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Strongly nonlinear parabolic initial-boundary
value problems in Orlicz spaces *

Abdelhak Elmahi

Abstract

We prove existence and convergence theorems for nonlinear parabolic
problems. We also prove some compactness results in inhomogeneous
Orlicz-Sobolev spaces.

1 Introduction

Let © be a bounded domain in RV, T > 0 and let

A(w) = Y (-1)*D*Aq (2, t,u, Vu)

laf<1

be a Leray-Lions operator defined on LP(0,T; W1P(Q)), 1 < p < co. Boccardo
and Murat [5] proved the existence of solutions for parabolic initial-boundary
value problems of the form

%M(uwg(x,uu,w =f mQx(0,7), (1.1)

where ¢ is a nonlinearity with the following growth condition

9(@,t,5,8) <b(|s|)(c(x,t) + [€]7), g <p, (1.2)

and which satisfies the classical sign condition g(z,t,s,£)s > 0. The right
hand side f is assumed (in [5]) to belong to L¥'(0,T; W~1#'(€)). This result
generalizes the analogous one of Landes-Mustonen [14] where the nonlinearity
g depends only on x,t and w. In [5] and [14], the functions A, are assumed
to satisfy a polynomial growth condition with respect to v and Vu. When
trying to relax this restriction on the coefficients A, we are led to replace
LP(0,T; WHP(Q)) by an inhomogeneous Sobolev space W% Ly, built from an
Orlicz space Ljs instead of LP, where the N-function M which defines Ly,
is related to the actual growth of the A,’s. The solvability of (1.1) in this
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204 Strongly nonlinear parabolic initial-boundary value problems

setting is proved by Donaldson [7] and Robert [16] in the case where g = 0.
It is our purpose in this paper, to prove existence theorems in the setting of
the inhomogeneous Sobolev space W1 L), by applying some new compactness
results in Orlicz spaces obtained under the assumption that the N- function
M (t) satisfies A’-condition and which grows less rapidly than [¢|/N/(N=1) These
compactness results, which we are at first established in [8], generalize those
of Simon [17], Landes-Mustonen [14] and Boccardo-Murat [6]. It is not clear
whether the present approach can be further adapted to obtain the same results
for general N-functions.
For related topics in the elliptic case, the reader is referred to [2] and [3].

2 Preliminaries

Let M : RT — Rt be an N-function, i.e. M is continuous, convex, with

M(t)>0f0rt>0,@%OastHOand@

M admits the representation: M (t) = fot a(t)dr where a : Rt — R* is non-
decreasing, right continuous, with a(0) = 0, a(¢t) > 0 for ¢ > 0 and a(t) — o0
as t — oo. The N-function M conjugate to M is defined by M (t) = f(f a(r)dr,
where @ : RT — R* is given by a(t) = sup{s : a(s) <t} [1, 11, 12].

The N-function M is said to satisfy the Ay condition if, for some k > 0:

— o0 as t — 0o. Equivalently,

M(2t) <kM(t) forallt>0, (2.1)

when this inequality holds only for ¢ > to > 0, M is said to satisfy the A,
condition near infinity.

Let P and @ be two N-functions. P < ) means that P grows essentially
less rapidly than @; i.e., for each ¢ > 0,

P(t)
Q(et)

This is the case if and only if

— 0 ast— oo.

QM)
=T

An N-function is said to satisfy the A’-condition if, for some kg > 0 and some
to 2 0:
M (kott") < M(t)M(t'), for all t,t' > t,. (2.2)

It is easy to see that the A’-condition is stronger than the As-condition. The
following N-functions satisfy the A’-condition: M (t) = ¢P(Log?t)®, where 1 <
p < 400, 0<s < +oo and ¢ > 0 is an integer (Log? being the iterated of order
g of the function log).

We will extend these N-functions into even functions on all R. Let €2 be an
open subset of RY. The Orlicz class £3/(Q2) (resp. the Orlicz space Ly(f2)) is
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defined as the set of (equivalence classes of) real-valued measurable functions u
on {2 such that:

(z)

/ M (u(x))dz < +o00  (resp. / M( )da: < 400 for some A > 0).

Note that Lys(€) is a Banach space under the norm

||u||MQ—1nf{)\>0 /M ))d <1}

and Ly/(€) is a convex subset of Ly(€2). The closure in Ly (€2) of the set of
bounded measurable functions with compact support in Q is denoted by Ej;(€2).
The equality Fy(Q) = L () holds if and only if M satisfies the Ay condition,
for all ¢ or for ¢ large according to whether €2 has infinite measure or not.

