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Existence and multiplicity of nontrivial solutions

for double resonance semilinear elliptic problems ∗

Abdel R. El Amrouss

Abstract

We consider resonance problems at an arbitrary eigenvalue of the
Laplacien. We prove the existence of nontrivial solutions for some semi-
linear elliptic Dirichlet boundary values problems. We also obtain two
nontrivial solutions by using Morse theory.

1 Introduction

Let Ω be a bounded domain in Rn, and let g : Ω×R→ R be a nonlinear function
satisfying the Carathéodory conditions. We consider the Dirichlet problem

−∆u = λku+ f(x, u) in Ω
u = 0 on ∂Ω ,

(1.1)

where 0 < λ1 < λ2 ≤ . . . λk ≤ . . . is the sequence of eigenvalues of the problem

−∆u = λu in Ω,
u = 0 on ∂Ω .

Let F (x, s) be the primitive
∫ s

0
f(x, t) dt, and

l±(x) = lim inf
s→±∞

f(x, s)
s

, k±(x) = lim sup
s→±∞

f(x, s)
s

.

Let us assume that 0 ≤ l±(x) ≤ k±(x) ≤ λk+1 − λk uniformly for a.e. x ∈ Ω.
There have been many papers concerning problem (1.1) at resonance in the

situation where l±(x) ≡ 0 or k±(x) ≡ λk+1 − λk; see for example [11, 1, 4, 9,
8, 17]. Some multiplicity theorems are obtained by using the topological degree
technique and the variational methods, [2, 12, 13, 14, 5, 10, 7, 16].

In this paper, we are interested in finding nontrivial solutions of (1.1). First,
we prove the existence of a nontrivial solution when f(x, s)/s stays between 0
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94 Existence and multiplicity of nontrivial solutions

and λk+1 − λk for large values of |s|. We replace the non-resonance conditions
of Costa-Oliviera [8] by classical resonance conditions of Ahmad-Lazer-Paul.

Let us denote by E(λj) the λj-eigenspace, and state the following hypothe-
ses:

(F0) For all R > 0, sup|s|≤R |f(x, s)| ∈ L∞(Ω).

(F1) 0 ≤ f(x, s)s ≤ (λk+1 − λk)s2 for |s| ≥ r > 0 and a.e. x ∈ Ω

(F2) lim‖u‖→∞,u∈E(λk)

∫
F (x, u(x)) dx = +∞.

(F3) lim
‖u‖→+∞,u∈E(λk+1)

∫
[
1
2

(λk+1 − λk)u2(x)− F (x, u(x))] dx = +∞.

(F4) lim sup
s→±∞

2F (x, s)
s2

≤ β < λ1 − λk uniformly for a.e. x ∈ Ω.

Now, we state the following result.

Theorem 1.1 Under the assumptions (F0)–(F4), Problem (1.1) has at least
one nontrivial solution.

Note that (F4) implies f(x, 0) = 0 for a.e. x ∈ Ω, so that (1.1) has the trivial
solution in this case.

The second purpose of this paper is to study the existence of at least two
nontrivial solutions of (1.1) when f is C1, f(x, s)s lies between 0 and (λk+1 −
λk)s2 for large values of |s|, and

(F5) f(x, s)s→ +∞, uniformly on Ω, as s→ +∞ or as s→ −∞.

(F6) (λk+1 − λk)s2 − sf(x, s) → +∞, uniformly on Ω, as s → +∞ or as
s→ −∞.

(F7) f ′(x, 0) + λk ≤ λ1 on Ω, with strict inequality f ′(x, 0) + λk < λ1 holding
on subset of positive measure.

Our main results now read as the follows.

Theorem 1.2 Suppose that f ∈ C1(Ω × R,R) such that f(x, 0) = 0 for a.e.
x ∈ Ω, and (F5)–(F7) are satisfied. Then (1.1) has at least two nontrivial
solutions.

