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A polyharmonic analogue of a Lelong theorem
and polyhedric harmonicity cells *

Mohamed Boutaleb

Abstract

We prove a polyharmonic analogue of a Lelong theorem using the
topological method presented by Siciak for harmonic functions. Then
we establish the harmonicity cells of a union, intersection, and limit of
domains of R". We also determine explicitly all the extremal points and
support hyperplanes of polyhedric harmonicity cells in C2.

1 Introduction

Throughout this paper, D denotes a domain (a connected open) in R™ with
n > 2, where D and 9D are not empty. Since 1936, p-polyharmonic functions
in D have been used in elasticity calculus [14]. These functions are C'*°-solutions
of the partial differential equation
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=0, peN*, xze€D.

To study the singularities of these functions in D, Aronzajn [1, 2] considered
the connected component H(D), containing D, of the open set C™ \ UicopI'(t),
where I'(t) = {w € C" : 37, (w; — t;)*> = 0}. ‘H(D) is called the harmonicity
cell of D. Lelong [12, 13] proved that H(D) coincides with the set of points
w € C™ such that there exists a path v satisfying: v(0) = w, (1) € D and
T[v(7)] C D for every 7 in [0, 1], where T is the Lelong transformation, mapping
points w = z + iy € C" to (n — 2)-spheres S"~2(x,||y||) of the hyperplane of
R™ defined by: (¢t — x,y) = 0. This work can be divided into three sections:
the first one treats a result on polyharmonic functions, the second some general
properties on H(D), and the last one deals with a geometrical description of
polyhedric harmonicity cells in C2.

Pierre Lelong [11] proved in addition that for every bounded domain D of
R™, there exists a harmonic function f in D such that its domain of holomorphy
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78 A polyharmonic analogue of a Lelong theorem

(X¢,®) over C'satisfies ®(Xy) = H(D), see also [4]. A concise proof of this
result is given in Siciak’s paper [16] in the case of the Euclidean ball B!, =
{z € R™;||z|| < 1}. In [5], we established that the former method can be
applied to arbitrary domains. Also, V.Avanissian noted in [4] that the equality:
(X5, ®) = (H(D), Id) holds in the following cases: D is starshaped with respect
to some point zy of D, or D is a C-domain ( that is D contains the convex hull
of any (n — 2) dimensional-sphere included in D), or D C R™ with n even and
n > 4. The object of Section 2 is to use a topological argument [16] to prove
an analogous result for polyharmonic functions in D. As a consequence of this
generalization we shall get

n

For every integer 1 < p <[] and suitable domain D (say D is a
C-domain, or in particular a convex domain), the harmonicity cell
‘H(D) is nothing else but the greatest (in the inclusion sense) domain
of C" whose trace on R™ is D and to which all p-polyharmonic
functions in D extends holomorphically.

In Section 3, we establish the harmonicity cell of an intersection, a union, and
a limit of domains of R™, n > 2. We give next in Section 4 some results about
plane domains, prove the existence of polyhedric harmonicity cells in C?, and
we calculate all extremal points of the harmonicity cell of a regular polygon. For
an arbitrary convex polygon P,, with n edges, we show that H(P,) has exactly
2n faces in R* completely determined by means of the n support lines of P,. It
is well known by [10] that if we are given a complex analytic homeomorphism
f : D1 — Dy, where D1, Dy are domains of R2, D;, Dy not equal to R? and
R? ~ C, then H(D;) and H(D2) are analytically homeomorphic in C2. The
holomorphic map Jf : H(Dy) — H(D2) defined by w — w’ with:

fwy +iwg) — f(w1 + 703)
21

Wl = fun +1w2)42rf(w1 + i) wh =

realizes this homeomorphism.

In proposition 4.4, we show the continuity, according to the compact uniform
topology, of the above Jarnicki extension f — Jf and estimate ||(J f)(w)]|,w €
‘H(D) by means of sup,cp | f(2)|. As applications, we find the harmonicity cells
of half strips and arbitrary convex plane polygonal domains (owing to an explicit
calculation of their support function).

2 A polyharmonic analogue of Lelong theorem

Recall that any polyharmonic function » in D, being in particular analytic in D,
has a holomorphic continuation u in a corresponding domain D% of C™ whose
trace with R™ is D. Therefore, given any integer p (0 < p < +o00) and any
domain D of R™, one can associate a domain N'H(D) of C" (depending on
D only) such that the whole class HP(D), of all p-polyharmonic functions in
D, extends holomorphically to N'H(D). This last complex domain, called the
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kernel of H(D), coincides with the set of all z € H(D) satisfying C,[T'(z)] C D,
where C[T'(z)] denotes the convex hull of T'(z). For more details see [4].

Making use of a topological argument appearing in [16], we will show now
the following theorem.