The dual of En(€) can be identified with Ly7(2) by means of the pairing
Jo u(x)v(x)dz, and the dual norm on Ly(Q) is equivalent to ||.||37 . The space

L M(Q) is reﬂexwe if and only if M and M satisfy the Ay condition, for all ¢ or
for t large, according to whether 2 has infinite measure or not.

We now turn to the Orlicz-Sobolev space. WLy (Q) (resp. WLEy () is
the space of all functions u such that u and its distributional derivatives up to
order 1 lie in Ly (€2) (resp. Ep(€2)). This is a Banach space under the norm

lulliare = ) [1Du]are

l<1

Thus WLy () and W Ej () can be identified with subspaces of the product
of N + 1 copies of Ly (£2). Denoting this product by IILys, we will use the
weak topologies o(IILy,I1E5;7) and o(I1Ly, IIL77). The space Wy Ep(Q) is
defined as the (norm) closure of the Schwartz space D(£2) in W!Ey,(Q2) and the
space Wi Ly () as the o(IIL s, I1E57) closure of D(Q) in WLy (). We say
that u,, converges to u for the modular convergence in WLy () if for some
A>0, [, M(w)dax — 0 for all |o| < 1. This implies convergence for
o(ILL s, TIL77). If M satisfies the Ay condition on R (near infinity only when €
has finite measure), then modular convergence coincides with norm convergence.

Let W1L7(Q) (resp. W'E5;(€2)) denote the space of distributions on €
which can be written as sums of derivatives of order < 1 of functions in Ly7(2)
(resp. Eg7(€)). It is a Banach space under the usual quotient norm.

If the open set  has the segment property, then the space D(Q) is dense
in W¢ Ly (Q) for the modular convergence and for the topology o(I1L s, I1L77)
(cf. [9, 10]). Consequently, the action of a distribution in W~!Lz7(2) on an
element of W Ly (Q) is well defined.

For k > 0, we define the truncation at height k, Ty : R — R by

s if [s| <k
T, = 2.3
k(s) {k5/|s if |s| > k. (2:3)

The following abstract lemmas will be applied to the truncation operators.
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Lemma 2.1 Let F : R — R be uniformly lipschitzian, with F(0) = 0. Let
M be an N-function and let w € WLy (Q) (resp. WrEp (). Then F(u) €
WAL (Q) (resp. WEEN(Q)). Moreover, if the set of discontinuity points of F’
is finite, then

aa_F(u) _ {g’"(u)g;i a.e. m {zr e u(z) ¢ D}
Z; a.e. in{x €N :u(x)e D}

Lemma 2.2 Let F: R — R be uniformly lipschitzian, with F(0) = 0. We sup-
pose that the set of discontinuity points of F' is finite. Let M be an N-function,
then the mapping F : WLy (Q) — WLy (Q) is sequentially continuous with
respect to the weak™ topology o(ILL s, TIEy;).

Proof By the previous lemma, F(u) € WLy (Q) for all u € WLy () and

[F(w) 10,0 < Cllull,m0,

which gives easily the result. O

Let Q be a bounded open subset of RN, 7' > 0 and set Q = Qx]0,T[. Let
m > 1 be an integer and let M be an N-function. For each o € N¥, denote by
D¢ the distributional derivative on @ of order o with respect to the variable
x € RY. The inhomogeneous Orlicz-Sobolev spaces are defined as follows

W™ L(Q) = {u € Lar(Q) : D3 € Ln(Q) Via| < m}
Wm’zEM(Q) = {u € EM(Q) : ch‘u S EJV[(Q) V|a\ < m}

The last space is a subspace of the first one, and both are Banach spaces under

the norm
Jull = > IDSul|aq-

la|<m

We can easily show that they form a complementary system when €2 satisfies the
segment property. These spaces are considered as subspaces of the product space
ITL 5 (Q) which have as many copies as there is a-order derivatives, |a| < m.
We shall also consider the weak topologies o (IIL s, I1E7;) and o (I1L s, ITL7;).
If w e W™®Lp(Q) then the function : ¢ — u(t) = u(t,.) is defined on [0, 7]
with values in W™ Ly (). If, further, uw € W™ E)(Q) then the concerned
function is a W™ Ep(2)-valued and is strongly measurable. Furthermore the
following imbedding holds: W% Ey(Q) C L*(0,T; W™Ep(£2)). The space
W™ Ly (Q) is not in general separable, if u € W™% Ly, (Q), we can not con-
clude that the function u(t) is measurable on [0, T]. However, the scalar function
t — |lu(t)|| a0 is in L1 (0,T). The space Wy *Ep(Q) is defined as the (norm)
closure in W% Ey (Q) of D(Q). We can easily show as in [10] that when 2 has
the segment property then each element u of the closure of D(Q) with respect
of the weak * topology o(IIL s, ITEy;) is limit, in W™ * Ly (@), of some subse-
quence (u;) C D(Q) for the modular convergence; i.e., there exists A > 0 such
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that for all |o| < m,