As an immediate consequence we obtain the corollary below, under the as-
sumption that

(F8) 0 < f ′(s) < λk+1 − λk for |s| ≥ r > 0.

Corollary 1.3 Assume that f(x, s) = f(s) ∈ C1(R), f(0) = 0, f ′(0) +λk < λ1

and (F8) is satisfied. Then, (1.1) has at least two nontrivial solutions.
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Theorem 1.4 Suppose that f ∈ C1(Ω × R,R) such that f(x, 0) = 0 for a.e.
x ∈ Ω. Assume that f satisfies (F5), (F6), k = 1, and (F8). Also assume that
there is an m ≥ 2 such that

λm ≤ f ′(x, 0) + λ1 ≤ λm+1 on Ω,

with strict inequality λm < f ′(x, 0) + λ1 < λm+1 holding on subset of positive
measure. Then, (1.1) has at least two nontrivial solutions.

Remarks

1. It is obvious to see that the conditions (F5)-(F6) imply the conditions
(F2)-(F3).

2. Note that our multiplicity results are not covred by the results mentioned
in [2, 12, 13, 14, 5, 10]. In fact, the condition supt∈R f ′(t) < λk+1 − λk
cited in [13, 5, 10] implies (F6).

The proof of Theorem 1.1 uses a variational argument and the general min-
imax theorem proved by Bartolo in [3]. In section 4, using Morse theory we
compare the computed critical groups of Φ at the trivial critical point and the
first nontrivial critical point given by minimax method. The existence of the
second nontrivial solution is deduced from the calculation of the Leray-Schauder
index of critical points.

2 Preliminaries

By a solution of (1.1) we mean a function u ∈ H1
0 (Ω) satisfying∫

Ω

∇u∇v − λk
∫

Ω

uv −
∫

Ω

f(x, u)v = 0, forallv ∈ H1
0 (Ω)

where H1
0 (Ω) is the usual Sobolev space obtained through completion of C∞c (Ω)

with respect to the norm induced by the inner product

〈u, v〉 =
∫

Ω

∇u∇v, u, v ∈ H1
0 (Ω) .

For u ∈ H1
0 (Ω) define the functional

Φ(u) =
1
2

∫
Ω

|∇u|2 − 1
2
λk

∫
u2 −

∫
F (x, u).

It is well know that under a sub-critical growth condition on f , Φ is well defined
onH1

0 (Ω), weakly lower semi-continuous and continuously Fréchet differentiable,
with derivative

Φ′(u)v =
∫

Ω

∇u∇v − λk
∫
uv −

∫
f(x, u)v, for u, v ∈ H1

0 (Ω)
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Thus, finding solutions of (1.1) is equivalent to finding critical points of the
functional Φ.

To apply minimax methods for finding critical points of Φ, we need to verify
that Φ satisfies a compactness condition of the Palais-Smale type which was
introduced by Cerami.

Definition A functional Φ ∈ C1(E,R), with E a real Banach space, is said
to satisfy condition (C)c, at the level c ∈ R, if:
Every sequence (un) ⊂ E such that

Φ(un)→ c, ‖un‖Φ′(un)→ 0

possesses a convergent subsequence
It was shown in [3] that condition (C)c actually suffices to get a deformation

theorem. Then, by standard minimax arguments [3], the following result was
proved.

Theorem 2.1 Suppose that Φ ∈ C1(E,R), E a real Banach space, satisfies
condition (C)c∀c ∈ R and that there exist a closed subset S ⊂ E and Q ⊂ E
with boundary ∂Q satisfying the following conditions

i) supu∈∂Q Φ(u) ≤ α < β ≤ infu∈S Φ(u) for some 0 ≤ α < β

ii) The intersection of S and ∂Q is not empty and for every h ∈ C(E,E)
such that h/∂Q = Id, we have h(Q) ∩ S 6= ∅.

iii) supu∈Q Φ(u) <∞.

Then Φ possesses a critical value c ≥ β.