Theorem 2.1 Let D be a bounded domain of R*, n>2, D #0, 0D # (), and

H(D) its harmonicity cell. Then for all integer 1 < p < [3], ([5] is the integer

part of §) and all domains Qo H(D) the problem for the 2p-order linear partial
differential operator AP

APu=0 inD
Diu=---=D,i=0 inH(D)

has a solution h € HP(D) which cannot be holomorphically continued in Q.
Here A = Ay = Opyzy + -+ + Ogpa,, @5 the usual Laplacian of R, D; = 8%? ,
j=12,...,n. '

Proof Let £ € 9H(D) and 1 < p < [3]. Firstly, we will construct explicitly a
p-polyharmonic function k¢ in D whose holomorphic continuation he in MMH (D)

extends to the whole of H(D); however }LZ cannot be holomorphically continued
in a neighborhood of £. Next, we will deduce by a topological reasoning the
existence of a p-polyharmonic function h in D such that H (D) is the domain of
holomorphy of h.

Construction of he. 1) D C C =~ R? by [12], the boundary point ¢ belongs
to some isotropic cone of vertex a t € 0D , ie. £ € I'(t), or t € T(§) =

a) If t = & + i€, , we consider the function

he(2) = In {[(& + &) — (21 + i2)][(&1 + i&) — (&1 + 2]},

where the branch is chosen such that Eg isreal in D. Note that EE is holomorphic

in H(D), its restriction (h¢|D)(z) = 2Ln ||z —t||, where z = x1 +ix5 is harmonic
in D, and lim,_.¢ |he(2)| = co. Hence he cannot be holomorphically continued
beyond £.

b) If t = & + i& , the function

he(z) = Ln {[(& + &) — (21 + i2)][(& +i&2) — (71 + 7))},

satisfies the same requirements of (a). 2) D C R", n > 3:
a) Suppose n even > 4. There exists by [12] a point t € 9D such that 37 (£;—

t;)> = 0. Consider then E’g tH(D) = C, z=(21,...,2n) — ;L?(z) with

1 no_
HE(z) = {Kat1>2+...<zntn>zw Whenlsp=z -1
Ln) i (2 — t;)? when p = &
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(The branch is chosen in the complex logarithm such that (BE|D) is real in
D). Since H(D is the connected component containing D of C™\ Uieop {2z €

cr Z?:l(zj —t;)% = 0}, we see that hg is defined and holomorphic in H(D) and
that lim,_¢ [h¢(2)| = oo. It remains thus to prove that the restriction h¢|D is
actually p-polyharmonic in D. .

2.ai:  1<p<%§—1 Since for every € D : (h¢|D)(z) = 1/(r"~?P) depends
only on r = ||z — t|| the proof can be carried out directly. Indeed, it is simplest
to introduce polar coordinates with ¢ as origin and to use

2 -1 1
AP = (8—+n7%+—3)p7

or? 0 r?
where B is the Beltrami operator containing only derivatives with respect to the
angles variables. Now by induction on ¢ = 1,2,.... we find after some calculus

that for an arbitrary (complex) a,
Alr*) =ala+n—2)(a—2)(a+n—4)...(a—2¢+2)(a+n—2¢)r*2,
Observe that if & = 2p — n we obtain
AP = (2p = n)(2p = 2) ... (2p — n — 2¢ + 2)(2p — 2q)r*P "%,
which gives respectively for ¢ = p and ¢ =p — 1:
AP(r?P7m) =0,
AP =(2p —n)(2p — 2)(2p — 1 — 2)(2p — 4) ... (4 —n)2r® ",

Note that AP~1(r2P=") = 0 if n is even and greater than or equal to 6; in
addition, the case n = 4 involves p = 1, and so the last equality holds since
A(L) =0, A(L) =1 R

2.aii: p = 5:  Since for every € D, the restriction h§|D tx— 2Lnr,
where r = ||z — t||, is a radial function, we use the same process to verify
that Ln r is a §-polyharmonic function in R™ — {0} for all n = 2p > 4. As
A(lnr) = (2p—2)r~2 , and AY(Lnr) = (29 — 2)A%71(r=2), we can make use

of the corresponding formula of 2.a.(i) with o = —2 to have

AY(Lny) = (~1)7129(g — 1)[(g — 1)!)(n — 4)(n — 6) ... (n — 2g) =

r2a’

The last equality holds actually for all n > 2 and ¢ > 1 since by the case (1)
above this result is true for n = 2. Observe that if n = 2p > 4 one obtains

1
AYLnr) = (-1)7'2%(q - 1)[(¢ — 1)(2p—4)...(2p — 2q)—; in R* —{0}.
Thus AY(Lnr) #0 for g =1,2,...,p—1, and A%(Lnr) =01if ¢ = p.
b) Suppose n is odd, n > 3. We consider again

1

B R N A
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with 1 < p < [5] — 1, where the chosen branch is such that E@D, (x) >0in D.

Note that ;L?(Z) is holomorphic in H(D) and infinite in any neighborhood of €.
By a similar calculus, we find for every z € D,

AP[RE|D(x)] = 0
APTHRE|D(x)] # 0.

Existence of h: In the following we shall make use of the lemma.