D%u; — D2 ,
/M(%)dmdt%Oaszaoo,
Q

this implies that (u;) converges to u in W™%L(Q) for the weak topology
o(IIL s, I L7). Consequently

———o(TIL s, T Eyyp) o(TIL T Lyy)

D(Q) =D(Q) :

this space will be denoted by Wi *Ly/(Q). Furthermore, W) " Ep\(Q) =
Wy"" Ly (Q)NILE). Poincaré’s inequality also holds in W™* L (Q) i.e. there
is a constant C' > 0 such that for all u € W;"*Ly;(Q) one has

> IDullag <C Y IDSullag-
laf<m laf=m

Thus both sides of the last inequality are equivalent norms on Wy"" Ly (Q).
We have then the following complementary system

(W&l’mLM(Q) F)
Wi En(Q) Fo)’

F being the dual space of Wy “Ep(Q). It is also, except for an isomorphism,
the quotient of I1L57 by the polar set W Ep(Q)+, and will be denoted by
F =W L+:(Q) and it is shown that

W L@ = {1 = X Difa o€ L@},
o] <m

This space will be equipped with the usual quotient norm

£l =1inf >~ | fallsro
|| <m
where the infimum is taken on all possible decompositions
f=Y Difa fo€Ly@)
loe|<m
The space Fj is then given by
Fo={f="3 Difu:facExz(Q)}

la|<m
and is denoted by Fo = W% Ex(Q).

Remark 2.3 We can easily check, using [10, lemma 4.4], that each uniformly
lipschitzian mapping F', with F(0) = 0, acts in inhomogeneous Orlicz-Sobolev
spaces of order 1: Wh L (Q) and Wy " Las(Q).
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3 Galerkin solutions

In this section we shall define and state existence theorems of Galerkin solutions
for some parabolic initial-boundary problem.
Let Q be a bounded subset of R, T'> 0 and set Q = 2x]0,T[. Let

Aw) = Y (=1)*IDg(Aa(w))

lo|<m
be an operator such that

Ag(z,t,€) : Q@ x [0,T] x RN — R is continuous in (t, &), for a.e. z € Q
and measurable in z, for all (t,¢) € [0,T] x R™o, (3.1)

where, Ny is the number of all a-order’s derivative, |a| < m.

|An(,5,6)| < x(2)®(€]) with x(z) € L}(Q) and & : Rt — RT increasing.
(3.2)
> Aa(@,t,§)a > —d(,t) with d(z,t) € L'(Q), d > 0. (3.3)

la|<m

Consider a function ¢ € L2(Q) and a function @ € L2(Q2) N W (Q). We
choose an orthonormal sequence (w;) C D(2) with respect to the Hilbert space
L?(Q) such that the closure of (w;) in C™(f2) contains D(Q2). C™(Q) being
the space of functions which are m times continuously differentiable on Q. For
V., = span{ws, .. .,w,) and

Ou
lullorm@) = sup {|Dgu(e, )], |55 (2, 0)] : |a] < m, (2,1) € Q}

we have

P@Q) c (U, (7] Vo)) @

this implies that for ¢ and @, there exist two sequences (¢,,) and (u,,) such that

Un € CH[0,T],V2),  thn — ¢ in L(Q). (3.4)
Uy €V, Tp — @ in L2(Q) N W(Q).

Consider the parabolic initial-boundary value problem

0
S AW = in Q.
Dgu =0 on 90x]0,T], for all |a] <m — 1, (3.6)
u(0) =u in Q.

In the sequel we denote A, (x,t,u, Vu,...,V"™u) by A,(z,t,u) or simply by
Aq(u).
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Definition 3.1 A function u,, € C([0,T],V,,) is called Galerkin solution of

(3.6) if
ou,,
—d+/§Aun mgadx—/d)n )odx

la|<m

for all p € V,, and all ¢t € [0,T]; un(0) = Ty.

Q

We have the following existence theorem.

Theorem 3.2 ([13]) Under conditions (3.1)-(3.3), there exists at least one
Galerkin solution of (3.6).

Consider now the case of a more general operator

Aw) = Y (=1)"Dg (Aa(u))
o] <m
where instead of (3.1) and (3.2) we only assume that
Ag(z,t,€) : Q@ x [0,T] x RY — R is continuous in &, for a.e. (z,t) € Q
and measurable in (z,t) for all £ € RYo, (3.7
[Aa(@,5,6)| < Cla, )@([¢]) with C(a,t) € LY(Q).

