. Then
we establish the harmonicity cells of a union, intersection, and limit of
domains of Rn. We also determine explicitly all the extremal points and
support hyperplanes of polyhedric harmonicity cells in C2.

1 Introduction

Throughout this paper, D denotes a domain (a connected open) in Rn with
n ≥ 2, where D and ∂D are not empty. Since 1936, p-polyharmonic functions
in D have been used in elasticity calculus [14]. These functions are C∞-solutions
of the partial differential equation

∆pf(x) =
∑
|α|=p

p!
α!

∂2|α|f(x)
∂x2α1

1 . . . ∂x2αn
n

= 0, p ∈ N∗, x ∈ D.

To study the singularities of these functions in D, Aronzajn [1, 2] considered
the connected component H(D), containing D, of the open set Cn \ ∪t∈∂DΓ(t),
where Γ(t) = {w ∈ Cn :

∑n
j=1(wj − tj)2 = 0}. H(D) is called the harmonicity

cell of D. Lelong [12, 13] proved that H(D) coincides with the set of points
w ∈ Cn such that there exists a path γ satisfying: γ(0) = w, γ(1) ∈ D and
T [γ(τ)] ⊂ D for every τ in [0, 1], where T is the Lelong transformation, mapping
points w = x + iy ∈ Cn to (n − 2)-spheres Sn−2(x, ‖y‖) of the hyperplane of
Rn defined by: 〈t − x, y〉 = 0. This work can be divided into three sections:
the first one treats a result on polyharmonic functions, the second some general
properties on H(D), and the last one deals with a geometrical description of
polyhedric harmonicity cells in C2.

Pierre Lelong [11] proved in addition that for every bounded domain D of
Rn, there exists a harmonic function f in D such that its domain of holomorphy
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78 A polyharmonic analogue of a Lelong theorem

(Xf ,Φ) over Cnsatisfies Φ(Xf ) = H(D), see also [4]. A concise proof of this
result is given in Siciak’s paper [16] in the case of the Euclidean ball Br

n =
{x ∈ Rn; ‖x‖ < 1}. In [5], we established that the former method can be
applied to arbitrary domains. Also, V.Avanissian noted in [4] that the equality:
(Xf ,Φ) = (H(D), Id) holds in the following cases: D is starshaped with respect
to some point x0 of D, or D is a C-domain ( that is D contains the convex hull
of any (n− 2) dimensional-sphere included in D), or D ⊂ Rn with n even and
n ≥ 4. The object of Section 2 is to use a topological argument [16] to prove
an analogous result for polyharmonic functions in D. As a consequence of this
generalization we shall get

For every integer 1 ≤ p ≤ [n
2 ] and suitable domain D (say D is a

C-domain, or in particular a convex domain), the harmonicity cell
H(D) is nothing else but the greatest (in the inclusion sense) domain
of Cn whose trace on Rn is D and to which all p-polyharmonic
functions in D extends holomorphically.

In Section 3, we establish the harmonicity cell of an intersection, a union, and
a limit of domains of Rn, n ≥ 2. We give next in Section 4 some results about
plane domains, prove the existence of polyhedric harmonicity cells in C2, and
we calculate all extremal points of the harmonicity cell of a regular polygon. For
an arbitrary convex polygon Pn, with n edges, we show that H(Pn) has exactly
2n faces in R4 completely determined by means of the n support lines of Pn. It
is well known by [10] that if we are given a complex analytic homeomorphism
f : D1 → D2, where D1, D2 are domains of R2, D1, D2 not equal to R2 and
R2 ' C, then H(D1) and H(D2) are analytically homeomorphic in C2. The
holomorphic map Jf : H(D1) → H(D2) defined by w 7→ w′ with:

w′1 =
f(w1 + iw2) + f(w1 + iw2)

2
, w′2 =

f(w1 + iw2)− f(w1 + iw2)
2i

realizes this homeomorphism.
In proposition 4.4, we show the continuity, according to the compact uniform

topology, of the above Jarnicki extension f 7→ Jf and estimate ‖(Jf)(w)‖, w ∈
H(D) by means of supz∈D |f(z)|. As applications, we find the harmonicity cells
of half strips and arbitrary convex plane polygonal domains (owing to an explicit
calculation of their support function).

2 A polyharmonic analogue of Lelong theorem

Recall that any polyharmonic function u in D, being in particular analytic in D,
has a holomorphic continuation ũ in a corresponding domain Du of Cn whose
trace with Rn is D. Therefore, given any integer p (0 < p < +∞) and any
domain D of Rn, one can associate a domain NH(D) of Cn (depending on
D only) such that the whole class Hp(D), of all p-polyharmonic functions in
D, extends holomorphically to NH(D). This last complex domain, called the
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kernel of H(D), coincides with the set of all z ∈ H(D) satisfying Ch[T (z)] ⊂ D,
where Ch[T (z)] denotes the convex hull of T (z). For more details see [4].

Making use of a topological argument appearing in [16], we will show now
the following theorem.

Theorem 2.1 Let D be a bounded domain of Rn, n ≥ 2, D 6= ∅, ∂D 6= ∅, and
H(D) its harmonicity cell. Then for all integer 1 ≤ p ≤ [n

2 ], ([n
2 ] is the integer

part of n
2 ) and all domains Ω̃ ⊃ H(D) the problem for the 2p-order linear partial

differential operator ∆p

∆pu = 0 in D

D1ũ = · · · = Dnũ = 0 in H(D)

has a solution h ∈ Hp(D) which cannot be holomorphically continued in Ω̃.
Here ∆ = ∆x = ∂x1x1 + · · · + ∂xnxn

is the usual Laplacian of Rn, Dj = ∂
∂zj

,
j = 1, 2, . . . , n.

Proof Let ξ ∈ ∂H(D) and 1 ≤ p ≤ [n
2 ]. Firstly, we will construct explicitly a

p-polyharmonic function hξ in D whose holomorphic continuation h̃ξ in NH(D)
extends to the whole of H(D); however h̃ξ cannot be holomorphically continued
in a neighborhood of ξ. Next, we will deduce by a topological reasoning the
existence of a p-polyharmonic function h in D such that H(D) is the domain of
holomorphy of h̃.