Lemma 2.2 Let O[H(D)] denote the Fréchet space of all holomorphic functions
on H(D), if it is endowed with the topology (7) of uniform convergence on
compact subsets of H(D). Then for all integer p=1,2,..., the set

OP[H(D)] = {F € O[H(D)]; F|D € H"(D)}

is a close subspace of O[H(D)], and therefore it is itself a Fréchet space.

Proof Let us consider Fy, Fy,.... a sequence in OP[H(D)] C O[H(D)] con-
verging to a function F | uniformly on every compact K’ of H(D). It is well
known by a theorem of Weierstrass that F' is also holomorphic in H(D), it re-
mains thus to verify that AP(F|D) =0, p =1,2,.... By [7], page 161, for all
multi-index 8 = (B1,...,3,) € N*: DPF; — DPF, uniformly on every compact
K’ of H(D); in particular we also have (D?F})|D — (DPF)|D uniformly on
any compact K C D since we may treat all K’ NR"™ # () as compact subsets of

the real subspace in the complex (z1,...,2,)—space. Now, note that
(D"F)|D = (DJFy)|D
8|ﬁ‘Fj o8l

(Fy|D) = D}(F;|D),

0zt ...0zp" B (’hfl .0z
where z; = x;+1y; , 7 =1,...,n. Then for ¢ =1,2,...,p — 1, the sequence

¢ o
(AYF;)|D = Z D=(> an F;)|D
la|=q
=y ;,Di“(FjID) = AL(F| D),
lal=g

being a finite sum of derivatives (DPF};)|D, we have A%(F;|D) — A%(F|D),
uniformly on every compact K of D. Putting F;|D = f; and F|D = f, we have
also for every x € D: lim;_,oo[A%f;(x)] = Af(x), ¢ = 1,2,...,p — 1. Since
each f; is supposed p-polyharmonic in D for 1 < p < [%], we have f; € CDQ{’ (D)
and f; satisfies the appropriate mean value property, see [4]:

p—1
Mfjr 2, R) = fi(@) + ) agRMIAf(=) (2.1)
q=1
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for all x € D, and R > 0 so small that B} (z,R) = {y € R";|ly —z| < R} C D,
where A(fj,x, R) denotes the integral mean values over the surface OB, (z, R):

A(fj 2, R) fi(z + Ra)do(a),

2v7T" lall=1

with do(a) an element of surface differential on the sphere S"~1(0,1) and a, =
I(2)/(229¢!T(q + %)). As f; converges to f uniformly on the compact set
S"~1(x, R), the limit process applied to (2.1) yields of course (2.1) for f:

p—1
Afoz, R) = f(z) + Y agR* A f(x);

g=1

that is, f = lim; .o f; has the mean value property (2.1) in D. Thus f is
p-polyharmonic in D.

To prove the existence of the aforesaid function h, let z(1), ..., 20). be a
denumerable dense subset of the compact set OH (D). For every (j,k) € N*Z,
let BE(29), 1) = {w € C*|lw — 2| < £} denote the hermitian ball of C"
centered at z(9) and of radius%, and put

N
H; (D) = H(D)U BE(29), %).

Due to the density of {2(9)} ;e n+ in OH(D), it is enough to prove the existence of
a function belonging to OP[H(D)] which cannot be holomorphically continued
beyond H(D). This amounts to show the existence of a functions belonging to
OP[H(D)] which cannot be holomorphically continued to any domain H; (D).
Thanks to the construction step, for all j,k € N* and every p = 1,2,...,[5], we
have:
OPH(D)I\ Ry 1 {OP[H; 1 (D)1} # 0,

where R denotes the restriction mapping from OP[H; (D)] to OP[H(D)],
and OP [H; (D)] the space of all holomorphic functions in H; (D) whose trace
on R™ is p-polyharmonic in D. The spaces OP[H(D)] and OP[H; (D)] being
Fréchet spaces by the Lemma above, and the linear and continuous mapping
R, ;; being not onto, we deduce owing to a Banach Theorem [14] that the range
of R; ; is a subset of the first category of OP[H(D)]; that is,

R; i {OP[H;x(D)]} = U1 Xk
where X7}, m = 1,2,... are subsets of OP[H(D)] satisfying (X;:lk)o = (), with
respect to the topology (7). Observe that
Ufk:le’k{Op[ ( )]} - >~ k: 1 1Xj k) - Uj k,m=1 ;:3@

is also of the first category in OP[H(D)]. Since OP[H(D)] is in particular a Baire
space, we have, of course,

OPTH(D)\ U m=1 Xfk = OP[H(D)]\ UG Rk { OF [ 1 (D)1} # 0,
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so we can pick up an element h of OP[H(D)] which cannot be continued holo-
morphically through OH(D). O

Corollary 2.3 Let D be a C-domain of R™(n > 2), or D be a convex domain
of R™. Then for every integer p, (1 < p < [§], the integer part of %), the
harmonicity cell of D satisfies

H(D) = [Nuenrp)D"]° (2.2)

where HP(D) = {u € C*(D); APy =0 in D} and D" is the complex domain
of C™ to which a polyharmonic function u extends holomorphically.