We have also the following existence theorem

Theorem 3.3 ([14]) There exists a function u, in C([0,T),V,) such that agt"
is in L'(0,T;V,,) and

/ 5t wdwdt—i—/ Z An(x,t,uy). DS dedt = / Y dx dt

T lal<m

for all T €10,T) and all p € C([0,T],V,,), where Qr = Q2 X [0,7]; un(0) =Ty,

4 Strong convergence of truncations

In this section we shall prove a convergence theorem for parabolic problems
which allows us to deal with approximate equations of some parabolic initial-
boundary problem in Orlicz spaces (see section 6). Let €, be a bounded subset
of RY with the segment property and let T > 0, Q = Qx]0,T[. Let M be an
N-function satisfying a A’ condition and the growth condition

M(t) < [t|¥T

and let P be an N-function such that P < M. Let A : WLy (Q) —
W% L+(Q) be a mapping given by

A(u) = —diva(z, t,u, Vu)
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where a(z,t,5,6) : Q x [0,T] x R x RN — R¥ is a Carathéodory function
satisfying for a.e. (z,t) € 2x]0,T[ and for all s € R and all ¢,&* € RY:

la(z,t,5,6)| < c(z,t) + ki P M(kals|) + ksD M (kal€]) (4.1)
la(z,t,5,8) —a(x,t,5,§)][ - €] >0 if&#E" (4.2)
(8~ d(e,) < ale. 1.5, 006 (43)

where c(x,t) € E57(Q), ¢ > 0, d(z,t) € LY(Q), k1,ka, ks, ks € RT and o, \ €
R;}. Consider the nonlinear parabolic equations

% —diva(z,t,un, Viup) = fn+9gn in D'(Q) (4.4)
and assume that:
u, —u  weakly in W Ly (Q)for o(I1L s, 1E7), (4.5)
fn— [ strongly in Wﬁl’IEM(Q),
gn — g weakly in L'(Q). (4.7)

We shall prove the following convergence theorem.

Theorem 4.1 Assume that (4.1)-(4.7) hold. Then, for any k > 0, the trunca-
tion of u, at height k (see (2.3) for the definition of the truncation) satisfies

VT (un) — VTp(u)  strongly in (LYF(Q)N. (4.8)
Remark 4.2 An elliptic analogous theorem is proved in Benkirane-Elmahi [2].

Remark 4.3 Convergence (4.8) allows, in particular, to extract a subsequence
n/ such that:
Vi, — Vu a.e. in Q.

Then by lemma 4.4 of [9], we deduce that

a(z,t, wn, V) = a(x,t,u, Vu)  weakly in Li7(Q))Y for o(I1Ly7, TIE ).

Proof of Theorem 4.1 Step 1: For each k > 0, define Sk (s fo Ty (T)dT.
Since T}, is continuous, for all w € WH¥ L (Q) we have Sy (w ) ewh “”LM(Q)
and VSi(w) = T (w)Vw. So that, by mollifying as in [6], it is easy to see that
for all ¢ € D(Q) and all v € WHTLy(Q) with 2¥ € W1 Li(Q) + LY(Q), we
have

<<‘;t oTi(v / 9% 6, (v) du dt. (4.9)

where ((,)) means for the duality pairing between W, *Las(Q) + LY(Q) and
W12 L37(Q) N L>(Q). Fix now a compact set K with K C @ and a function
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in @ and 9o = 1 on K. Using in (4.4)

S e <1
€ WH L (Q) N L%°(Q) as test function yields

vr € D(Q) such that 0
vn = Pk (T (un) — Ti(u))

(28 T} — (B orcTi(w))

+/ Ora(T,t, U, Vun)[VTy(un) — VT (u)|dz dt
Q (4.10)

+ / (Ti(un) — T (w)a(z, t, upn, Vun)Vog drdt
Q
= <<fnavn>> + <<gnavn>>'

Since u,, € WL (Q) and aait" € W12 L—(Q) + L'(Q) then by (4.9),

<<aat s o T (1)) :—/Q 8§K5k(un)dxdt

On the other hand since (u,,) is bounded in W% L ;(Q) and ég‘t" = hyp+gy while
gn is bounded in L'(Q) and so in M(Q) and h,, = diva(z,t,u,, Vu,) + f, is
bounded in W12 L+7(Q), then by [8, Corollary 1], u,, — u strongly in LI%¢(Q).
Consequently, Ty (uy,) — Ti(u) and Sy (u,) — Sk(u) in LY¥F(Q). So that

/aCPKSk(un)dxdtﬂ/ 0K, (u) dv it
o Ot o Ot

and also fQ(Tk(un) —Ti(uw))a(z, t,un, Vu,) Vg dedt — 0 as n — co. Further-
more ((fn,vn)) — 0, by (4.6). Since g, € L'(Q) and Ty (u,) — Tk (u) € L>=(Q),

{{gn> o (T (un) = Ti(w)))) = /anwx(Tk(un) — Tio(w)) da dt

which tends to 0 by Egorov’s theorem.

