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Function spaces of BM O and Campanato type *
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Abstract

To obtain the Littlewood-Paley characterization for Campanato spaces
£** modulo polynomials (which contain as special case the John and
Nirenberg space BMO), we define and study a scale of function spaces on
R™. We discuss the real interpolation of these spaces and some embed-
dings between these spaces and the classical spaces. These embeddings
cover some classical results obtained by Campanato, Strichartz, Stein and
Zygmund.

1 Introduction

In this work, we introduce and study a scale of function spaces on R™. The
homogeneous version of these spaces contains Campanato spaces £2* and John
and Nirenberg space BMO = LP™. It is classical that the homogeneous
space of Triebel-Lizorkin F;q(R") coincides with BM O modulo polynomials
for some values of p,q and s. Namely, BMO = FQQQ [13, chapter 5] and
I*(BMO) = F§O72, where I° = F~!(|.|7*F) is the Riesz potential operator.
The spaces I°(BMO) were studied by Strichartz [12]. We use a Littlewood-
Paley partition to define these spaces denoted by EI),‘,’S (R™) and their homo-
geneous version ﬁ;‘;; (R™). These spaces allow us to give the Littlewood-Paley
characterization of Campanato spaces £2* and more generally of I*(£%*) mod-
ulo polynomials (cf. Theorem 2.3). If we denote L; the local approximation
Campanato spaces defined for instance in the book [14, Definition 1.7.2. (5)]
for s > —n/p and 1 < p < 400, then we recall that Ly = C* for any s > 0,
L;n/p = L? and LY = bmo the local version of BMO, cf. [4], [10], [15] and [14]
for the proof and more references. The spaces of Campanato £P* considered
here (Definition 1.4) coincide with the local approximation Campanato spaces
Ly with s = (A —n)/p for =% < s <0 (ie. 0 <A < n) which are themselves
equal to Morrey spaces. The characterization given here is of interest for Lj
spaces in the case —n/2 < s < 0.

Next we give a result concerning the real interpolation of these spaces, and
we extend some injections due to Strichartz [12] and Stein and Zygmund [11]

* Mathematics Subject Classifications: 46E35, 46B70.

Key words: BMO-space, Campanato spaces, Real interpolation, Sobolev embeddings.
(©2002 Southwest Texas State University.

Published December 28, 2002.

109



110 Function spaces of BMO and Campanato type

by showing some embeddings between the spaces E;D\:; (R™) and Triebel-Lizorkin
ones F; (R™) and Besov-Peetre ones By (R"), and on the other hand between
the same spaces E;‘:; (R™) and Hélder-Zygmund ones C*(R™). Such embeddings
shed some light on duals of the closure of Schwartz space S(R™) in BMO and
in Campanato spaces £2* (Corollary 2.13). To define the spaces we will need
the following partition of unity: we denote x € R™ and £ its dual variable. Let
p € C(R™), ¢ > 0, ¢ equal to 1 on |{] < 1, and equal to 0 on || > 2.
Let 6(¢) = @(§) — ¢(2€), suppd C {3 < [¢{| < 2}. For j € Z we set Aju =
0(279Dy)u, Agu = ¢(Dy)u and if j > 1 we set also Aju = Aju.

Remark 1.1 We recall that if u € S'(R") then u = 37, Ay and u =
> okez Aju modulo polynomials.

Now we give the definition of the nonhomogeneous spaces.

Definition 1.2 Let s e R, A >0, 1 <p < +oc and 1 < g < +oco. The space
Ly5(R™) denotes the set of all tempered distributions u € §'(R") such that

1 s 1/q
lull 23y = (slépW > Al ) < 4o (L)
j>J+

where J* = max(J,0), | B is the measure of B and the supremum is taken over
all J € Z and all balls B of R" of radius 277,

When p = ¢, the space L’;;; (R™) is denoted £P**(R™). Note that the space
A,s n . . .
Ls(R™) equipped with the norm (1.1) is a Banach space.
To define the homogeneous spaces we recall the notation of [13]: Z'(R™) :=
S'(R™)/P is the space of all tempered distributions modulo the set P of poly-
nomials of R™ with complex coefficients.