Proof By [4] Lemma 1.1.2, each p-polyharmonic function w in D, p € N*| is
the restriction of a holomorphic function u in D* C C™ such that D* N R" =
D. The former property is actually a consequence of the analyticity of u. In
addition, the p-polyharmonicity of v implies more precisely that the kernel of
H(D) is included in D*(see [4] Theorem 5.2.6). If u wanders through the whole
class H?(D), we obtain: N'H(D) C [Nyemr(p)D"]® (note here that the kernel
of a harmonicity cell is a connected open of C").

Inversely, due to Theorem 2.1 above, we can associate to every 1 < py <
[%] a function f,, € H?(D) satisfying D/vo = H(D). So, if 1 < p < [%]
we get obviously the inclusion: [N, Hp(D)D“]O C Df»o. Hence, one deduces
NH(D) C [NuenrpyD"]° € H(D). Now the assumption on D guarantees that
NH(D) = H(D); the desired equality follows. O

Observe that it is an unexpected result that the right-hand side of Equality
(2.2) does not depend on the choice of p. This allows us thus to give the following
result.

Corollary 2.4 For every bounded domain D of R", n > 2, with D # 0, and
0D # 0, we have
H(D) = Mi<p<izi[NuenrpyD"]’.

Remark 2.5 Putting p = 1 in Corollary 2.3, we find again an Avanissian s’ re-
sult (cf. [4] p.67): Let A(D) (Ha(D)) be the class of all real analytic (harmonic)
functions on D C R™. For f € A(D), we denote f: D/ — C the holomorphic
extension of f to the maximal domain D/ of C" (in the inclusion meaning).

Then the sets: A = ﬂfeA(D)Df and B = ﬂfeHa(D)Df satisfy ;1: 0, éz H(D).

3 Some properties of harmonicity cells

In [4], Avanissian established the following general results about the operation
D — H(D); see also [13].

Proposition 3.1 The harmonicity cells of domains of R™,n > 2, satisfy

a) If DiN Dy = 0, H(Dl) QH(DQ) =0; if D1 C Do, H(Dl) - H(DQ)
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b) H(UyesD,) = Uye H(D,) for every exhaustive increasing family of do-
mains D, .

¢) H(D)NR"™ = D; H(D) is symmetric with respect to R™; and if D is convex
then so is H(D).

d) If D is starshaped at ag, then H(D) is starshaped at ag and H(D) = {z €
C™; T(z) C D}.

e) 0D C OH(D) ; ifz € H(D) , T(z) C D ; and if = € OH(D) , T(2)NOD #
0.

f) 0[H(D)] < Q[ﬁ]%c?(D), where 6(D) denotes the diameter of D.

g) H(D) may be explicitly obtained when D is a ball, a cube, or a difference
of two balls.

h) Ifn=2 and R? ~ C, H(D) = {2z € C?; 2; +i20 € D, 71 +i% € D}.

In the following, we establish supplementary results. Let ©™ denote hence-

forth the family of all domains D of R™, D # 0, 0D # (), and €7 the family

of

all domains of C™ which are symmetric with respect to R” = {x + iy € C™;

y =0}

Proposition 3.2 The mapping H : D € " — H(D) € €7 satisfies:

a) H is injective ; H(D) is bounded if and only if D is bounded.

b) For every compact set K C H(D), there exists a domain Dy € D™ such
that Dy is relatively compact in D and K C H(D1).

¢) If D1, Dy € ©2 are such that Dy N Do is connected then H(D; N Dy) =
H(D1)NH(D2). If (D) e is a family of starshaped domains in R™(n > 2)
such that NjeyD; is a starshaped domain, or if (D;)jes is a family of
convex domains in R™ such that NjcyD; is open, then H(NjesD;) =
ﬂjEJH(Dj).

d) If D1, Dy € ©2 with D1 N Dy # 0 then H(D1UD3) D H(D1)UH(Ds), and
the equality holds if and only if D1 C Do or Dy C Di. More generally,
if (Dj)jes C D™(n > 2) is such that D; N D; # 0 for all i,j € J then
H(UjesDj) D UjesH(D;). The equality holds if UjcyD; = Dj, for a
certain jo € J.