Construction of hξ. 1) D ⊂ C ' R2: by [12], the boundary point ξ belongs
to some isotropic cone of vertex a t ∈ ∂D , i.e. ξ ∈ Γ(t), or t ∈ T (ξ) =
{ξ1 + iξ2, ξ1 + iξ2}.
a) If t = ξ1 + iξ2 , we consider the function

h̃ξ(z) = Ln
{
[(ξ1 + iξ2)− (z1 + iz2)][(ξ1 + iξ2)− (z1 + iz2)]

}
,

where the branch is chosen such that h̃ξ is real in D. Note that h̃ξ is holomorphic
in H(D), its restriction (̃hξ|D)(x) = 2 Ln ‖x−t‖, where x = x1+ix2 is harmonic
in D, and limz→ξ |h̃ξ(z)| = ∞. Hence h̃ξ cannot be holomorphically continued
beyond ξ.
b) If t = ξ1 + iξ2 , the function

h̃ξ(z) = Ln
{
[(ξ1 + iξ2)− (z1 + iz2)][(ξ1 + iξ2)− (z1 + iz2)]

}
,

satisfies the same requirements of (a). 2) D ⊂ Rn, n ≥ 3:
a) Suppose n even ≥ 4. There exists by [12] a point t ∈ ∂D such that

∑n
j=1(ξj−

tj)2 = 0. Consider then h̃p
ξ : H(D) → C, z = (z1, . . . , zn) 7→ h̃p

ξ(z) with

h̃p
ξ(z) =

{
1

[(z1−t1)2+...(zn−tn)2]
n
2 −p when 1 ≤ p ≤ n

2 − 1

Ln
∑n

j=1(zj − tj)2 when p = n
2
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(The branch is chosen in the complex logarithm such that (h̃ξ|D) is real in
D). Since H(D is the connected component containing D of Cn\ ∪t∈∂D {z ∈
Cn

∑n
j=1(zj− tj)2 = 0}, we see that h̃p

ξ is defined and holomorphic in H(D) and

that limz→ξ |h̃p
ξ(z)| = ∞. It remains thus to prove that the restriction h̃p

ξ |D is
actually p-polyharmonic in D.
2.a.i: 1 ≤ p ≤ n

2 − 1. Since for every x ∈ D : (h̃p
ξ |D)(x) = 1/(rn−2p) depends

only on r = ‖x− t‖ the proof can be carried out directly. Indeed, it is simplest
to introduce polar coordinates with t as origin and to use

∆p =
( ∂2

∂r2
+

n− 1
r

∂

∂r
+

1
r2

B
)p

,

where B is the Beltrami operator containing only derivatives with respect to the
angles variables. Now by induction on q = 1, 2, . . . . we find after some calculus
that for an arbitrary (complex) α,

∆q(rα) = α(α + n− 2)(α− 2)(α + n− 4) . . . (α− 2q + 2)(α + n− 2q)rα−2q.

Observe that if α = 2p− n we obtain

∆q(r2p−n) = (2p− n)(2p− 2) . . . (2p− n− 2q + 2)(2p− 2q)r2p−n−2q,

which gives respectively for q = p and q = p− 1:

∆p(r2p−n) =0,

∆p−1(r2p−n) =(2p− n)(2p− 2)(2p− n− 2)(2p− 4) . . . (4− n)2r2−n.

Note that ∆p−1(r2p−n) 6= 0 if n is even and greater than or equal to 6; in
addition, the case n = 4 involves p = 1, and so the last equality holds since
∆( 1

r2 ) = 0 , ∆0( 1
r2 ) = 1.

2.a.ii: p = n
2 : Since for every x ∈ D, the restriction h̃p

ξ |D : x 7→ 2 Ln r,
where r = ‖x − t‖, is a radial function, we use the same process to verify
that Ln r is a n

2 -polyharmonic function in Rn − {0} for all n = 2p ≥ 4. As
∆(Ln r) = (2p − 2)r−2 , and ∆q(Ln r) = (2q − 2)∆q−1(r−2), we can make use
of the corresponding formula of 2.a.(i) with α = −2 to have

∆q(Ln r) = (−1)q−12q(q − 1)[(q − 1)!](n− 4)(n− 6) . . . (n− 2q)
1

r2q
.

The last equality holds actually for all n ≥ 2 and q ≥ 1 since by the case (1)
above this result is true for n = 2. Observe that if n = 2p ≥ 4 one obtains

∆q(Ln r) = (−1)q−12q(q − 1)[(q − 1)!](2p− 4) . . . (2p− 2q)
1

r2q
in R2p − {0}.

Thus ∆q(Ln r) 6= 0 for q = 1, 2, . . . , p− 1, and ∆q(Ln r) = 0 if q = p.
b) Suppose n is odd, n ≥ 3. We consider again

h̃p
ξ(z) =

1
[[ξ1 − z1)2 + · · ·+ [ξn − zn)2]

n
2−p
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with 1 ≤ p ≤ [n
2 ]− 1, where the chosen branch is such that h̃p

ξ |D, (x) > 0 in D.

Note that h̃p
ξ(z) is holomorphic in H(D) and infinite in any neighborhood of ξ.

By a similar calculus, we find for every x ∈ D,

∆p[h̃p
ξ |D(x)] = 0

∆p−1[h̃p
ξ |D(x)] 6= 0 .

Existence of h: In the following we shall make use of the lemma.

Lemma 2.2 Let O[H(D)] denote the Fréchet space of all holomorphic functions
on H(D), if it is endowed with the topology (τ) of uniform convergence on
compact subsets of H(D). Then for all integer p = 1, 2, . . . , the set

Op[H(D)] = {F ∈ O[H(D)]; F |D ∈ Hp(D)}

is a close subspace of O[H(D)], and therefore it is itself a Fréchet space.