Since g Ti(u) belongs to Wy Ly (Q) N L™=(Q) while agt" is the sum of a
bounded term in W1 L37(Q) and of g, which weakly converges in L'(Q) one
has

Ouy, ou dp
(g e Bula0)) = (G on () = = [ 228, () d .
We have thus proved that

/ era(z, t,un, Vun) [V (uy) — VIg(u)]dedt — 0 asn —oco.  (4.11)
Q

Step 2: Fix a real number r > 0 and set Q) = {z € Q : [VT}(u)| < r} and
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denote by X, the characteristic function of Q). Taking s > r one has:

0 g/ PK [a(m,uun, VTi(up)) —alz, t, uy,, VTk(u))}
Qr)
X [VTi(un) = VTi(u)] d dt
< / oK [a(@, t, un, VT (uy)) — ala, t,un, Vi (u))]
Qs)
X [VTk(un) — VT (u)] dz dt
:/(B2 PK [a(x,t,um VTi(uy)) —alx, t, u,, VTk(u)XS)]
()
X [VTi(un) — VT (u)xs] dz dt
rxla(x, t, un, VI (u,)) — alx, t, un,, VI(u)Xs
g/an [a(, t,tun, VT () = ala, b,y VT (w)xs)] 012)
x [VTi(un) — VTi(u)xs) da dt
= /Q ora(z,t,un, V) [V (up) — VT (w)] do dt

—/Q<pK la(z,t,un, Vuy) — a(@, t, un, VT (uy))]
x [VTi(un) — VTi(u)xs) da dt

+/ era(z, t, Uy, Vun) [V (u) — VI (u)xs] dz dt
Q

—/QwKa(m,t,umVTk(u)xs)[VTk(un)—VTk(U)Xs] du dt.

Now pass to the limit in all terms of the right-hand side of the above equation.
By (4.11), the first one tends to 0. Denoting by x¢, the characteristic
function of G,, = {(z,t) € Q : |up(z,t)| > k}, the second term reads

/ orla(z,t,un, Vuy,) — a(z, t,un, 0)]xa, VIk(u)xs dx dt (4.13)
Q

which tends to 0 since [a(z, t, Uy, Vu,) —a(z, t, uy,,0)] is bounded in (L37(Q))",
by (4.1) and (4.5) while x¢g, VTk(u)xs converges strongly in (Ep (Q))Y to 0 by
Lebesgue’s theorem. The fourth term of (4.12) tends to

—/@Ka(l”?tauyVTk(U)Xs)[VTk(U) = VT (u)xs) da dt
@ (4.14)

2/ vra(z,t,u,0)VT(u) dx dt
QA\Q(s)

since a(z,t, un, VIg(u)xs) tends strongly to a(z,t,u, VI (u)xs) in (E5(Q))Y
while VT}, (u,,)—V Tk (u)x, converges weakly to VT}, (u)—V Ty (u)xs in (L (Q))Y
for o(I1L s, I1E;).
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Since a(x,t,un, Vuy,) is bounded in (L37(Q))" one has (for a subsequence
still denoted by ., )

a(z,t,up, Vuy) = h  weakly in (Lg7(Q))" for o(IIL77, IIEw). (4.15)

Finally, the third term of the right-hand side of (4.12) tends to
/ wrhVTi(u)dz dt. (4.16)
Q\Q(S)
We have, then, proved that

0 <lim sup / VK [a(m,t,un, VTi(up)) — alx, t, u,, VTk(u))}
Qr

n—oo

X [VTi(un) = Vi (u)] dz dt (4.17)

QA\Q(s)

Using the fact that [h — a(z,t,u,0)]VT(u) € L(Q) and letting s — 400 we
get, since |Q \ Q)| — 0,

/Q orla(z, t,un, VI(uy)) — alz, t,u,, VT (u)] [V (uy) — VT (w)] dx dt
" (4.18)

which approaches 0 as n — co. Consequently

/ [a(x, t, tn, VT (un)) —a(x, t, tn, VI (u)][VTk(un) — VT (uw)] dx dt — 0
QmNK

as n — 00. As in [2], we deduce that for some subsequence VT (uy,) — VT (u)
a.e. in Q) NK. Since r, k and K are arbitrary, we can construct a subsequence
(diagonal in r, in k and in j, where (k) is an increasing sequence of compacts
sets covering @), such that

