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Strongly nonlinear parabolic initial-boundary

value problems in Orlicz spaces ∗

Abdelhak Elmahi

Abstract

We prove existence and convergence theorems for nonlinear parabolic
problems. We also prove some compactness results in inhomogeneous
Orlicz-Sobolev spaces.

1 Introduction

Let Ω be a bounded domain in RN , T > 0 and let

A(u) =
∑
|α|≤1

(−1)|α|DαAα(x, t, u,∇u)

be a Leray-Lions operator defined on Lp(0, T ;W 1,p(Ω)), 1 < p <∞. Boccardo
and Murat [5] proved the existence of solutions for parabolic initial-boundary
value problems of the form

∂u

∂t
+A(u) + g(x, t, u,∇u) = f in Ω× (0, T ), (1.1)

where g is a nonlinearity with the following growth condition

g(x, t, s, ξ) ≤ b(|s|)(c(x, t) + |ξ|q), q < p, (1.2)

and which satisfies the classical sign condition g(x, t, s, ξ)s ≥ 0. The right
hand side f is assumed (in [5]) to belong to Lp′(0, T ;W−1,p′(Ω)). This result
generalizes the analogous one of Landes-Mustonen [14] where the nonlinearity
g depends only on x, t and u. In [5] and [14], the functions Aα are assumed
to satisfy a polynomial growth condition with respect to u and ∇u. When
trying to relax this restriction on the coefficients Aα, we are led to replace
Lp(0, T ;W 1,p(Ω)) by an inhomogeneous Sobolev space W 1,xLM built from an
Orlicz space LM instead of Lp, where the N-function M which defines LM

is related to the actual growth of the Aα’s. The solvability of (1.1) in this
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204 Strongly nonlinear parabolic initial-boundary value problems

setting is proved by Donaldson [7] and Robert [16] in the case where g ≡ 0.
It is our purpose in this paper, to prove existence theorems in the setting of
the inhomogeneous Sobolev space W 1,xLM by applying some new compactness
results in Orlicz spaces obtained under the assumption that the N- function
M(t) satisfies ∆′-condition and which grows less rapidly than |t|N/(N−1). These
compactness results, which we are at first established in [8], generalize those
of Simon [17], Landes-Mustonen [14] and Boccardo-Murat [6]. It is not clear
whether the present approach can be further adapted to obtain the same results
for general N-functions.

For related topics in the elliptic case, the reader is referred to [2] and [3].

2 Preliminaries

Let M : R+ → R+ be an N-function, i.e. M is continuous, convex, with
M(t) > 0 for t > 0, M(t)

t → 0 as t→ 0 and M(t)
t →∞ as t→∞. Equivalently,

M admits the representation: M(t) =
∫ t

0
a(τ)dτ where a : R+ → R+ is non-

decreasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0 and a(t) → ∞
as t→∞. The N-function M conjugate to M is defined by M(t) =

∫ t

0
a(τ)dτ ,

where a : R+ → R+ is given by a(t) = sup{s : a(s) ≤ t} [1, 11, 12].
The N-function M is said to satisfy the ∆2 condition if, for some k > 0:

M(2t) ≤ kM(t) for all t ≥ 0, (2.1)

when this inequality holds only for t ≥ t0 > 0, M is said to satisfy the ∆2

condition near infinity.
Let P and Q be two N-functions. P � Q means that P grows essentially

less rapidly than Q; i.e., for each ε > 0,

P (t)
Q(ε t)

→ 0 as t→∞.

This is the case if and only if

lim
t→∞

Q−1(t)
P−1(t)

= 0.

An N-function is said to satisfy the 4′-condition if, for some k0 > 0 and some
t0 ≥ 0:

M(k0tt
′) ≤M(t)M(t′), for all t, t′ ≥ t0. (2.2)

It is easy to see that the 4′-condition is stronger than the 42-condition. The
following N-functions satisfy the 4′-condition: M(t) = tp(Logq t)s, where 1 <
p < +∞, 0 ≤ s < +∞ and q ≥ 0 is an integer (Logq being the iterated of order
q of the function log).

We will extend these N-functions into even functions on all R. Let Ω be an
open subset of RN . The Orlicz class LM (Ω) (resp. the Orlicz space LM (Ω)) is
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defined as the set of (equivalence classes of) real-valued measurable functions u
on Ω such that:∫

Ω

M(u(x))dx < +∞ (resp.
∫

Ω

M(
u(x)
λ

)dx < +∞ for some λ > 0).

Note that LM (Ω) is a Banach space under the norm

‖u‖M,Ω = inf
{
λ > 0 :

∫
Ω

M(
u(x)
λ

)dx ≤ 1
}

and LM (Ω) is a convex subset of LM (Ω). The closure in LM (Ω) of the set of
bounded measurable functions with compact support in Ω is denoted by EM (Ω).
The equality EM (Ω) = LM (Ω) holds if and only if M satisfies the ∆2 condition,
for all t or for t large according to whether Ω has infinite measure or not.