Since we are going to apply the variational characterization of the eigenval-
ues, we shall decompose the space H1

0 (Ω) as E = E−⊕Ek ⊕Ek+1⊕E+, where
E− is the subspace spanned by the λj- eigenfunctions with j < k and Ej is the
eigenspace generated by the λj-eigenfunctions and E+ is the orthogonal com-
plement of E−⊕Ek⊕Ek+1 in H1

0 (Ω) and we shall decompose for any u ∈ H1
0 (Ω)

as following u = u− + uk + u+ where u− ∈ E−, uk ∈ Ek, uk+1 ∈ Ek+1 and
u+ ∈ E+. We can verify easily that∫

|∇u|2 dx− λi
∫
|u|2 dx ≥ δi‖u‖2 ∀u ∈ ⊕j≥i+1Ej (2.1)∫

|∇u|2 dx− λi
∫
|u|2 dx ≤ −δi‖u‖2 ∀u ∈ ⊕j≤iEj . (2.2)

where δi = min{1− λi
λi+1

, λi
λi−1

− 1}.

Now, we present some technical lemmas.
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Lemma 2.1 Let (un) ⊂ H1
0 (Ω) and (pn) ⊂ L∞(Ω) be sequences, and let A a

nonnegative constant such that

0 ≤ pn(x) ≤ A a.e. in Ω and for all n ∈ N

and pn ⇀ 0 in the weak* topology of L∞, as n → ∞. Then, there are subse-
quences (un), (pn) satisfying the above conditions, and there is a positive integer
n0 such that for all n ≥ n0,∫

pnun((u−n + ukn)− (uk+1
n + u+

n )) dx ≥ −δk
2
‖u+

n + uk+1
n ‖2. (2.3)

Proof: Since pn ≥ 0 a.e. in Ω, we see that∫
pnun((u−n + ukn)− (uk+1

n + u+
n ))

≥ −
∫
pn(u+

n + uk+1
n )2 dx

≥ −
[ ∫

pn
( u+

n + uk+1
n

‖u+
n + uk+1

n ‖
)2
dx
]
‖u+

n + uk+1
n ‖2.

(2.4)

Moreover, by the compact imbedding of H1
0 (Ω) into L2(Ω) and pn ⇀ 0 in the

weak* topology of L∞, when n → ∞, then there are subsequences (un), (pn)
such that ∫

pn

( u+
n + uk+1

n

‖u+
n + uk+1

n ‖

)2

dx→ 0.

Therefore, there exists n0 ∈ N such that for n ≥ n0 we have∫
pn

( u+
n + uk+1

n

‖u+
n + uk+1

n ‖

)2

dx ≤ δk
2
. (2.5)

Combining inequalities (2.4) and (2.5), we get inequality (2.3). �

Definition A sequence (un) is said to be a (C)c sequence, at the level c ∈ R,
if there is a sequence εn → 0, such that

Φ(un)→ c (2.6)

‖un‖〈Φ′(un), v〉H1
0 ,H

−1 ≤ εn‖v‖ ∀v ∈ H1
0 . (2.7)

Lemma 2.2 Let (un) ⊂ H1
0 (Ω) be a (C) sequence.

1. If fn(x) = f(x,un(x))
un(x) χ[|un(x)|≥rε] ⇀ 0 in the weak* topology of L∞, as

n→∞. Then, there is subsequence (un) such that (‖u−n + (u+
n +uk+1

n )‖)n
is uniformly bounded in n.

2. If fn(x) = (λk+1−λk)un(x)−f(x,un(x))
un(x) χ[|un(x)|≥rε] ⇀ 0 in the weak* topology

of L∞, as n→∞. Then, there is subsequence (un) such that (‖u−n +(u+
n +

ukn)‖)n is uniformly bounded in n.
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Proof: Since (un)n ⊂ H1
0 be a (C) sequence, (2.6) and (2.7) are satisfied.