Vu, — Vu a.e. in Q. (4.19)

Step 3: As in [2] we deduce that
/ wra(z,t, un, Viu,) VT (uy,) dedt H/ vra(z,t,u, Vu)VT(u) dx dt
Q Q

as n — 0o, and that

a(x,t, tun, V() VT (un) — alx, t,u, VI (u)) VT (1) strongly in L'(K).
(4.20)
This implies that (see [2] if necessary): VTi(u,) — VTi(u) in (Ly (K))N for
the modular convergence and so strongly and convergence (4.8) follows.
Note that in convergence (4.8) the whole sequence (and not only for a subse-
quence) converges since the limit VT (u) does not depend on the subsequence.
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5 Nonlinear parabolic problems

Now, we are able to establish an existence theorem for a nonlinear parabolic
initial-boundary value problems. This result which specially applies in Orlicz
spaces generalizes analogous results in of Landes-Mustonen [14]. We start by
giving the statement of the result.

Let Q be a bounded subset of RV with the segment property, T > 0, and
Q = 0x]0,T[. Let M be an N-function satisfying the growth condition

M(t) < |t~

and the A\’-condition. Let P be an N-function such that P < M. Consider an
operator A : Wy Ly(Q) — W12 [+(Q) of the form

A(u) = —diva(z,t,u, Vu) + ao(z, t,u, Vu) (5.1)

where a : Q x [0,T] x R x RY — RY and a9 : 2 x [0,7] x R x RY — R
are Carathéodory functions satisfying the following conditions, for a.e. (z,t) €
Q% [0,T] for all s € R and £ # £* € RY:

— 1 ——1
la(z,t,5,6)] < ez, 1) + ki P M(kals|) + ks M~ M (kalE]),

. . (5.2)

lao(x,t,8,8)| < c(w,t) + kM M(ksls|) + ksM — P(kal¢]),
la(x,t,5,8) — alx,t,5,£)][€ = €] >0, (5.3)
a(x,t,8,8)€ +ap(z,t,s,&)s > aM(%) —d(z,t) (5.4)

where c(z,t) € E57(Q), ¢ > 0, d(z,t) € LY(Q), ki1,ka, ks, ks € RT and o, \ €
R}. Furthermore let

feW MEL(Q) (5.5)
We shall use notations of section 3. Consider, then, the parabolic initial-
boundary value problem

% +Au)=f in@Q
u(z,t) = 0 on 9N2x]0, T (5.6)

u(xz,0) = ¢(z) in Q.

where v is a given function in L2(£2). We shall prove the following existence
theorem.

Theorem 5.1 Assume that (5.2)-(5.5) hold. Then there exists at least one weak
solution u € Wy L (Q) N L2(Q) N C([0,T), LA(Q))of (5.6), in the following

SeENse:

—/ ua—@ dxdt+[/ u(t)go(t)dx]oTJr/ a(z,t,u, Vu).Vodzdt
Q ot Q Q
(5.7)
+ [ aolastu Vuypdede = (£.¢)
Q
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for all ¢ € CH([0,T], L*(Q)).

Remark 5.2 In (5.6), we have u € Wy" Ly (Q) € L*(0,T;W~11(Q)) and
Gu ¢ Wb Li(Q) € LY0,T;W—11(Q)). Then u € WH1(0,T; W—11(Q)) C
C([0,T), W=11(€)) with continuity of the imbedding. Consequently u is, pos-
sibly after modification on a set of zero measure, continuous from [0,7] into
W=L1(Q) in such a way that the third component of (5.6), which is the initial
condition, has a sense.

Proof of Theorem 4.1 It is easily adapted from the proof given in [14].
For convenience we suppose that ¥» = 0. For each n, there exists at least one
solution u,, of the following problem (see Theorem 3.3 for the existence of uy):
Oup, 1
un, € C([0,T], Vy), 5 € L (0,T;V,), un(0)=1, =0 and,

Oun
for all 7 € [0, 7], / %(pdxdt—&—/ a(z, t, up, Vuy,). Vo dr dt (5.8)
QT

€

+/ ao(x,t,un,Vun).cpdxdt:/ fanpdxdt, Yo e C([0,T],V,).
B Q-
where fr C US2,C([0,T],V,,) with f — f in W™ E3#(Q). Putting ¢ = u,
in (5.8), and using (5.2) and (5.4) yields

||un||W01’“”LM(Q) <O, Nunl|lpe(o,r;22(0) < C

(5.9)
Hao(x,t,un,Vun)HLﬁ(Q) < (C and ||a(x,t,un,Vun)HLﬁ(Q) <C.