Proof Let us consider F1, F2, . . . . a sequence in Op[H(D)] ⊂ O[H(D)] con-
verging to a function F , uniformly on every compact K ′ of H(D). It is well
known by a theorem of Weierstrass that F is also holomorphic in H(D), it re-
mains thus to verify that ∆p(F |D) = 0, p = 1, 2, . . . . By [7], page 161, for all
multi-index β = (β1, . . . , βn) ∈ Nn: DβFj → DβF , uniformly on every compact
K ′ of H(D); in particular we also have (DβFj)|D → (DβF )|D uniformly on
any compact K ⊂ D since we may treat all K ′ ∩ Rn 6= ∅ as compact subsets of
the real subspace in the complex (z1, . . . , zn)−space. Now, note that

(DβFj)|D = (Dβ
z Fj)|D

= (
∂|β|Fj

∂zβ1
1 . . . ∂zβn

n

)|D =
∂|β|

∂xβ1
1 . . . ∂xβn

n

(Fj |D) = Dβ
x(Fj |D),

where zj = xj + iyj , j = 1, . . . , n. Then for q = 1, 2, . . . , p− 1, the sequence

(∆q
zFj)|D = [(

n∑
j=1

∂2

∂z2
j

)qFj ]|D = (
∑
|α|=q

q!
α!

D2α
z Fj)|D

=
∑
|α|=q

q!
α!

D2α
x (Fj |D) = ∆q

x(Fj |D),

being a finite sum of derivatives (DβFj)|D, we have ∆q
x(Fj |D) → ∆q

x(F |D),
uniformly on every compact K of D. Putting Fj |D = fj and F |D = f , we have
also for every x ∈ D: limj→∞[∆qfj(x)] = ∆qf(x), q = 1, 2, . . . , p − 1. Since
each fj is supposed p-polyharmonic in D for 1 ≤ p ≤ [n

2 ], we have fj ∈ C2p
R (D)

and fj satisfies the appropriate mean value property, see [4]:

λ(fj , x,R) = fj(x) +
p−1∑
q=1

aqR
2q∆qfj(x) (2.1)
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for all x ∈ D, and R > 0 so small that Br
n(x, R) = {y ∈ Rn; ‖y − x‖ < R} ⊂ D,

where λ(fj , x,R) denotes the integral mean values over the surface ∂Br
n(x,R):

λ(fj , x,R) =
Γ(n

2 )
2
√

πn

∫
‖a‖=1

fj(x + Ra)dσ(a) ,

with dσ(a) an element of surface differential on the sphere Sn−1(O, 1) and aq =
Γ(n

2 )/(22qq!Γ(q + n
2 )). As fj converges to f uniformly on the compact set

Sn−1(x,R), the limit process applied to (2.1) yields of course (2.1) for f :

λ(f, x,R) = f(x) +
p−1∑
q=1

aqR
2q∆qf(x);

that is, f = limj→∞ fj has the mean value property (2.1) in D. Thus f is
p-polyharmonic in D.

To prove the existence of the aforesaid function h, let z(1), . . . , z(j). be a
denumerable dense subset of the compact set ∂H(D). For every (j, k) ∈ N∗2 ,
let Bc

n(z(j), 1
k ) = {w ∈ Cn; ‖w − z(j)‖ < 1

k} denote the hermitian ball of Cn

centered at z(j) and of radius 1
k , and put

Hj,k(D) = H(D) ∪Bc
n(z(j),

1
k

).

Due to the density of {z(j)}j∈N∗ in ∂H(D), it is enough to prove the existence of
a function belonging to Op[H(D)] which cannot be holomorphically continued
beyond H(D). This amounts to show the existence of a functions belonging to
Op[H(D)] which cannot be holomorphically continued to any domain Hj,k(D).
Thanks to the construction step, for all j, k ∈ N∗ and every p = 1, 2, . . . , [n

2 ], we
have:

Op[H(D)] \Rj,k{Op[Hj,k(D)]} 6= ∅,
where Rj,k denotes the restriction mapping from Op[Hj,k(D)] to Op[H(D)],
and Op [Hj,k(D)] the space of all holomorphic functions in Hj,k(D) whose trace
on Rn is p-polyharmonic in D. The spaces Op[H(D)] and Op[Hj,k(D)] being
Fréchet spaces by the Lemma above, and the linear and continuous mapping
Rj,k being not onto, we deduce owing to a Banach Theorem [14] that the range
of Rj,k is a subset of the first category of Op[H(D)]; that is,

Rj,k{Op[Hj,k(D)]} = ∪∞m=1X
m
j,k,

where Xm
j,k, m = 1, 2, . . . are subsets of Op[H(D)] satisfying (Xm

j,k)0 = ∅, with
respect to the topology (τ). Observe that

∪∞j,k=1Rj,k{Op[Hj,k(D)]} = ∪∞j,k=1(∪∞m=1X
m
j,k) = ∪∞j,k,m=1X

m
j,k

is also of the first category in Op[H(D)]. Since Op[H(D)] is in particular a Baire
space, we have, of course,

Op[H(D)] \ ∪∞j,k,m=1X
m
j,k = Op[H(D)] \ ∪∞j,k=1Rj,k{Op[Hj,k(D)]} 6= ∅,
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so we can pick up an element h of Op[H(D)] which cannot be continued holo-
morphically through ∂H(D). �

Corollary 2.3 Let D be a C-domain of Rn(n ≥ 2), or D be a convex domain
of Rn. Then for every integer p, (1 ≤ p ≤ [n

2 ], the integer part of n
2 ), the

harmonicity cell of D satisfies

H(D) = [∩u∈Hp(D)D
u]0 (2.2)

where Hp(D) = {u ∈ C∞(D); ∆pu = 0 in D} and Du is the complex domain
of Cn to which a polyharmonic function u extends holomorphically.