Proof a) By Proposition 3.1, H is well defined on ®" with values in €7; and
if two harmonicity cells H(D) and H(D’) coincide in C™, then their traces on
R™ coincide also, that is D = D’. Besides, suppose that for some R > 0,

D
{z

C BI(0,R) = {z € R™;||z|| < R}. Then H(D) C H[B,(0,R)] = LB(0,R) =
€ C™; L(z) < R} (the Lie ball of C™), see [3, 5, 9], where

1) = [l + /2l = 15, 2
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Since ||z|| < L(z), we have LB(0,R) C B:(0,R) = {z € C";||z|| < R} and
‘H(D) is bounded in C™. The converse is obvious since D C H(D).

b) Let us consider an increasing exhaustive family (D,),cs (J is a fixed indices
set) of bounded domains D, € ®™ such that D = U,¢c;D,. Due to 3.1.b, the
family (H(D,))ye of harmonicity cells of (D, ),e s is also increasing, exhaustive
and satisfies H(D) = UpesH(D,). We then have: K C UyesH(D,). Since K
is a compact set, we can extract from this open covering of K, a finite sub-
covering of K: K C U}_,H(D,,). Afterwards we have by 3.1.a: Up_,H(D,,) C
H(Uy_,D,,) and K C H(Uy_,D,,). Seeing that D’ is a relatively compact
domain in D and taking D' = U}_, D,,, we obtain the desired result.

¢) The inclusion H(D; N D;) C H(D;) N H(D;) is obvious from D, N D; C D,
DiﬂDj C Dj. Ifwe H(Dl)ﬂH(DJ), T(w) C DiﬂDj7 that is w € H(DlﬂDj)
By similar arguments we obtain the general case.

d) Dy N Dy # { guarantees that D; U Dy € ®™. Since D; C Dy U Do, i = 1,2,
H(D1) UH(D2) C H(D1 U Ds). Suppose now that D is neither included in
Dy, nor Dy in D;. If a and b are arbitrarily chosen in D; \ Dy and Ds \ D,

respectively, and if R? ~ C, then the point w = (“7“’, “2_1,1’) of C? satisfies
T(w) = {a,b} € D1 U Dy. Now, the last hypothesis on D; and D involves
that w ¢ H(D1) U H(D2). Besides, as D; N D; # () we have Uje;D; € D™ and
thus this union does possess a harmonicity cell in C". The given inclusion is
evident since D; C UjesD;. Suppose in addition that D;, = Uje;D;. From
H(Dj,) C UjesH(D;) and H(UjesD;) D UjesH(D;), we deduce the equality
H(UjesDj) = Uje s H(D;). O

Corollary 3.3 If (D;);>1 is a monotonous sequence in ®", so is (H(D;));j>1
in €7; and writing D = lim;_.« D}, we have lim,,_.o H(D,,) = H(D) under the
assumptions that: U;>1D; # R™ if the sequence (D;);>1 is increasing, and that
NjesD; € D™ in the decreasing case.

Proof If the sequence is increasing then liminf,, o D, = Up>1(Ng>nDk) =
Up>1Dy, limsup, o Dp = Nyp>1(Uk>nDr) = Mp>1(Uks>n D) = Up>1Dyg, so
lim,, oo D, = Up>1D,,. Since U,>1D,, # 0 and U,,>1D,, # R™, we deduce that
lim,,>1 D, is an element of D".

Next, (H(Dn))n>1 being also increasing, lim, oo H(Dy) = Up>1H(Dp).
Now by 3.2.d: Up>1H(D,) C H(Up,>1D,). Moreover, if wy € H(Up>1D,,)
one has T(wg) C Up>1Dy; then by 3.2.b and the fact that T'(z) is a com-
pact set for every z € C", there exists ng > 0 such that T(wg) C Dy,
ie. wy € H(Dy,) C Up>1H(Dy). Thus H(lim, oo Dy) C limy, oo H(Dy),
which involves the aforesaid equality. In case of a decreasing sequence (Dy,)n>1
one has liminf,, .. D, = UnZl(nanDk) = UnZl(mklek) = mk?Zle’ and
limsupn_,oo Dn == ﬂn21<UanDk) = ﬂnZan. So hmnﬂoo Dn == ﬂnZan,
which is in ®™ by hypothesis. Now, (H(D,))n>1 being decreasing one also
has: limy, oo H(Dy) = H(limy, 00 Dy). O

Corollary 3.4 The mapping D — H(D) is not a surjective operator: The unit
hermitian ball B, = {z € C™; ||z|| < 1} does not represent a harmonicity cell in
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Ccn.

Proof. Since B NR"™ = B! = {z € R";||z|| < 1} is a convex domain of R™
(according to the induced topology), we have to find a point wy € BE for which
the Lelong sphere T'(wy) is not contained into B],. For, put wg = p (3,1,...,1) €
C™ where p > 0 is small enough for wy to belong at BE and for T'(wg) to contain
a certain & € R™ with ||&|| > 1. Taking [n +2 vn — 1]7/2 < p < 1/n and
writing wg = xg + ¢ yo we see that a &y satisfying

[(€o — z0,90) =0, [|&o — wol| = [lyoll, and ||&f > 1];

that is,
per =0, &+ (& —p)°+.. . (&—p?=p" and &+ --+E2>1
is given by: & = p[l + (n —1)2)(0,1,...,1).

Remark 3.5 Due to propositions 3.1 and 3.2 above, the definition of a har-
monicity cell may be naturally extended to arbitrary open sets of R™ for n > 1
as follows H(0) = 0, H(R™) = C", H(]a,b]) = C for ]Ja,b[C R, and H(O) =
UierH(O;), where O is an open set of R™, (O;);er the family of the connected
components of O.