Now, we prove that the sequence (‖u−n + u+
n + uk+1

n ‖)n is uniformly bounded in
n. Take v = (u−n + ukn)− (u+

n + uk+1
n ) in (8), pn(x) = fn(x), and

Λ =
{
−
∫
|∇u−n |2 + λk

∫
|u−n |2 dx+

∫
|∇(u+

n + uk+1
n )|2

− λk
∫
|u+
n + uk+1

n |2 dx+
∫
pnun((u−n + ukn)− (uk+1

n + u+
n )) dx

}
Γ =

{
εn +

∫
h((u+

n + uk+1
n )− u−n ) dx

+
∫
|un(x)|≤rε

|f(x, un(x)||(u+
n + uk+1

n )− (u−n + ukn)| dx
}
.

Then Λ ≤ Γ. By the Poincaré inequality, from (2.1), (2.2), (2.3), and Λ ≤ Γ, it
follows that there exist constants Aε and Bε such that

δk
2
‖u−n + (u+

n + uk+1
n )‖2 ≤ εn +Aε‖u−n + (u+

n + uk+1
n )‖+Bε.

This gives that (‖u−n + (u+
n + uk+1

n )‖)n is uniformly bounded in n. The same
proof of eventuality 2 are given by taking v = (u+

n + uk+1
n )− (u−n + ukn) and

pn(x) = fn(x) =
(λk+1 − λk)un(x)− f(x, un(x))

un(x)
χ[|un(x)|≥rε].

Lemma 2.3 1. Let (un) ⊂ H1
0 (Ω) such that ‖u−n +(u+

n +uk+1
n )‖ is uniformly

bounded in n and there exists A such that if A ≤ Φ(un), then∫
F (x,

ukn
2

) dx ≤M.

2. Let (un) ⊂ H1
0 (Ω) such that ‖u−n + u+

n + ukn‖ is uniformly bounded in n
and there exists A such that if Φ(un) ≤ A, then∫

[
λk+1 − λk

2
(
uk+1
n

2
)2 − F (x,

uk+1
n

2
)] dx ≤M.

Proof: ¿From (2.6), and Poincaré inequality, we have∫
F (x,

ukn
2

) dx ≤A+
∫

[F (x,
ukn
2

)− F (x, un)] dx

+
1
2
‖u+

n + uk+1
n + u−n ‖2 +

1√
λ1

‖h‖L2‖u+
n + uk+1

n + u−n ‖.

(2.8)
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However, by the mean value theorem, we get for a.e. x ∈ Ω an t = t(x) ∈ [0, 1]
such that∫

[F (x,
ukn
2

)− F (x, un)] dx

=
∫
f(x, t

ukn
2

+ (1− t)un)(
ukn
2
− un) dx

=
∫
|tu

k
n
2 +(1−t)un|≤rε

f(x, t
ukn
2

+ (1− t)un) dx

+
∫
|tu

k
n
2 +(1−t)un|≥rε

f(x, tu
k
n

2 + (1− t)un)

t
ukn
2 + (1− t)un

[
t(
ukn
2
− un)2 + (

ukn
2
− un)un

]
dx.

(2.9)
So that using (2.9) and the Poincaré inequality again we have∫

[F (x,
ukn
2

)− F (x, un)] dx

≤ 2√
λ1

‖ sup
|s|≤rε

|f(x, s)|‖L2‖u−n + u+
n + uk+1

n ‖

+ rε‖ sup
|s|≤rε

|f(x, s)|‖L1 +
λk+1 − λk + ε

4λ1
‖u−n + u+

n + uk+1
n ‖2.

(2.10)

¿From (2.8) and (2.10), there exists M > 0 such that∫
F (x,

ukn
2

) dx ≤M.

3 Proof of Theorem 1.1

To apply Theorem 2.1, we shall do separate studies of the “compactness” of Φ
and its “geometry”. First, we prove that Φ satisfies the Cerami condition.