Proof By [4] Lemma 1.1.2, each p-polyharmonic function u in D, p ∈ N∗, is
the restriction of a holomorphic function ũ in Du ⊂ Cn such that Du ∩ Rn =
D. The former property is actually a consequence of the analyticity of u. In
addition, the p-polyharmonicity of u implies more precisely that the kernel of
H(D) is included in Du(see [4] Theorem 5.2.6). If u wanders through the whole
class Hp(D), we obtain: NH(D) ⊂ [∩u∈Hp(D)D

u]0 (note here that the kernel
of a harmonicity cell is a connected open of Cn).

Inversely, due to Theorem 2.1 above, we can associate to every 1 ≤ p0 ≤
[n
2 ] a function fp0 ∈ Hp0(D) satisfying Dfp0 = H(D). So, if 1 ≤ p ≤ [n

2 ]
we get obviously the inclusion: [∩u∈Hp(D)D

u]0 ⊂ Dfp0 . Hence, one deduces
NH(D) ⊂ [∩u∈Hp(D)D

u]0 ⊂ H(D). Now the assumption on D guarantees that
NH(D) = H(D); the desired equality follows. �

Observe that it is an unexpected result that the right-hand side of Equality
(2.2) does not depend on the choice of p. This allows us thus to give the following
result.

Corollary 2.4 For every bounded domain D of Rn, n ≥ 2, with D 6= ∅, and
∂D 6= ∅, we have

H(D) = ∩1≤p≤[ n
2 ][∩u∈Hp(D)D

u]0.

Remark 2.5 Putting p = 1 in Corollary 2.3, we find again an Avanissian s’ re-
sult (cf. [4] p.67): Let A(D) (Ha(D)) be the class of all real analytic (harmonic)
functions on D ⊂ Rn. For f ∈ A(D), we denote f̃ : Df → C the holomorphic
extension of f to the maximal domain Df of Cn (in the inclusion meaning).

Then the sets: A = ∩f∈A(D)D
f and B = ∩f∈Ha(D)D

f satisfy
◦
A= ∅,

◦
B= H(D).

3 Some properties of harmonicity cells

In [4], Avanissian established the following general results about the operation
D 7→ H(D); see also [13].

Proposition 3.1 The harmonicity cells of domains of Rn, n ≥ 2, satisfy

a) If D1 ∩D2 = ∅, H(D1) ∩H(D2) = ∅; if D1 ⊂ D2, H(D1) ⊂ H(D2).
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b) H(∪ν∈JDν) = ∪ν∈JH(Dν) for every exhaustive increasing family of do-
mains Dν .

c) H(D)∩Rn = D; H(D) is symmetric with respect to Rn; and if D is convex
then so is H(D).

d) If D is starshaped at a0, then H(D) is starshaped at a0 and H(D) = {z ∈
Cn; T (z) ⊂ D}.

e) ∂D ⊂ ∂H(D) ; if z ∈ H(D) , T (z) ⊂ D ; and if z ∈ ∂H(D) , T (z)∩∂D 6=
∅.

f) δ[H(D)] ≤ 2[ n
2n+2 ]

1
2 δ(D), where δ(D) denotes the diameter of D.

g) H(D) may be explicitly obtained when D is a ball, a cube, or a difference
of two balls.

h) If n = 2 and R2 ' C, H(D) = {z ∈ C2; z1 + iz2 ∈ D, z1 + iz2 ∈ D}.

In the following, we establish supplementary results. Let Dn denote hence-
forth the family of all domains D of Rn, D 6= ∅, ∂D 6= ∅, and Cn

s the family
of all domains of Cn which are symmetric with respect to Rn = {x + iy ∈ Cn;
y = 0}.

Proposition 3.2 The mapping H : D ∈ Dn 7→ H(D) ∈ Cn
s satisfies:

a) H is injective ; H(D) is bounded if and only if D is bounded.

b) For every compact set K ⊂ H(D), there exists a domain D1 ∈ Dn such
that D1 is relatively compact in D and K ⊂ H(D1).

c) If D1, D2 ∈ D2 are such that D1 ∩ D2 is connected then H(D1 ∩ D2) =
H(D1)∩H(D2). If (Dj)j∈J is a family of starshaped domains in Rn(n ≥ 2)
such that ∩j∈JDj is a starshaped domain, or if (Dj)j∈J is a family of
convex domains in Rn such that ∩j∈JDj is open, then H(∩j∈JDj) =
∩j∈JH(Dj).

d) If D1, D2 ∈ D2 with D1∩D2 6= ∅ then H(D1∪D2) ⊃ H(D1)∪H(D2), and
the equality holds if and only if D1 ⊂ D2 or D2 ⊂ D1. More generally,
if (Dj)j∈J ⊂ Dn(n ≥ 2) is such that Di ∩ Dj 6= ∅ for all i, j ∈ J then
H(∪j∈JDj) ⊃ ∪j∈JH(Dj). The equality holds if ∪j∈JDj = Dj0 for a
certain j0 ∈ J .

Proof a) By Proposition 3.1, H is well defined on Dn with values in Cn
s ; and

if two harmonicity cells H(D) and H(D′) coincide in Cn, then their traces on
Rn coincide also, that is D = D′. Besides, suppose that for some R > 0,
D ⊂ Br

n(0, R) = {x ∈ Rn; ‖x‖ < R}. Then H(D) ⊂ H[Br
n(0, R)] = LB(0, R) =

{z ∈ Cn;L(z) < R} (the Lie ball of Cn), see [3, 5, 9], where

L(z) =
[
‖z‖2 +

√
‖z‖4 − |

∑n
j=1z

2
j |2

]1/2

.
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Since ‖z‖ ≤ L(z), we have LB(0, R) ⊂ Bc
n(0, R) = {z ∈ Cn; ‖z‖ < R} and