The dual of EM (Ω) can be identified with LM (Ω) by means of the pairing∫
Ω
u(x)v(x)dx, and the dual norm on LM (Ω) is equivalent to ‖.‖M,Ω. The space

LM (Ω) is reflexive if and only if M and M satisfy the ∆2 condition, for all t or
for t large, according to whether Ω has infinite measure or not.

We now turn to the Orlicz-Sobolev space. W 1LM (Ω) (resp. W 1EM (Ω)) is
the space of all functions u such that u and its distributional derivatives up to
order 1 lie in LM (Ω) (resp. EM (Ω)). This is a Banach space under the norm

‖u‖1,M,Ω =
∑
|α|≤1

‖Dαu‖M,Ω.

Thus W 1LM (Ω) and W 1EM (Ω) can be identified with subspaces of the product
of N + 1 copies of LM (Ω). Denoting this product by ΠLM , we will use the
weak topologies σ(ΠLM ,ΠEM ) and σ(ΠLM ,ΠLM ). The space W 1

0EM (Ω) is
defined as the (norm) closure of the Schwartz space D(Ω) in W 1EM (Ω) and the
space W 1

0LM (Ω) as the σ(ΠLM ,ΠEM ) closure of D(Ω) in W 1LM (Ω). We say
that un converges to u for the modular convergence in W 1LM (Ω) if for some
λ > 0,

∫
Ω
M(Dαun−Dαu

λ )dx → 0 for all |α| ≤ 1. This implies convergence for
σ(ΠLM ,ΠLM ). If M satisfies the ∆2 condition on R+(near infinity only when Ω
has finite measure), then modular convergence coincides with norm convergence.

Let W−1LM (Ω) (resp. W−1EM (Ω)) denote the space of distributions on Ω
which can be written as sums of derivatives of order ≤ 1 of functions in LM (Ω)
(resp. EM (Ω)). It is a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space D(Ω) is dense
in W 1

0LM (Ω) for the modular convergence and for the topology σ(ΠLM ,ΠLM )
(cf. [9, 10]). Consequently, the action of a distribution in W−1LM (Ω) on an
element of W 1

0LM (Ω) is well defined.
For k > 0, we define the truncation at height k, Tk : R → R by

Tk(s) =

{
s if |s| ≤ k

ks/|s| if |s| > k.
(2.3)

The following abstract lemmas will be applied to the truncation operators.
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Lemma 2.1 Let F : R → R be uniformly lipschitzian, with F (0) = 0. Let
M be an N-function and let u ∈ W 1LM (Ω) (resp. W 1EM (Ω)). Then F (u) ∈
W 1LM (Ω) (resp. W 1EM (Ω)). Moreover, if the set of discontinuity points of F ′

is finite, then

∂

∂xi
F (u) =

{
F ′(u) ∂u

∂xi
a.e. in {x ∈ Ω : u(x) /∈ D}

0 a.e. in {x ∈ Ω : u(x) ∈ D}.

Lemma 2.2 Let F : R → R be uniformly lipschitzian, with F (0) = 0. We sup-
pose that the set of discontinuity points of F ′ is finite. Let M be an N-function,
then the mapping F : W 1LM (Ω) → W 1LM (Ω) is sequentially continuous with
respect to the weak* topology σ(ΠLM ,ΠEM ).

Proof By the previous lemma, F (u) ∈W 1LM (Ω) for all u ∈W 1LM (Ω) and

‖F (u)‖1,M,Ω ≤ C ‖u‖1,M,Ω,

which gives easily the result. �
Let Ω be a bounded open subset of RN , T > 0 and set Q = Ω×]0, T [. Let

m ≥ 1 be an integer and let M be an N-function. For each α ∈ NN , denote by
Dα

x the distributional derivative on Q of order α with respect to the variable
x ∈ RN . The inhomogeneous Orlicz-Sobolev spaces are defined as follows

Wm,xLM (Q) = {u ∈ LM (Q) : Dα
xu ∈ LM (Q) ∀|α| ≤ m}

Wm,xEM (Q) = {u ∈ EM (Q) : Dα
xu ∈ EM (Q) ∀|α| ≤ m}

The last space is a subspace of the first one, and both are Banach spaces under
the norm

‖u‖ =
∑
|α|≤m

‖Dα
xu‖M,Q.