Lemma 3.1 Φ satisfies the (C)c condition on H1
0 (Ω), for all c ∈ R.

Proof: Let (un)n ⊂ H1
0 be a (C)c sequence, i.e

Φ(un)→ c

‖un‖〈Φ′(un), v〉H1
0 ,H

−1 ≤ εn‖v‖ ∀v ∈ H1
0 ,

where A is a constant and εn → 0. It clearly suffices to show that (un)n
remains bounded in H1

0 . Assume by contradiction. Defining zn = un
‖un‖ , we

have ‖zn‖ = 1 and, passing if necessary to a subsequence, we may assume that
zn ⇀ z weakly in H1

0 , zn → z strongly in L2(Ω) and zn(x) → z(x) a.e. in Ω.
As in the proof of Lemma 2.1, we put

fn(x) =
f(x, un(x))
un(x)

χ[|un(x)|≥r]



100 Existence and multiplicity of nontrivial solutions

and l ∈ L∞ such that fn → l in the weak* topology of L∞, as n → ∞. where
the L∞-function l satisfies

0 ≤ l(x) ≤ λk+1 − λk. (3.1)

Set m(x) = l(x) + λk, by (2.6), we have

〈Φ′(un), un〉
‖un‖2

→ 1−
∫
m(x)z(x) dx = 0.

So that, z 6≡ 0. In other words , we verify easily that z satisfies

−∆z = m(x)z in Ω
z = 0 on ∂Ω

(3.2)

We now distinguish three cases: i)λk < m(x) and m(x) < λk+1 on subset of
positive measure; ii) m(x) ≡ λk; iii) m(x) ≡ λk+1.

In case i), we have λk(m) < 1 and λk+1(m) > 1. This contradicts that 1 is
an eigenvalue of problem (3.2). On the other hand, by (F2), (F3), lemmas 2.2
and 2.3 the cases ii) and iii) are not possible. The proof is complete. �

Lemma 3.2 Under hypothesis of Theorem 1.1, the functional Φ has the follow-
ing properties:

i) Φ(v)→ −∞, as ‖v‖ → ∞, v ∈ Ek ⊕ E− = V

ii There is an r > 0 such that Φ ≤ α on ∂Br(0).

Proof i) Assume by contradiction there exist a constant B and a sequence
(vn) ⊂ V with ‖vn‖ → ∞ such that

B ≤ Φ(vn) ≤ −δ‖v−n ‖2.

Therefore, ‖v−n ‖ is bounded and by Lemma 2.3, we obtain

lim inf
n→∞

∫
F (x,

vkn
2

) dx ≤ constant.

This is a contradiction with assumption (F2).
ii) By (F4), there exists δ > 0 such that

F (x, s) ≤ β′

2
|s|2 for |s| ≤ δ and a.e. x ∈ Ω (3.3)

where β′ ∈]β, λ1 − λk[.
On the other hand, (F0) and (F1) implies that there exist µ > 2 and A > 0

such that
F (x, s) ≤ A|s|µ for |s| ≤ δ and a.e. x ∈ Ω (3.4)
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Thus, from (3.3) and (3.4) we deduce

F (x, s) ≤ β′

2
|s|2 +A|s|µ for |s| ≤ δ and a.e. x ∈ Ω (3.5)

Let u ∈ H1
0 (Ω), via (3.5) and using the Poincaré inequality λ1

∫
u2 ≤ ‖u‖2 and

the Sobolev inequality
∫
uµ ≤ K‖u‖µ, we obtain

Φ(u) =
1
2
‖u‖2 − λk

2

∫
u2 −

∫
F (x, u) dx

≥ λ1 − λk
2

∫
u2 − β′

2

∫
u2 −A

∫
uµ

≥ λ1 − λk − β′

2λ1
‖u‖2 −AK‖u‖µ

Since µ > 2, we obtain the estimates

Φ(u) ≥ (
λ1 − λk − β′

2λ1
−AK‖u‖µ−2)‖u‖2 ≥ λ1 − λk − β′

4λ1
r2 = ν ≥ 0 ∀‖u‖ = r

with r = (λ1−λk−β′
4λ1AK

)
1

µ−2 , wich proves the lemma. �

Proof of Theorem 1.1 The first assertion of lemma 3.2 implies that there
exists v ∈ H1