H(D) is bounded in Cn. The converse is obvious since D ⊂ H(D).
b) Let us consider an increasing exhaustive family (Dν)ν∈J (J is a fixed indices
set) of bounded domains Dν ∈ Dn such that D = ∪ν∈JDν . Due to 3.1.b, the
family (H(Dν))ν∈J of harmonicity cells of (Dν)ν∈J is also increasing, exhaustive
and satisfies H(D) = ∪ν∈JH(Dν). We then have: K ⊂ ∪ν∈JH(Dν). Since K
is a compact set, we can extract from this open covering of K, a finite sub-
covering of K: K ⊂ ∪n

k=1H(Dνk
). Afterwards we have by 3.1.a: ∪n

k=1H(Dνk
) ⊂

H(∪n
k=1Dνk

) and K ⊂ H(∪n
k=1Dνk

). Seeing that D′ is a relatively compact
domain in D and taking D′ = ∪n

k=1Dνk
, we obtain the desired result.

c) The inclusion H(Di ∩Dj) ⊂ H(Di) ∩ H(Dj) is obvious from Di ∩Dj ⊂ Di,
Di∩Dj ⊂ Dj . If w ∈ H(Di)∩H(Dj), T (w) ⊂ Di∩Dj , that is w ∈ H(Di∩Dj).
By similar arguments we obtain the general case.
d) D1 ∩D2 6= ∅ guarantees that D1 ∪D2 ∈ Dn. Since Di ⊂ D1 ∪D2, i = 1, 2,
H(D1) ∪ H(D2) ⊂ H(D1 ∪ D2). Suppose now that D1 is neither included in
D2, nor D2 in D1. If a and b are arbitrarily chosen in D1 \ D2 and D2 \ D1

respectively, and if R2 ' C, then the point w = (a+b
2 , a−b

2i ) of C2 satisfies
T (w) = {a, b} ⊂ D1 ∪ D2. Now, the last hypothesis on D1 and D2 involves
that w /∈ H(D1) ∪ H(D2). Besides, as Di ∩Dj 6= ∅ we have ∪j∈JDj ∈ Dn and
thus this union does possess a harmonicity cell in Cn. The given inclusion is
evident since Di ⊂ ∪j∈JDj . Suppose in addition that Dj0 = ∪j∈JDj . From
H(Dj0) ⊂ ∪j∈JH(Dj) and H(∪j∈JDj) ⊃ ∪j∈JH(Dj), we deduce the equality
H(∪j∈JDj) = ∪j∈JH(Dj). �

Corollary 3.3 If (Dj)j≥1 is a monotonous sequence in Dn, so is (H(Dj))j≥1

in Cn
s ; and writing D = limj→∞ Dj, we have limn→∞H(Dn) = H(D) under the

assumptions that: ∪j≥1Dj 6= Rn if the sequence (Dj)j≥1 is increasing, and that
∩j∈JDj ∈ Dn in the decreasing case.

Proof If the sequence is increasing then lim infn→∞ Dn = ∪n≥1(∩k≥nDk) =
∪n≥1Dn, lim supn→∞Dn = ∩n≥1(∪k≥nDk) = ∩n≥1(∪k≥nDk) = ∪k≥1Dk, so
limn→∞ Dn = ∪n≥1Dn. Since ∪n≥1Dn 6= ∅ and ∪n≥1Dn 6= Rn, we deduce that
limn≥1 Dn is an element of Dn.

Next, (H(Dn))n≥1 being also increasing, limn→∞H(Dn) = ∪n≥1H(Dn).
Now by 3.2.d: ∪n≥1H(Dn) ⊂ H(∪n≥1Dn). Moreover, if w0 ∈ H(∪n≥1Dn)
one has T (w0) ⊂ ∪n≥1Dn; then by 3.2.b and the fact that T (z) is a com-
pact set for every z ∈ Cn, there exists n0 ≥ 0 such that T (w0) ⊂ Dn0

i.e. w0 ∈ H(Dn0) ⊂ ∪n≥1H(Dn). Thus H(limn→∞Dn) ⊂ limn→∞H(Dn),
which involves the aforesaid equality. In case of a decreasing sequence (Dn)n≥1

one has lim infn→∞Dn = ∪n≥1(∩k≥nDk) = ∪n≥1(∩k≥1Dk) = ∩k≥1Dk, and
lim supn→∞ Dn = ∩n≥1(∪k≥nDk) = ∩n≥1Dn. So limn→∞Dn = ∩n≥1Dn,
which is in Dn by hypothesis. Now, (H(Dn))n≥1 being decreasing one also
has: limn→∞H(Dn) = H(limn→∞ Dn). �

Corollary 3.4 The mapping D 7→ H(D) is not a surjective operator: The unit
hermitian ball Bc

n = {z ∈ Cn; ‖z‖ < 1} does not represent a harmonicity cell in
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Cn.

Proof. Since Bc
n ∩ Rn = Br

n = {x ∈ Rn; ‖x‖ < 1} is a convex domain of Rn

(according to the induced topology), we have to find a point w0 ∈ Bc
n for which

the Lelong sphere T (w0) is not contained into Br
n. For, put w0 = ρ (i, 1, . . . , 1) ∈

Cn where ρ > 0 is small enough for w0 to belong at Bc
n and for T (w0) to contain

a certain ξ0 ∈ Rn with ‖ξ0‖ ≥ 1. Taking [n + 2
√

n− 1]−1/2 < ρ < 1/n and
writing w0 = x0 + i y0 we see that a ξ0 satisfying

[〈ξ0 − x0, y0〉 = 0, ‖ξ0 − x0‖ = ‖y0‖, and ‖ξ0‖ ≥ 1];

that is,

ρξ1 = 0, ξ2
1 + (ξ2 − ρ)2 + . . . (ξn − ρ)2 = ρ2 and ξ2

1 + · · ·+ ξ2
n ≥ 1

is given by: ξ0 = ρ[1 + (n− 1)
−1
2 ](0, 1, . . . , 1).

Remark 3.5 Due to propositions 3.1 and 3.2 above, the definition of a har-
monicity cell may be naturally extended to arbitrary open sets of Rn for n ≥ 1
as follows H(∅) = ∅, H(Rn) = Cn, H(]a, b[) = C for ]a, b[⊂ R, and H(O) =
∪i∈IH(Oi), where O is an open set of Rn, (Oi)i∈I the family of the connected
components of O.