Remark 3.6 Some properties are not always preserved by D — H(D); this is
especially the case if:

(i) D is simply connected in R™ with n > 3. Indeed, the two domains D =
R" — {0} and H(D) = C" — {z € C"2? + --- + 22 = 0}, having 0
and Z respectively as fundamental groups, they offer then an example of
a not simply connected harmonicity cell corresponding to a real simply
connected domain; for m [H(D)] = Z, see [6].

(ii) D is strictly convex in R"with n > 2. An example is given by the har-
monicity cell of the unit ball B of R™. If £(V) denotes the set of all
extremal points of a convex V we have £(B~) = 0B/, since these two sets
coincide with the unit Euclidean sphere S"~! of R™. Nevertheless, by [9]:
E(H(BL)) = 0V[H(B:)] = {w = ze? € C*;2 € S"71,0 € R}, where VU

denotes the Silov boundary of U ¢ C"; thus: £(H(BL)) é O[H(BY)]-

(iii) D is partially - circled in C* ~ R?" n > 2, that is (for instance): z €
D = (21,...,2n-1,€"?2,) € D, for all § € R. Indeed if D = B¢ = {z €
C™; ||z|| < 1}, H(BE) is not partially - circled in C?" with respect to way,
since wog = /1 + 2n(1,...,1) € C?" satisfies L(wg) = \/2n/(1 + 2n) < 1,
but L[(2n+1)7,...,2n+1)7,i(2n+1)7 | = [2n+ 2y/2n — 2)2 (2n +
1)771 > 1. On the other hand, B¢ is even circled (at the origin).
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4 Harmonicity cells of polygonal plane domains

The case n = 2 is rather special since the Lelong map T is given by: T'(z) =
{21 + iz, 71 +iZ3}, where z € C? and R? ~ C. So, in [5], we have determined
explicitly the harmonicity cells of some plane domains and shed light on the close
connection between the set £(D), of all the extremal points of a convex domain
D of R?, and the set £(H(D)), see also [4]. We will give now some properties
and constructions which are proper to the complex plane. More precisions on
the Jarnicki extension given in Section 1 will also be established.

Proposition 4.1 The operator H : % — €2 satisfies

a) If D is circled at zy € C, balanced at zg € D, or simply connected, then
s0 is H(D) respectively.

b) If P% is an arbitrary convex polygon with n edges, then the harmonicity
cell H(P%) is of polyhedric form in C? with 2n faces and n® vertices.
Furthermore, identifying C* with R* by writing y = (x3,24) and x + iy =
(21,2, 3,24), each support line of P¢ defined, for a certain j =1,...,n,
by ajz1+bjze—a; =0, (a;,b5,a; € R), generates two support hyperplanes
of H(PZ) of respective equations:

ajx1+bjx2+bjx3—ajx4—ozj =0 and ajx1+bjx2—bjm3+ajx4—aj =0.

¢) Let P denote the regular polygon which vertices are wy, = e**™/" k =

0,...,n—1. Then

H(P)) :{w = +iy € C?: 2y cos(2k + 1)z + z2sin(2k + 1)E
n n

+ \/|y||2 — [y1 cos(2k + 1)% + yo sin(2k + 1)%]2 < cos %,

k‘zO,...,n—l}.

d) The n? wvertices of H(PT) are given by Wim = Tkm + iYem and W, =
Lkm — iykm; (O < k <m<n-— 1)7 where

2mm . 2kmw . 2mm
,sin — + sin ——),
n n

1 2km
ZTm = = (cos — + cos
2 n

Y =0, k=0,...,n—1,
B sinm(m — k) /n
Ykm V2[1 — cos2m(m — k) /n]/2
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Proof a)For 0 € R, zp =a+ib e C, and w = (w1, ws) € H(D), we see that
20 + €“%w remains in H(D). Since T(zp + e”w) = {a + ew; + i(b + ews),
a+e 0wy +i(b+e %wa)} = {z0+e¥ (w1 +iws), 2o+ (Wi +iwz)}, and as D is
circled with respect to zg, we have T'(zo+e*w) C D. If the above circled domain
D is supposed starshaped at zp too, then H(D) is also starshaped at zo (by 3.1.d)
that is, H(D) is balanced at zy. Let D € D? be a simply connected domain and
f a holomorphic one-one map sending D onto B = {z € C; |z| < 1}. By Jarnicki
Theorem , f extends to a holomorphic homeomorphism Jf : H(D) — H(DB).
Now, by [4], H(B) is the unit disk of (C?, L), where L is the Lie norm; this
means that H(B) is convex and in particular simply connected. Since Jf is a
homeomorphism, H(D) is also simply connected.

b) Suppose that P2 is defined by:

Pﬁ:{x=x1+z’x2€R2;<x,Vj><aj,j:1,...,n},

with given vectors V7 = (aj,b;) € R? and scalars o; € R. By 3.1.d, one has w =
x+iy € H(P) <= x4+ T(iy) C Py <=z +¢ € P, V¢ € T(iy) <= (a2, V) +
manGT(iy)<§7V]> < ay, j = 1a sy T Since T(Zy) = {(_y2ay1)’ (92,_3/1)}’ we
have

H(PY) = {w =z + iy € C* (w,U?) < a; and {(w, W) < aj, j=1,...,n},

where w = (z1,29,23,24), y = (3,24), U7 = (aj,bj,—bj,a;), and WJ =
(aj,bj,bj,—aj), while {,) denotes the usual scalar product in R*. From the
expression above, we deduce that the harmonicity cell of an arbitrary convex
polygon (not necessarily bounded) with n edges is a polyhedron of C? ~ R*
having 2n faces and by [5], n? vertices.

¢) For the regular polygon P!, we have also another expression of its harmonicity
cell. Indeed, if C ~ R?, we put w, = wg,wr = (cos 2’“T”,sin %T’T), and VF =

wrpt1 — wg = (ag,bk), k=0,...,n— 1. By (b) we have

H(P)) = z € R% (2, V*) + max ,V’c <cosz,k:0,...,n71.
(P) = {a €R% (@, V") + max (€V5) < cos }

By the method of Lagrange multipliers [4], we find max¢er iy (€, V*) = [[ly|* —
(y, V¥)2]'/2; the announced expression of H(P?) follows.

d) Applying the following two lemmas proved in [5], (see also [4]) we obtain all
the extremal points of H(P}) by means of those of P7 O

Lemma 4.2 If D is a non empty convex domain of R™, n > 2, D # (), then

£(D) ¢ E(H(D)).

Lemma 4.3 Let D be a non empty convex domain, 0D # (), in C ~ R2.

a) Every point w € E(H(D)) satisfies T(w) C £(D).

b)Conversely, given arbitrary points a and b of E(D), there exists w € E(H(D))
such that T (w) = {a,b}.
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Let U,V be two domains of C", n > 1. we denote hom(U, V') the set of all
holomorphic homeomorphisms F' : U — V, and hom, (H (D), H(D’)) the set of
all F' € hom(H(D), H(D")) of which the restriction F'|p belongs to hom(D, D'),
where D, D’ € D? and C ~ R2.

Proposition 4.4 Let D,D’ C C be two non empty domains with D # C,
D' # C. The Jarnicki extension J is an injective continuous mapping from
hom(D, D) onto hom, (H(D), H(D')) according to the compact uniform topol-
ogy (1)

Furthermore, hom,(H (D), H(D’)) ~ hom(D, D’) (topologically homeomor-
phic); and for a holomorphic homeomorphism f : D — D’ we have the estimate

17 f (w)] < sup [f(2)],  for every w € H(D).

Proof If f and f’ are such that Jf = Jf' on H(D) then by [10], f = (Jf)|D =
(Jf)|D = f" on D. Let (fn)n>1 be a convergent sequence in (hom(D, D’), 7).
By 3.2.b,to test (J fn)n>1 for compact uniform convergence in the harmonicity
cell of D it is not really necessary to check uniform convergence on every compact
set K in H(D) - checking it on the closed harmonicity cells H(Dg) where Dq
is an arbitrary relatively compact domain in D is enough. Now if wg € H(Dy)
with wo = (wf, wY):

17 fa(wo) = J f (wo)|* = A7 (w) + By (w),

where f = lim,_ . fn, and

An = Sl +708) = F + )] + [l + 108) — 7] + D)),

II-

B g [ + i) — 7w + )] — [ (uf + 10B) — (0] + i)

Both A, and B,, are bounded above by %supweH(DO) | fr (w1 + dwe) — f(wr +
iwa)| + 5 SUPyery(py) | fn (W1 +iW3) — f(W1 + iwz). By 3.1.h: w € H(Dy) if and
only if wy + iwy € Dy and w7 + w5 € Dy. Thus:

Ap < sup [fa(2) = f(2)],  Bn < sup |fu(2) — f(2)],
z€Dg z€Dg

sup [ fa(w) = Jf(w)]| < V2 sup | fu(2) = f(2)].

weH(Dy) z€Dg

Since limy,—.co SUp,p; | fn(2) — f(2)| = 0, we have Jf, — Jf, according to
(7). The mapping J : hom(D, D’) — hom,(H(D), H(D’)) is continuous and
injective. To see that this mapping is onto, take F' € hom,(H(D), H(D’)) and
observe that (by [10]) J(F|D) and F are both holomorphic homeomorphisms
from H(D) onto H(D’) having the same restriction on D : (J(F|D))|D = F|D.
So by the uniqueness principle of analytic extension in C" : J(F|D) = F.
Conversely, putting: R = J 'and making use of 3.1.c, e and 3.2.b, we have
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for every Dy C D with D, compact: SuPz7rp,y IHn — F|| > supp- |RF, — RF,

which implies that R is also continuous. Finally,we have

I FI? =51 on + i) + Fr T 3]+ 1wy + iuz) — Tl + 7w3)
[1f (wr +iws)|* + | (@1 + iwg) ]