0 such that Φ(tv) → −∞ as t → ∞. In view of lemmas 3.1 and
3.2, we may apply Theorem 2.1 letting S = {u | ‖u‖ = r} and Q = {tv | v ∈
E− ⊕ Ek, 0 ≤ t ≤ t0}, with t0 > 0 being such that Φ(tv) ≤ 0. It follows that
the functional Φ has a critical value c ≥ β > 0 and, hence, problem (1.1) has a
nontrivial solution u ∈ H1

0 .

4 Existence of multiple nontrivial solutions

In this section, we consider the existence of multiple nontrivial solutions of
problem (1.1). It is well known That, under the conditions of f in Theorem 1.2
or Theorem 1.4, Φ is a C2 functional with

Φ′(u)v =
∫

Ω

∇u∇v − λk
∫
uv −

∫
f(x, u)v, for u, v ∈ H1

0 (Ω),

Φ′′(u).v.w =
∫

Ω

∇w∇v − λk
∫
wv −

∫
f ′(x, u)wv, for u,w, v ∈ H1

0 (Ω).

Set, Φc = {u ∈ H1
0 (Ω) | Φ(u) ≤ c}. Denote by Hq(X,Y ) the q-th relative

singular homology group with integer coefficient. The critical groups of Φ at an
isolated critical point u with Φ(u) = c are defined by

Cq(Φ, u) = Hq(Φc ∩ U,Φc ∩ U \ {u}); q = 0, 1, 2, . . . ,

where U is a closed neighborhood of u.



102 Existence and multiplicity of nontrivial solutions

We will use the notation deg(Φ′, U, 0) for the Leray-Schauder degree of Φ
with respect to the set U and the value 0. Denote also by index(Φ′, u) the Leray-
Schauder index of Φ′ at critical point u. Recall that this quantity is defined as
limr→0 deg(Φ′, Br(u), 0), if this limit exists, where Br(u) is the ball of radius r
centered at u.

Now, we will prove the following lemmas.

Lemma 4.1 There is an r > 0 and an α > 0 such that Φ ≥ α on ∂Br(0).

Proof: Using the Poincare’s inequality, we have for every v ∈ H1
0 (Ω),

Φ′′(0).v.v =
∫

Ω

|∇v|2 −
∫

[λk + f ′(x, 0)]v2 dx.

Put m(x) = λk + f ′(x, 0), and so in the case where m(x) ≤ 0, then

Φ′′(0).v.v ≥ ‖v‖2.

In the case where m(x) > 0 on subset of positive measure we have λ1(m) > 1.
It follows from the Poincaré’s inequality that

Φ′′(0).v.v ≥ (1− 1
λ1(m)

‖v‖2.

It follows that 0 is a non-degenerate critical point of Φ with the Morse Index of
Φ at 0 is 0, and so it is well known that Cq(Φ, 0) = δq0Z.

For sufficiently small ρ > 0 we have for ‖u‖ ≤ ρ

Φ(u) =
1
2

Φ”(0).u.u+ o(‖u‖2) ≤ 1
2

[
Φ”(0).u.u+ o(‖u‖2)

‖u‖2
]‖u‖2

with o(‖u‖2)
‖u‖2 → 0 as ‖u‖ → 0. For r < ρ, there holds

Φ(u) ≥ 1
4

(1− ξ(m))r2, ‖u‖ = r

with

ξ(m) =

{
1

λ1(m) if m > 0 on subset of positive measure

0 if m ≤ 0

Since λ1(m) > 1, clearly there exists α > 0 such that Φ(u) ≥ α on ∂Br(0).