Remark 3.6 Some properties are not always preserved by D 7→ H(D); this is
especially the case if:

(i) D is simply connected in Rn with n ≥ 3. Indeed, the two domains D =
Rn − {0} and H(D) = Cn − {z ∈ Cn; z2

1 + · · · + z2
n = 0}, having 0

and Z respectively as fundamental groups, they offer then an example of
a not simply connected harmonicity cell corresponding to a real simply
connected domain; for π1[H(D)] = Z, see [6].

(ii) D is strictly convex in Rnwith n ≥ 2. An example is given by the har-
monicity cell of the unit ball Br

n of Rn. If E(V ) denotes the set of all
extremal points of a convex V we have E(Br

n) = ∂Br
n since these two sets

coincide with the unit Euclidean sphere Sn−1 of Rn. Nevertheless, by [9]:
E(H(Br

n)) = ∂∨[H(Br
n)] = {w = xeiθ ∈ Cn;x ∈ Sn−1, θ ∈ R}, where ∂∨U

denotes the Ŝilov boundary of U ⊂ Cn; thus: E(H(Br
n))

6=
⊂ ∂[H(Br

n)].

(iii) D is partially - circled in Cn ' R2n, n ≥ 2, that is (for instance): z ∈
D ⇒ (z1, . . . , zn−1, e

iθzn) ∈ D, for all θ ∈ R. Indeed if D = Bc
n = {z ∈

Cn; ‖z‖ < 1}, H(Bc
n) is not partially - circled in C2n with respect to w2n

since w0 =
√

1 + 2n(1, . . . , 1) ∈ C2n satisfies L(w0) =
√

2n/(1 + 2n) < 1,
but L[(2n + 1)

−1
2 , . . . , (2n + 1)

−1
2 , i(2n + 1)

−1
2 ] = [2n + 2

√
2n− 2]

1
2 (2n +

1)
−1
2 > 1. On the other hand, Bc

n is even circled (at the origin).
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4 Harmonicity cells of polygonal plane domains

The case n = 2 is rather special since the Lelong map T is given by: T (z) =
{z1 + iz2, z1 + iz2}, where z ∈ C2 and R2 ' C. So, in [5], we have determined
explicitly the harmonicity cells of some plane domains and shed light on the close
connection between the set E(D), of all the extremal points of a convex domain
D of R2, and the set E(H(D)), see also [4]. We will give now some properties
and constructions which are proper to the complex plane. More precisions on
the Jarnicki extension given in Section 1 will also be established.

Proposition 4.1 The operator H : D2 → C2
s satisfies

a) If D is circled at z0 ∈ C, balanced at z0 ∈ D, or simply connected, then
so is H(D) respectively.

b) If P a
n is an arbitrary convex polygon with n edges, then the harmonicity

cell H(P a
n ) is of polyhedric form in C2 with 2n faces and n2 vertices.

Furthermore, identifying C2 with R4 by writing y = (x3, x4) and x + iy =
(x1, x2, x3, x4), each support line of P a

n defined, for a certain j = 1, . . . , n,
by ajx1+bjx2−αj = 0, (aj , bj , αj ∈ R), generates two support hyperplanes
of H(P a

n ) of respective equations:

ajx1+bjx2+bjx3−ajx4−αj = 0 and ajx1+bjx2−bjx3+ajx4−αj = 0.

c) Let P r
n denote the regular polygon which vertices are ωk = e2ikπ/n, k =

0, . . . , n− 1. Then

H(P r
n) =

{
w = x + iy ∈ C2 : x1 cos(2k + 1)

π

n
+ x2 sin(2k + 1)

π

n

+
√
‖y‖2 − [y1 cos(2k + 1)

π

n
+ y2 sin(2k + 1)

π

n
]2 < cos

π

n
,

k = 0, . . . , n− 1
}

.

d) The n2 vertices of H(P r
n) are given by ωkm = xkm + iykm and ωkm =

xkm − iykm, (0 ≤ k ≤ m ≤ n− 1), where

xkm =
1
2
(cos

2kπ

n
+ cos

2mπ

n
, sin

2kπ

n
+ sin

2mπ

n
),

ykk = 0, k = 0, . . . , n− 1,

ykm =
sinπ(m− k) /n√

2[1− cos 2π(m− k) /n]1/2

×(sin
2πm

n
− sin

2πk

n
, cos

2πk

n
− cos

2πm

n
).
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Proof a) For θ ∈ R, z0 = a + ib ∈ C, and w = (w1, w2) ∈ H(D), we see that
z0 + eiθw remains in H(D). Since T (z0 + eiθw) = {a + eiθw1 + i(b + eiθw2),
a+e−iθw1+i(b+e−iθw2)} = {z0+eiθ(w1+iw2), z0+e−iθ(w1+iw2)}, and as D is
circled with respect to z0, we have T (z0+eiθw) ⊂ D. If the above circled domain
D is supposed starshaped at z0 too, thenH(D) is also starshaped at z0 (by 3.1.d)
that is, H(D) is balanced at z0. Let D ∈ D2 be a simply connected domain and
f a holomorphic one-one map sending D onto B = {z ∈ C; |z| < 1}. By Jarnicki
Theorem , f extends to a holomorphic homeomorphism Jf : H(D) → H(B).
Now, by [4], H(B) is the unit disk of (C2, L), where L is the Lie norm; this
means that H(B) is convex and in particular simply connected. Since Jf is a
homeomorphism, H(D) is also simply connected.
b) Suppose that P a

n is defined by:

P a
n = {x = x1 + ix2 ∈ R2; 〈x, V j〉 < αj , j = 1, . . . , n},

with given vectors V j = (aj , bj) ∈ R2 and scalars αj ∈ R. By 3.1.d, one has w =
x + iy ∈ H(P a

n ) ⇐⇒ x + T (iy) ⊂ P a
n ⇐⇒ x + ξ ∈ P a

n ,∀ξ ∈ T (iy) ⇐⇒ 〈x, V j〉+
maxξ∈T (iy)〈ξ, V j〉 < αj , j = 1, . . . , n. Since T (iy) = {(−y2, y1), (y2,−y1)}, we
have

H(P a
n ) = {w = x + iy ∈ C2; 〈w,U j〉 < αj and 〈w,W j〉 < αj , j = 1, . . . , n},

where w = (x1, x2, x3, x4), y = (x3, x4), U j = (aj , bj ,−bj , aj), and W j =
(aj , bj , bj ,−aj), while 〈, 〉 denotes the usual scalar product in R4. From the
expression above, we deduce that the harmonicity cell of an arbitrary convex
polygon (not necessarily bounded) with n edges is a polyhedron of C2 ' R4

having 2n faces and by [5], n2 vertices.
c) For the regular polygon P r

n , we have also another expression of its harmonicity
cell. Indeed, if C ' R2, we put ωn = ω0, ωk = (cos 2kπ

n , sin 2kπ
n ), and V k =

ωk+1 − ωk = (ak, bk), k = 0, . . . , n− 1. By (b) we have

H(P r
n) =

{
x ∈ R2; 〈x, V k〉+ max

ξ∈T (iy)
〈ξ, V k〉 < cos

π

n
, k = 0, . . . , n− 1

}
.

By the method of Lagrange multipliers [4], we find maxξ∈T (iy)〈ξ, V k〉 = [‖y‖2−
〈y, V k〉2]1/2; the announced expression of H(P r

n) follows.
d) Applying the following two lemmas proved in [5], (see also [4]) we obtain all
the extremal points of H(P r

n) by means of those of P r
n �

Lemma 4.2 If D is a non empty convex domain of Rn, n ≥ 2, ∂D 6= ∅, then
E(D) ⊂ E(H(D)).

Lemma 4.3 Let D be a non empty convex domain, ∂D 6= ∅, in C ' R2.
a) Every point w ∈ E(H(D)) satisfies T (w) ⊂ E(D).
b)Conversely, given arbitrary points a and b of E(D), there exists w ∈ E(H(D))
such that T (w) = {a, b}.
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Let U, V be two domains of Cn, n ≥ 1. we denote hom(U, V ) the set of all
holomorphic homeomorphisms F : U → V , and homr(H(D),H(D′)) the set of
all F ∈ hom(H(D),H(D′)) of which the restriction F |D belongs to hom(D,D′),
where D,D′ ∈ D2 and C ' R2.

Proposition 4.4 Let D,D′ ⊂ C be two non empty domains with D 6= C,
D′ 6= C. The Jarnicki extension J is an injective continuous mapping from
hom(D,D′) onto homr(H(D),H(D′)) according to the compact uniform topol-
ogy (τ).

Furthermore, homr(H(D),H(D′)) ' hom(D,D′) (topologically homeomor-
phic); and for a holomorphic homeomorphism f : D → D′ we have the estimate

‖Jf(w)‖ ≤ sup
z∈D

|f(z)|, for every w ∈ H(D).

Proof If f and f ′ are such that Jf = Jf ′ onH(D) then by [10], f = (Jf)|D =
(Jf ′)|D = f ′ on D. Let (fn)n≥1 be a convergent sequence in (hom(D,D′), τ).
By 3.2.b,to test (J fn)n≥1 for compact uniform convergence in the harmonicity
cell of D it is not really necessary to check uniform convergence on every compact
set K in H(D) - checking it on the closed harmonicity cells H(D0) where D0

is an arbitrary relatively compact domain in D is enough. Now if w0 ∈ H(D0)
with w0 = (w0

1, w
0
2):

‖Jfn(w0)− Jf(w0)‖2 = A2
n(w) + B2

n(w),

where f = limn→∞ fn, and

An =
1
2
|[fn(w0

1 + iw0
2)− f(w0

1 + iw0
2)] + [fn(w0

1 + iw0
2)− f(w0

1 + iw0
2)]|,

Bn=
1
2
|[fn(w0

1 + iw0
2)− f(w0

1 + iw0
2)]− [fn(w0

1 + iw0
2)− f(w0

1 + iw0
2)]|.

Both An and Bn are bounded above by 1
2 supw∈H(D0) |fn(w1 + iw2) − f(w1 +

iw2)|+ 1
2 supw∈H(D0) |fn(w1 + iw2)− f(w1 + iw2). By 3.1.h: w ∈ H(D0) if and

only if w1 + iw2 ∈ D0 and w1 + iw2 ∈ D0. Thus:

An ≤ sup
z∈D0

|fn(z)− f(z)|, Bn ≤ sup
z∈D0

|fn(z)− f(z)|,

sup
w∈H(D0)

‖Jfn(w)− Jf(w)‖ ≤
√

2 sup
z∈D0

|fn(z)− f(z)|.

Since limn→∞ supz∈D0
|fn(z) − f(z)| = 0, we have Jfn → Jf , according to

(τ). The mapping J : hom(D,D′) → homr(H(D),H(D′)) is continuous and
injective. To see that this mapping is onto, take F ∈ homr(H(D),H(D′)) and
observe that (by [10]) J(F |D) and F are both holomorphic homeomorphisms
from H(D) onto H(D′) having the same restriction on D : (J(F |D))|D = F |D.
So by the uniqueness principle of analytic extension in Cn : J(F |D) = F .
Conversely, putting: R = J−1and making use of 3.1.c, e and 3.2.b, we have
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for every D0 ⊂ D with Do compact: supH(D0)
‖Fn − F‖ ≥ supD0

|RFn − RF |,
which implies that R is also continuous. Finally,we have

‖Jf(w)‖2 =
1
4
|f(w1 + iw2) + f(w1 + iw2)|2 +

1
4
|f(w1 + iw2)− f(w1 + iw2)|2

=
1
2
[|f(w1 + iw2)|2 + |f(w1 + iw2)|2]

≤1
2
[
(sup

D

|f |)2 + (sup
D

|f |)2
]

= (sup
D

|f |)2.