Hence, for a subsequence

u, — u weakly in Wy Ly (Q) for o(I1L s, TTE5)and weakly in L*(Q),

ao (@, t, Un, V) = ho, a(x,t,un, Vu,) = hin Lyp(Q) for o(ILLy;, IIE )
(5.10)
where hg € Li7(Q) and h € (L37(Q))Y. As in [14], we get that for some
subsequence u,(z,t) — u(z,t) a.e. in @ (it suffices to apply Theorem 3.9
instead of Proposition 1 of [14]). Also we obtain

—/ ua—w dx dt + [/ u(t)p(t)dx]t Jr/ hVdx dt +/ hopdz dt = (f, o),
Q Ot Q Q Q
for all ¢ € C1([0,T]; D(Q)). The proof will be completed, if we can show that

/(th@—i—ho(p) dxdt:/(a(m,t,qu)ch+a0($,t,u,Vu)cp) dedt (5.11)
Q Q

for all ¢ € C([0,T];D(Q2)) and that u € C([0,T7],L?(2)). For that, it suffices
to show that

lim [ (a(z,t, un, Vug)[Vu, —Vul+ag(z, t, u, Vuy ) [un, —u]) dedt < 0. (5.12)

n—00 Q
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Indeed, suppose that (5.12) holds and let s > r > 0 and set Q" = {(z,¢) € @ :
|[Vu(z,t)] <r}. Denoting by xs the characteristic function of Q*, one has

0 §/ [a(z,t,un, Vu,) — a(@,t, uy, V)| [V, — Vu] dzdt
Q’r‘

<

s

D

/ , (T, t, un, Vup) — a(@, t,un, Vu)| [V, — Vu] dz dt

[,

L

:/an(a:,t,un,Vun)(un _ ) —/ (s 1ty Vit ) [Vt — Vxs] d dt

Q
+ / [a(ac,zﬁum Vuy,)(Vu, — Vu) + ag(z, t,tn, V) (u, — u)] dx dt
Q

[a
[a Xyt Uy, Vug) — alx, t, uy, Vu.xs)] [Vun — Vu.xs] dz dt
(

a(z, tyun, Vi) — alx, t, u,, Vu.xs)] [Vun — Vu.xs] dx dt

Q

IA
O

+/ a(x,t, up, Vu,)Vude dt.
Q\Q*

(5.13)
The first term of the right-hand side tends to 0 since (ag(x,t,uy, Vuy,))
is bounded in Ly;(Q) by (5.2) and w, — wu strongly in Lj/(Q). The sec-
ond term tends to fQ\QS a(z,t,u,,0)Vude dt since a(z,t,un, Vuy,.xs) tends
strongly in (E57(Q))Y to a(,t,u, Vu.xs) and Vu, — Vu weakly in (L (Q))Y
for o(I1L s, I1E7;). The third term satisfies (5.12) while the fourth term tends to
fQ\QS hVudzdt since a(w,t,u,,Vu,) — h weakly in (Lz7(Q))Y for
o(I1Ly7, IIEy;) and M satisfies the As-condition. We deduce then that

0 <lim sup/ [a(z, t, up, Vuy) — a(z, t, up, VU)][Vu, — Vu] dz dt

n—oo

S/ [h—a(x,t,u,0)]Vudzdt - 0 as s — oo.
Q\Q°

and so, by (5.3), we can construct as in [2] a subsequence such that Vu, —
Vu a.e. in . This implies that a(x,t, u,, Vu,) — a(z,t,u, Vu) and that

ap(z,t, un, Vun) — ao(z,t,u, Vu) ae. in Q. Lemma 4.4 of [9] shows that
h = a(x,t,u, Vu) and hy = ap(x,t,u, Vu) and (5.11) follows. The remaining of
the proof is exactly the same as in [14]. O

Corollary 5.3 The function u can be used as a testing function in (5.6) i.e.

1

5[/9(u(t))2dx]g+/ la(z,t,u, Vu).Vu+ao(z,t,u, Vu)u] dxdt:/ Sudzdt

T T

for all T €10,T).

The proof of this corollary is exactly the same as in [14].
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6 Strongly nonlinear parabolic problems

In this last section we shall state and prove an existence theorem for strongly
nonlinear parabolic initial-boundary problems with a nonlinearity g(z,t, s, )
having growth less than M (|¢]). This result generalizes Theorem 2.1 in Boccardo-
Murat [5]. The analogous elliptic one is proved in Benkirane-Elmahi [2].