Lemma 4.2 There exists at least one nontrivial critical point u0 of Φ such that
Cq(Φ, u0) = δq1Z.
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Proof: It easy to see that the conditions (F4), (F5) follow from conditions
(F2), (F3). Then, by lemma 3.2, Φ is anticoercive on E− ⊕ Ek we can find a
w such that ‖w‖ > R and Φ(w) ≤ 0. The compactness condition and geometry
of Φ assure that c = infh∈Γ max0≤t≤1 Φ(h(t)) is a critical value for Φ, where
Γ = {h ∈ C([0, 1],H1

0 ) | h(0) = 0, h(1) = w}, and c ≥ α. Then, there exists a
critical point nontrivial, u0, of mountain pass type such that C1(Φ, u0) 6= 0.

If u0 is a non-degenerate critical point with its Morse index is k and then
Cq(Φ, u0) = δqkZ. Since C1(Φ, u0) 6= 0 it follows that Cq(Φ, u0) = δq1Z.

If u0 is degenerate, by Gromoll-Meyers theorem (cf. [16]), we have

Cq(Φ, u0) = 0 for q < k and q > j + k

with j = dimKerΦ′′(u0). Since C1(Φ, u0) 6= 0, it follows that k ≤ 1.
If k = 1, by the shifting theorem and the critical group characterization of

the local minimum, we have Cq(Φ, u0) = δq1Z.
If k = 0, we have

Φ′′(0).v.v =
∫

Ω

|∇v|2 −
∫

[λk + f ′(x, 0)]v2 dx ≥ 0.

for every v ∈ H1
0 (Ω) and according to a result of Manes-Micheletti (cf. [15]), we

have j = dimKerΦ′′(u0) = 1 . Consequently, from the shifting theorem and the
critical group characterization of the local maximum, we have Cq(Φ, u0) = δq1Z.

Proof of Theorem 1.2 By the Riesz representation theorem we can write

〈Φ′(u), v〉 = 〈u, v〉 − 〈Nu, v〉, for all u, v ∈ H1
0 (Ω)

where 〈u, v〉 =
∫

Ω
∇u∇v and 〈Nu, v〉 =

∫
[λku+f(x, u)]v dx. So that, Φ′ = I−N

and By the Sobolev embedding theorem, N is compact. We see that Φ′ has the
form Identity-compact, so that leary-shauder techniques are applicable. In a
similar way we can define a compact map T : H1

0 (Ω)→ H1
0 (Ω) by < Tu, v >=∫

(λk + µ)uv. It is well know for 0 < µ < λk+1 − λk that

deg(I − T,BR(0), 0) = (−1)m

where m represents the dimension of V − ⊕ V k and BR(0) the ball in H1
0 (Ω)

of radius R > 0. Suppose {0, u0} is the critical set of Φ and let R > 0 such
that {0, u0} ⊂ BR(0). According to [7, theorem 3.2, capt. II] and the addition
property of Leray-Schauder degree imply

deg(Φ′, BR(0), 0) = index(Φ′, 0) + index(Φ′, u0)

=
∞∑
q=0

(−1)q dimCq(Φ, 0) +
∞∑
q=0

(−1)q dimCq(Φ, u0)

= dimC0(Φ, 0) + dimC1(Φ, u0)
= 1− 1 = 0.
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But this contradicts the fact that

deg(Φ′, BR(0), 0) = (−1)m.

Indeed, in [17] Omari and Zanolin establish an a priori bound for the solution
set of the family equation

−(∆u+ λku) = (1− t)µu+ tf(x, u), x ∈ Ω, t ∈ [0, 1]
u = 0 on ∂Ω

with, 0 < µ < λk+1 − λk. The homotopy invariance of Leray-Schauder degree
implies that deg(Φ′, BR(0), 0) = deg(I − T,BR(0), 0) = (−1)m.