Definition 1.3 Let s e R, A > 0,1 <p < 4ooand 1 < g < +o0o. The dotted

space E;‘ (R™) denotes the set of all u € Z’(R™) such that

i
1 S 1/q
lull 23.r oy = (sgpwzw 1Ajulldy ) <Hoo (1)
j=J

where the supremum is taken over all .JJ € Z and all balls B of R" of radius 2.

The space E;‘;(R”) will be denoted L£P**(R™). If P is a polynomial of
P(R™) and u € S'(R™), it follows immediately that

e+ Pl gy ey = Il 25 ey

This shows that the norm (1.2) is well defined. Further, the space ﬁ;}:g (R™)
equipped with this norm is a Banach space.
Now we recall the definition of Campanato spaces and BMO.



Azzeddine El Baraka 111

Definition 1.4 Let A > 0 and 1 < p < 4oo. (i) We say u € LPAR") if
we LY (R™) and

loc
l[ull 2 = ( L / | Pd )1/p <+
u PA(R™) sup | |/\/ u—mpu T o0

where mpu = ﬁ S u(y)dy is the mean value of u and the supremum is taken

over all the balls B of R”. The space £P*(R") is a Banach space modulo
constants and is equal to {0} for A > n + p.

Let us denote BMO the space £>"(R™). Note that BMO is equal to £P"(R")
for any 1 < p < 400, cf. [10].

(ii) For 0 < A < n + p, we define the space £P*(R") as the set of all equiv-
alence classes modulo P of elements of L£P*(R"), equipped with the norm
1Ul go.x@ny = llulloxgny where u is the unique (modulo constants) element

of LP*(R™) belonging to the class U.

2 Results

The following proposition yields the dyadic characterization of liQ’A(]R").

Proposition 2.1 Let 0 < A < n+ 2. The space [:2’)"0(11%”) coincides alge-
braically and topologically with Campanato space L*(R™).

This proposition allows us to deduce the link between the discrete scale built
on L£L2*(R") and the continuous scale.

Corollary 2.2 Let 0 < A <n—+2 and m € N.
(i) L2A™(RY) — H2AM = {u € L2NR); DY € L2MR™), o] < m}.

(ii) HE2A™M ) H™HA2(R?Y) e L2A™(RM), here H™M2(R™) s the classical
homogeneous Sobolev space.

Therefore, 7_'{2,>\,m mH¢n+)\/2(Rn) = ZZ,z\,Wl(Rn) ﬂHm+>\/2(Rn)'

To state a more general result than the proposition 2.1, we recall the defini-
tion of the Riesz potential operator

Ff=FY.I°Ff}, fe€Z'(R")andsecR

Theorem 2.3 Let s € R and 0 < X\ < n+2. The space L2255 (R™) coincides
algebraically and topologically with the space I°(L**(R™)) image of L>*(R™)
under I°.

Remark 2.4 These results are not true in general for the spaces LPA p £ 2.
For this, G. Bourdaud notes that £P-0-0 = Bg)p for any 1 < p < +00, and it is

classical that £P0 = LP.
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The following lemma shows that these spaces are independent of the partition
(Aj);-

Lemma 2.5 Let R > 1. Let (u;)j>0 be a sequence of L}, (R™) satisfying the
following assumptions:

(i) supp Fug C {|¢| < R} and supp Fu; C {527 < |£| < R27} for j > 1.
(ii)
1 .
— VELITPOIT 1/q
M = (Slép |B]Mn ‘;+2 ||“J||Lp(3)) < +00
5>

where the supremum is taken over all J € Z and all balls B of R™ of radius
2=,

Then the series Y u; converges in 8'(R™), and its sum u belongs to L5 (R™)

J
with |\u||££:;(R,,L) < CM, where the constant C depends only from s,p,n, R and

the partition (A;)j>0. We have an analogous result for the dotted spaces.