We can easily show that they form a complementary system when Ω satisfies the
segment property. These spaces are considered as subspaces of the product space
ΠLM (Q) which have as many copies as there is α-order derivatives, |α| ≤ m.
We shall also consider the weak topologies σ(ΠLM ,ΠEM ) and σ(ΠLM ,ΠLM ).
If u ∈ Wm,xLM (Q) then the function : t 7−→ u(t) = u(t, .) is defined on [0, T ]
with values in WmLM (Ω). If, further, u ∈ Wm,xEM (Q) then the concerned
function is a WmEM (Ω)-valued and is strongly measurable. Furthermore the
following imbedding holds: Wm,xEM (Q) ⊂ L1(0, T ;WmEM (Ω)). The space
Wm,xLM (Q) is not in general separable, if u ∈ Wm,xLM (Q), we can not con-
clude that the function u(t) is measurable on [0, T ]. However, the scalar function
t 7→ ‖u(t)‖M,Ω is in L1(0, T ). The space Wm,x

0 EM (Q) is defined as the (norm)
closure in Wm,xEM (Q) of D(Q). We can easily show as in [10] that when Ω has
the segment property then each element u of the closure of D(Q) with respect
of the weak * topology σ(ΠLM ,ΠEM ) is limit, in Wm,xLM (Q), of some subse-
quence (ui) ⊂ D(Q) for the modular convergence; i.e., there exists λ > 0 such
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that for all |α| ≤ m,∫
Q

M(
Dα

xui −Dα
xu

λ
) dx dt→ 0 as i→∞,

this implies that (ui) converges to u in Wm,xLM (Q) for the weak topology
σ(ΠLM ,ΠLM ). Consequently

D(Q)
σ(ΠLM ,ΠEM )

= D(Q)
σ(ΠLM ,ΠLM )

,

this space will be denoted by Wm,x
0 LM (Q). Furthermore, Wm,x

0 EM (Q) =
Wm,x

0 LM (Q)∩ΠEM . Poincaré’s inequality also holds in Wm,x
0 LM (Q) i.e. there

is a constant C > 0 such that for all u ∈Wm,x
0 LM (Q) one has∑

|α|≤m

‖Dα
xu‖M,Q ≤ C

∑
|α|=m

‖Dα
xu‖M,Q.

Thus both sides of the last inequality are equivalent norms on Wm,x
0 LM (Q).

We have then the following complementary system(
Wm,x

0 LM (Q) F
Wm,x

0 EM (Q) F0

)
,

F being the dual space of Wm,x
0 EM (Q). It is also, except for an isomorphism,

the quotient of ΠLM by the polar set Wm,x
0 EM (Q)⊥, and will be denoted by

F = W−m,xLM (Q) and it is shown that

W−m,xLM (Q) =
{
f =

∑
|α|≤m

Dα
xfα : fα ∈ LM (Q)

}
.

This space will be equipped with the usual quotient norm

‖f‖ = inf
∑
|α|≤m

‖fα‖M,Q

where the infimum is taken on all possible decompositions

f =
∑
|α|≤m

Dα
xfα, fα ∈ LM (Q).

The space F0 is then given by

F0 =
{
f =

∑
|α|≤m

Dα
xfα : fα ∈ EM (Q)

}
and is denoted by F0 = W−m,xEM (Q).

Remark 2.3 We can easily check, using [10, lemma 4.4], that each uniformly
lipschitzian mapping F , with F (0) = 0, acts in inhomogeneous Orlicz-Sobolev
spaces of order 1: W 1,xLM (Q) and W 1,x

0 LM (Q).
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3 Galerkin solutions

In this section we shall define and state existence theorems of Galerkin solutions
for some parabolic initial-boundary problem.

Let Ω be a bounded subset of RN , T > 0 and set Q = Ω×]0, T [. Let

A(u) =
∑
|α|≤m

(−1)|α|Dα
x (Aα(u))

be an operator such that

Aα(x, t, ξ) : Ω× [0, T ]× RN0 → R is continuous in (t, ξ), for a.e. x ∈ Ω

and measurable in x, for all (t, ξ) ∈ [0, T ]× RN0 ,

where, N0 is the number of all α-order’s derivative, |α| ≤ m.

(3.1)

|Aα(x, s, ξ)| ≤ χ(x)Φ(|ξ|) with χ(x) ∈ L1(Ω) and Φ : R+ → R+ increasing.
(3.2)∑

|α|≤m

Aα(x, t, ξ)ξα ≥ −d(x, t) with d(x, t) ∈ L1(Q), d ≥ 0. (3.3)

Consider a function ψ ∈ L2(Q) and a function u ∈ L2(Ω) ∩Wm,1
0 (Ω). We

choose an orthonormal sequence (ωi) ⊂ D(Ω) with respect to the Hilbert space
L2(Ω) such that the closure of (ωi) in Cm(Ω) contains D(Ω). Cm(Ω) being
the space of functions which are m times continuously differentiable on Ω. For
Vn = span〈ω1, . . . , ωn〉 and

‖u‖C1,m(Q) = sup
{
|Dα

xu(x, t)|, |
∂u

∂t
(x, t)| : |α| ≤ m, (x, t) ∈ Q

}
we have

D(Q) ⊂ {∪∞n=1C
1([0, T ], Vn)}

C1,m(Q)

this implies that for ψ and u, there exist two sequences (ψn) and (un) such that

ψn ∈ C1([0, T ], Vn), ψn → ψ in L2(Q). (3.4)

un ∈ Vn, un → u in L2(Ω) ∩Wm,1
0 (Ω). (3.5)

Consider the parabolic initial-boundary value problem

∂u

∂t
+A(u) = ψ in Q,

Dα
xu = 0 on ∂Ω×]0, T [, for all |α| ≤ m− 1,

u(0) = u in Ω.