<

[N R

[(sup | £])* + (sup | £])?] = (sup |f])*.
D D D
O

Remark 4.5 The notion of harmonicity cells has a functorial aspects; indeed
let ©? still denote the category of all domains D of R2 ~ C, D # 0, 0D #
with arrows in hom(Dy, D3), and €2 the category of all domains U of C? which
are symmetric with respect to R?, with arrows F in hom(Uy,Us). Then, by
the uniqueness theorem of holomorphic continuation in C", to the composition:
D, L D, % Dy corresponds H(D1) 24 H(D2) ’q ‘H(Ds3) such that: J(go f) =
(Jg) o (Jf); next f = Id in Jarnicki Theorem (Section 1) gives:

J Idp = Idypy- This means that the operator: D € ©* — H(D) € €2 and
f € hom(Dy,Ds) — H(f) = Jf € hom[H(D1), H(D2)] may be considered as
a covariant functor between the said categories. The representability of this
functor and its classifying object will be discussed in a further paper.

Example If V is an arbitrary half strip of R?, there exists an usual transfor-
mation f, mapping V onto V' = {z € R? : 21 > a,k; < 29 < ko}, for some
a > 0, k1,ks € R. Now by [4, 7], we have for all convex domains U of R"™
(n>2):

HU) = =z +iy € C™ +t,&) — , < 0}.
U) ={w=a+1y (foax [ max, ((z +1,€) — sup(¢, u))] < 0}

This formula gives H(U) by means of the support function of U : dy(§) =
sup,cp (€, ). Making use of the fact that the function u — &1u; + & ug, being
harmonic in V', attains its supremum at some point of 9V’. We find by simple
calculations that

+00 if& >0
Svr(§) = qaki +ka& if & <0and & >0
a§1 + klgg if 51 S 0 and fg S 0

where ¢ € T', the unit circle of C. Next, to search the supremum on I' of the
function g(&1,&) = (x+t,£) — oy (), we restrict the study to {£ € T': & < 0}.
Since 9(51762) = g(fla tyv1- 612)7 with €1 € [_17 0}7 we put

91(&1) = 9(&1,\/1 = &F) = &1 +ap\ /1 =& and  ga(&1) = au&y — By/1 = &3,
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where oy = 1 +t1 —a, ag = xo — tg — ko, B = 9 — to — k1. One obtains that
g1(&) = 0if & = +ag/\/a? + a3 (when oy # 0 or ag # 0). In addition, the
study of variations of g1(£1), in —1 < &; < 0, in each of the three cases: oy <0,
(1 > 0 and a < 0), and (g > 0 and ay > 0) leads to max_1<¢, <0 91(61) =
max(—aq, as). Obviously, this equality holds even if ;7 = g = 0. A similar
calculus for g2(&1) gives max_i1<¢, <0 92(&1) = max(—03, —a2). Putting v = max(
—ag,a2), 0 = —min(8, az), and as T'(iy) = {(—y2,v1), (Y2, —y1)}, we obtain the
equivalence

a—xl—i—yg<0,x2—|—y1—k2<0,k1—x2—y1<0,

max(’775)<0<:>{ a—xl—yg<O,x2—y1—k2<07k1—x2+y1<O.

At last, writing min(u,v) = 2(u+ v — |u — v|) , and by the Jarnicki extension
f Jf = f (see section 1), we deduce H(V) = (f)"[{H(V')] , where

k1 + ko

H(V') ={w=1x+iy € C* |y < 5

s [g2| <21 —aj.

k2_k1,|x 7
2 2

Example The harmonicity cell of an arbitrary convex polygon P, may be
n_1- For, put o = % and
consider the translation 7_, : z — z — a. The domain P, = 7_,(P}) is also
a convex polygon, with O € P, and n vertices wg,...,w,_1, given by w, =
wy, —a. Making use of (d) and (h) in Proposition 3.1, we find after calculus and
simplifications:

explicited by means of the n vertices wy,...,w,

H(P,) = {w =2 +iy € C?: sgn(ImTrwiy1) ImT(wp 41 — wi)

+ VIyPlwrsr — wil? — Im 2g(wpy1 — wy)

< | Im Wrwi41], k:(),l,...,n—l}

with R? ~ C, Im z is the imaginary part of z, and sgn « is the sign of a. Note
that P, = 7, P, means that [w’ € H(P})] if and only if [’ —a € H(P,)]. If now
P}, . is some regular polygon, it is enough to consider its circumscribed circle
C(B, R), centered at 8 € R?, with radius R > 0. Next, applying successively
the translation 7_g, the homothety h% and a suitable rotation pg, we obtain
P} = pgh1/rT_P}, . which is studied in Proposition 4.1.c. Note that the same
process applies to arbitrary regular polyhedrons in R™, n > 3.
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