Corollary 2.6 The derivation DY is a bounded operator from the sapce E;‘:; (R™)
to the space E;‘7’57|a‘(R”) and from [Z;‘:;(R") to E.fg‘j;*‘al(R”).
For this it sufﬁpes tonote that Dgu =350 A;Dgu= 73,5, 2711 [ u, where
FLju(f) = 04(2778)Fu(§), with 6,(§) = £70(¢). We apply lemma 2.5 then.
We can remove the spectral assumption (i) of lemma 2.5 by giving a result
dealing with the real interpolation of these spaces:

Theorem 2.7 (Interpolation) Let N, be an integer > 1, 0 < s < N, A >0
and p,q € [1,4+00[. Let (u;); be a sequence of functions belonging to C*°(R™) N
LY (R™). We assume that there is a sequence (g;); € 19 such that for any ball

loc

B of R™ of radius 2=/, J € Z,,

| DZujlloe(m) < g;27Uel=9)| B @) inf {1,277V} for any j > 0 and |o| < N
(2.1)
Then, the series go u; converges in LY (R™) and its sum u belongs to L5 (R™)
3>
with
el ey < CllCES )l

where C' depends only on N,s,p,n, A and the partition defining the norm of
L)

The following lemma gives the inclusion property among these spaces in
dependance of their parameters:

Lemma 2.8 Let 1 <p<p' < +o0, 1 <¢ <q< +o00 and s € R. Further, let

A and p > 0 such that 1% — 5 > %— 3. Then we have the continuous embedding

n 1 n A
s _ s __ A
pos+ 2 Ast+2-2

’Cp’,q’ ?(Rn) — 'Cp;q (Rn)

We have the same result for the dotted spaces L.
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s s
In particular, if p = p’ and ¢ = ¢ then £},;  (R") — E:,\:q 7 (R™) holds for
any ;o < A. Furthermore if p = p/ = ¢ = ¢/ we get LPNT5 (R7) s LPA s (R7)
for any o > 0 and A > 0. Now we give the connection between E;}:; (R™) and
Lys(R™).
Lemma 2.9 Let 1 <p,qg < +oo, A >0 and s € R.
(i) If the class of u modulo P belongs to EQS(R”) and if Agu € LP(R™), then
A,8 n
u € Lya(R").
(i) LP(R™) N E;,‘;(R”) C LyE(R™) with the same meaning as (i).
(iti) Lps(R™) C E;\; (R™) provided s > 0.
Remark 2.10 It follows that if s > 0 then
A8 _ m A,
LP(R™) N L7 (R™) = LP(R™) N L7 (R™).

Finally we give the connection between these spaces and the classical spaces.
For the definitions of the spaces By ,,C*® F;  and the dotted ones we refer to
[13].

Theorem 2.11 Let s e R, 1 <p < +4o0,1 < g < 400 and A > 0. We have the
following continuous embeddings

LT RYY o 0f(RY)
Fob P (RY) = Ly 37T (R)  provided g > p
FEPRP) o 22252 (R provided p > g
B;§+%(Rn) — L25(R"™)  provided A > n%

and finally

Z 27a(s+ k;'L)\Ajur] € L>®(R") implies u € LY (R™) provided A\ > n

j=0
We have also the same continuous embeddings if we replace B,C, F' and L re-
spectively by the dotted spaces B,C, F and L.

Remark 2.12 (i) These embeddings cover theorem 2.1 of [5] and theorem

3.4 of [12] which asserts that B, o(R") < I°*(BMO) — C (R™), where
I* is the Riesz potential operator and I*(BMO) = £2™5(R™), BMO is
defined modulo polynomials.

(ii) In the case s =0, S. Campanato [3] and [4] showed that if n <A <n+p

we have £P? = 077" and LP"*+P = Lip (we refer also to [9]).
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(iii) If we do s =0, p=¢ =2 and A = n in the third embedding, then we find
again a result due to Stein and Zygmund [11]

HE = [, < £270(R™) = BMO modulo polynomials

From this theorem we deduce a partial result on the topological dual of
o\,s

n ny ; A,s n
L, ,(R™), the closure of Schwartz space S(R") in L7 (R").

Corollary 2.13 Let s e R, A > 0,1 <p< +o00,1 < g < +00,1 <p < +o0
and1<q’§+oowith%+§:1,%—i—%zl. We have

o AsS

_g—2A4n _g—2

F aty (R™) <= (£, , (R™))" — F, o *(R") provided p < q (2.2)
,S,AJFE 0P8 s

oy v (R™) — (L (R™) — E, 7 (R™) provided ¢ < p (2.3)

in particular

A 02, _a
FPy?P(RY) = (£ (R") = Fy S (R")  for any q' > 2

We have the same injections for the dotted spaces.

All the previous results are proved in [6] and [7].
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