�

Remark 4.5 The notion of harmonicity cells has a functorial aspects; indeed
let D2 still denote the category of all domains D of R2 ' C, D 6= ∅, ∂D 6= ∅
with arrows in hom(D1, D2), and C2

s the category of all domains U of C2 which
are symmetric with respect to R2, with arrows F in hom(U1, U2). Then, by
the uniqueness theorem of holomorphic continuation in Cn, to the composition:
D1

f→ D2
g→ D3 corresponds H(D1)

Jf→ H(D2)
Jg→ H(D3) such that: J(g ◦ f) =

(Jg) ◦ (Jf); next f = Id in Jarnicki Theorem (Section 1) gives:
J IdD = IdH(D). This means that the operator: D ∈ D2 7→ H(D) ∈ C2

s and
f ∈ hom(D1, D2) 7→ H(f) = Jf ∈ hom[H(D1),H(D2)] may be considered as
a covariant functor between the said categories. The representability of this
functor and its classifying object will be discussed in a further paper.

Example If V is an arbitrary half strip of R2, there exists an usual transfor-
mation f , mapping V onto V ′ = {x ∈ R2 : x1 > a, k1 < x2 < k2}, for some
a > 0, k1, k2 ∈ R. Now by [4, 7], we have for all convex domains U of Rn

(n ≥ 2):

H(U) =
{
w = x + iy ∈ Cn; max

t∈T (iy)
[ max
ξ∈Sn−1

(〈x + t, ξ〉 − sup
u∈U

〈ξ, u〉)] < 0}.

This formula gives H(U) by means of the support function of U : δU (ξ) =
supu∈U 〈ξ, u〉. Making use of the fact that the function u 7→ ξ1u1 + ξ2u2, being
harmonic in V ′, attains its supremum at some point of ∂V ′. We find by simple
calculations that

δV ′(ξ) =


+∞ if ξ1 > 0
aξ1 + k2ξ2 if ξ1 ≤ 0 and ξ2 ≥ 0
aξ1 + k1ξ2 if ξ1 ≤ 0 and ξ2 ≤ 0

where ξ ∈ Γ, the unit circle of C. Next, to search the supremum on Γ of the
function g(ξ1, ξ2) = 〈x+ t, ξ〉− δV ′(ξ), we restrict the study to {ξ ∈ Γ : ξ1 ≤ 0}.
Since g(ξ1, ξ2) = g(ξ1,±

√
1− ξ2

1), with ξ1 ∈ [−1, 0], we put

g1(ξ1) = g(ξ1,
√

1− ξ2
1) = α1ξ1 +α2

√
1− ξ2

1 and g2(ξ1) = α1ξ1−β
√

1− ξ2
1 ,
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where α1 = x1 + t1 − a, α2 = x2 − t2 − k2, β = x2 − t2 − k1. One obtains that
g′1(ξ1) = 0 if ξ1 = ±α1/

√
α2

1 + α2
2 (when α1 6= 0 or α2 6= 0). In addition, the

study of variations of g1(ξ1), in −1 ≤ ξ1 ≤ 0, in each of the three cases: α1 ≤ 0,
(α1 ≥ 0 and α2 ≤ 0), and (α1 ≥ 0 and α2 ≥ 0) leads to max−1≤ξ1≤0 g1(ξ1) =
max(−α1, α2). Obviously, this equality holds even if α1 = α2 = 0. A similar
calculus for g2(ξ1) gives max−1≤ξ1≤0 g2(ξ1) = max(−β,−α2). Putting γ = max(
−α1, α2), δ = −min(β, α2), and as T (iy) = {(−y2, y1), (y2,−y1)}, we obtain the
equivalence

max(γ, δ) < 0 ⇔
{

a− x1 + y2 < 0, x2 + y1 − k2 < 0, k1 − x2 − y1 < 0,
a− x1 − y2 < 0, x2 − y1 − k2 < 0, k1 − x2 + y1 < 0.

At last, writing min(u, v) = 1
2 (u + v − |u − v|) , and by the Jarnicki extension

f 7→ Jf = f̃ (see section 1), we deduce H(V ) = (f̃)−1[H(V ′)] , where

H(V ′) = {w = x + iy ∈ C2; |y1| <
k2 − k1

2
− |x2 −

k1 + k2

2
|, |y2| < x1 − a}.

Example The harmonicity cell of an arbitrary convex polygon P ′
n may be

explicited by means of the n vertices ω′0, . . . , ω
′
n−1. For, put α = ω′0+ω′2

2 and
consider the translation τ−α : z 7→ z − α. The domain Pn = τ−α(P ′

n) is also
a convex polygon, with O ∈ Pn and n vertices ω0, . . . , ωn−1, given by ωk =
ω′k−α. Making use of (d) and (h) in Proposition 3.1, we find after calculus and
simplifications:

H(Pn) =
{

w = x + iy ∈ C2 : sgn(Imωkωk+1) Im x(ωk+1 − ωk)

+
√
|y|2|ωk+1 − ωk|2 − Im 2y(ωk+1 − ωk)

< | Im ωkωk+1|, k = 0, 1, . . . , n− 1
}

with R2 ' C, Im z is the imaginary part of z, and sgnα is the sign of α. Note
that P ′

n = ταPn means that [w′ ∈ H(P ′
n)] if and only if [w′−α ∈ H(Pn)]. If now

P ′
n,r is some regular polygon, it is enough to consider its circumscribed circle
C(β, R), centered at β ∈ R2, with radius R > 0. Next, applying successively
the translation τ−β , the homothety h 1

R
and a suitable rotation ρθ, we obtain

P r
n = ρθh1/Rτ−βP ′

n,r which is studied in Proposition 4.1.c. Note that the same
process applies to arbitrary regular polyhedrons in Rn, n ≥ 3.
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