Proof of corollary 1.1 ¿From (F8), there are s1, s2 such that 0 < f ′(s1),
f ′(s2) < λk+1 − λk = µ. Thus, by continuity, there exist s3 ∈ R, ε > 0, δ > 0
such that

ε ≤ f ′(s) ≤ µ− ε

for every s ∈ [s3 − δ, s3 + δ]. Let s3 ≥ 0 be and take s > s3 + δ, we have

εδ ≤ f(s) =
∫ s3

0

f(t) dt+
∫ s3+δ

s3

f(t) dt+
∫ s

s3+δ

f(t) dt ≤ µs− εδ.

Hence, the corollary follows. Similarly, we have F5) and F6), if s3 < 0. �
For the proof of Theorem 1.4, we will need the following lemma.

Lemma 4.3 The functional Φ is coercive in E(λ1)⊥ = W . Moreover, the
functional Φ has at least nontrivial critical point of mountain pass type.

Proof. Suppose by contradiction that Φ is not coercive in W . Thus, there is
some constant B and some sequence (wn) ⊂W , with ‖wn‖ → ∞, such that

Φ(wn) =
1
2

∫ [
|∇wn|2 dx− λk+1w

2
n

]
+
∫ [1

2
(λk+1 − λk)w2

n −F (x,wn)
]
dx ≤ B

This implies that ‖w+
n ‖ is bounded, and so Lemma 2.3 gives us a contradiction

from (F3). Therefore, Φ is bounded from below in W . Hence, since Φ is weakly
lower semi-continuous and coercive on W , Φ attains the infimum β = infW Φ.

On the other hand, since Φ is anticoercive on E(λ1), we can find t0 > 0 that
Φ(±t0ϕ1) < β. In view of Lemma 3.1, we may apply Theorem 2.1 to get that

c = inf
h∈Γ

max
0≤t≤1

Φ(h(t)) ≥ β

is a critical value for Φ, where Γ = {h ∈ C([0, 1],H1
0 ) | h(0) = −t0ϕ1, h(1) =

t0ϕ1}. As in the proof of Theorem 1.2, there exists a critical point u0 of Φ such
that Cq(Φ, u0) = δq1Z.

Now we will prove that 0 is a nondegenerate critical point with Morse index
of Φ at 0 equal d.
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Claim. The Morse index of Φ at 0 is d, with d ≥ 2.
In fact, for every v ∈ ⊕j≤mEj we have

Φ′′(0).v.v =
∫

Ω

|∇v|2 −
∫

[λ1 + f ′(x, 0)]v2 dx ≤
∫
λm − [λ1 + f ′(x, 0)]v2 dx.

On the other hand, for every v ∈ ⊕j≥m+1E
j we have

Φ′′(0).v.v ≥
∫
λm+1 − [λ1 + f ′(x, 0)]v2 dx.

¿From (F8) we obtain that 0 is a nondegenerate critical point of Φ with Morse
index is d, where d is the the dimension of ⊕j≤mEj and clearly d is larger than
2. The last claim implies that Cq(Φ, 0) = δqdZ, and so u0 is a nontrivial critical
point of mountain pass type.

Proof of Theorem 1.4 As in the proof of Theorem 1.2, we assume {0, u0}
is the critical set of Φ. Let R > 0 such that {0, u0} ⊂ BR(0). According to
[7, Theorem 3.2, Capt.II] and the addition property of Leray-Schauder degree
imply

deg(Φ′, BR(0), 0) = index(Φ′, 0) + index(Φ′, u0)

=
∞∑
q=0

(−1)q dimCq(Φ, 0) +
∞∑
q=0

(−1)q dimCq(Φ, u0)

= dimC0(Φ, 0) + dimC1(Φ, u0)

= (−1)d − 1.

Observe that the right hand side of this equality is even, which contradicts the
claim given in the proof of Theorem 1.2. Hence, problem (1.1) has at least two
nontrivial solutions. �
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