The notation is the same as in section 5. Consider also assumptions (5.2)-
(5.5) to which we will annex a Carathéodory function g : 2 x [0, T] x R x RN —
RY satisfying, for a.e. (x,t) € Q x [0,T] and for all s € R and all £ € RV:

g9(x,t,5,8)s = 0 (6.1)

lg(x,t, 5, )] < b(Is|) (' (2, 1) + R(I£])) (6.2)

where ¢ € LY(Q) and b : Rt — RT and where R is a given N-function such
that R < M. Consider the following nonlinear parabolic problem

Ou + A(u) + g(z, t,u, Vu) = f in Q,

ot
u(z,t) =0 on 0Q x (0,T), (6.3)
u(z,0) =(z) in
We shall prove the following existence theorem.

Theorem 6.1 Assume that (5.1)-(5.5), (6.1) and (6.2) hold. Then, there exists
at least one distributional solution of (6.3).

Proof 1t is easily adapted from the proof of theorem 3.2 in [2] Consider first

g(w,t,s,f
gn(2,t,5,€) = 1—)
1+ ;g(:ﬁ,t,S,f)

and put A, (u) = A(u)+gn(z, t,u, Vu), we see that A, satisfies conditions (5.2)-
(5.4) so that, by Theorem 5.1, there exists at least one solution u,, € Wy L (Q)
of the approximate problem

Ouy, .
dUn + A(un) 4+ gn(x, t,un, Vu,) = f in Q

ot
un(z,t) =0 on 00x]0,T| (6.4)
wn(,0) = (z) in Q

and, by Corollary 5.3, we can use u,, as testing function in (6.4). This gives
/ [a(x, t, un, Vg ). Vi, + ag(x, t, tn, V). us dedt < (f,uy,)
Q

and thus (uy,) is a bounded sequence in W, * Ly (Q). Passing to a subsequence
if necessary, we assume that

Uy, — u weakly in Wy " Ly (Q) for o(TIL s, TTE7) (6.5)
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for some u € Wy'* Lys(Q). Going back to (6.4), we have
/ n (X, t, Up, Vg )u, dedt < C.
Q

We shall prove that g, (z,t, u,, Vu,) are uniformly equi-integrable on Q. Fix
m > 0. For each measurable subset & C @), we have

/ (g, t, V)|
E

S/ ‘gn(xat7un7vun)|+/ |gn(xat7un7vun)‘
En{|un|<m} En{|un|>m}

1
< b(m)/ [ (z,t) + R(|Vuy|)] de dt + — lgn (2, t, un, Vuy,)| dz dt
E

En{|un|>m}
gb(m)/[c'(x,t)—i—RﬂVun\)] da:dt—i—i/ UnGn (T, ty Up, Vuy,) dz dt
E mJQ

[V, C
)\/ )dz dt + E

§b(m)/Ec'(a:,t)dzdter(m)/ER(

Let € > 0, there is m > 0 such that % < £. Furthermore, since ¢’ € L'(Q)
there exists 47 > 0 such that b(m fE (z,t)dxdt < 5. On the other hand,
let o > 0 such that |Vu,||m,o < i, Vn. Slnce R <« M, there exists a constant

K. > 0 depending on ¢ such that

CO

bm)R(s) < M(g) + K

for all s > 0. Without loss of generality, we can assume that € < 1. By convexity
we deduce that

S
M2+ K.
(u)

b(m)R(s) <

[N NQ)

for all s > 0. Hence
/R W“”' ) da dtgf/M(|v“"‘)dxdt+K€|E|
6.k H

< %/ M(W;L’L')dxdt—i—K8|E|

Consequently, if |E| < ¢ = inf(d1, 55-) one has

/|gn($at7un,vun)|d1‘dt§5, Vn,
E
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this shows that the g, (z,t, u,, Vu,) are uniformly equi-integrable on Q). By
Dunford-Pettis’s theorem, there exists h € L1(Q) such that

gn (T, t,Un, Vu,) = h  weakly in L'(Q). (6.6)
Applying then Theorem 4.1, we have for a subsequence, still denoted by u,,
U, — U, Vi, — Vu a.e. in Q and u,, — u strongly in Wy " LY (Q).  (6.7)

We deduce that a(z,t,u,, Vu,) — a(z,t,u, Vu) weakly in (Ly7(Q))V for
o(IlLz7 I1Ls) and since 85; — %7; in D'(Q) then passing to the limit in (6.4)
as n — +00, we obtain

O AW gl tu, Vi) = f i D(Q).

This completes the proof of Theorem 6.1.
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