(3.6)

In the sequel we denote Aα(x, t, u,∇u, . . . ,∇mu) by Aα(x, t, u) or simply by
Aα(u).
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Definition 3.1 A function un ∈ C1([0, T ], Vn) is called Galerkin solution of
(3.6) if ∫

Ω

∂un

∂t
ϕdx+

∫
Ω

∑
|α|≤m

Aα(un).Dα
xϕdx =

∫
Ω

ψn(t)ϕdx

for all ϕ ∈ Vn and all t ∈ [0, T ]; un(0) = un.

We have the following existence theorem.

Theorem 3.2 ([13]) Under conditions (3.1)-(3.3), there exists at least one
Galerkin solution of (3.6).

Consider now the case of a more general operator

A(u) =
∑
|α|≤m

(−1)|α|Dα
x (Aα(u))

where instead of (3.1) and (3.2) we only assume that

Aα(x, t, ξ) : Ω× [0, T ]× RN0 → R is continuous in ξ, for a.e. (x, t) ∈ Q
and measurable in (x, t) for all ξ ∈ RN0 . (3.7)

|Aα(x, s, ξ)| ≤ C(x, t)Φ(|ξ|) with C(x, t) ∈ L1(Q). (3.8)

We have also the following existence theorem

Theorem 3.3 ([14]) There exists a function un in C([0, T ], Vn) such that ∂un

∂t
is in L1(0, T ;Vn) and∫

Qτ

∂un

∂t
ϕ dx dt+

∫
Qτ

∑
|α|≤m

Aα(x, t, un).Dα
xϕdx dt =

∫
Qτ

ψnϕdx dt

for all τ ∈ [0, T ] and all ϕ ∈ C([0, T ], Vn), where Qτ = Ω× [0, τ ]; un(0) = un.

4 Strong convergence of truncations

In this section we shall prove a convergence theorem for parabolic problems
which allows us to deal with approximate equations of some parabolic initial-
boundary problem in Orlicz spaces (see section 6). Let Ω, be a bounded subset
of RN with the segment property and let T > 0, Q = Ω×]0, T [. Let M be an
N-function satisfying a ∆′ condition and the growth condition

M(t) � |t|
N

N−1

and let P be an N-function such that P � M . Let A : W 1,xLM (Q) →
W−1,xLM (Q) be a mapping given by

A(u) = −div a(x, t, u,∇u)
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where a(x, t, s, ξ) : Ω × [0, T ] × R × RN → RN is a Carathéodory function
satisfying for a.e. (x, t) ∈ Ω×]0, T [ and for all s ∈ R and all ξ, ξ∗ ∈ RN :

|a(x, t, s, ξ)| ≤ c(x, t) + k1P
−1
M(k2|s|) + k3M

−1
M(k4|ξ|) (4.1)

[a(x, t, s, ξ)− a(x, t, s, ξ∗)][ξ − ξ∗] > 0 if ξ 6= ξ∗ (4.2)

αM(
|ξ|
λ

)− d(x, t) ≤ a(x, t, s, ξ)ξ (4.3)

where c(x, t) ∈ EM (Q), c ≥ 0, d(x, t) ∈ L1(Q), k1, k2, k3, k4 ∈ R+ and α, λ ∈
R+
∗ . Consider the nonlinear parabolic equations

∂un

∂t
− div a(x, t, un,∇un) = fn + gn in D′(Q) (4.4)

and assume that:

un ⇀ u weakly in W 1,xLM (Q)for σ(ΠLM ,ΠEM ), (4.5)

fn → f strongly in W−1,xEM (Q), (4.6)

gn ⇀ g weakly in L1(Q). (4.7)

We shall prove the following convergence theorem.

Theorem 4.1 Assume that (4.1)-(4.7) hold. Then, for any k > 0, the trunca-
tion of un at height k (see (2.3) for the definition of the truncation) satisfies

∇Tk(un) → ∇Tk(u) strongly in (Lloc
M (Q))N . (4.8)

Remark 4.2 An elliptic analogous theorem is proved in Benkirane-Elmahi [2].

Remark 4.3 Convergence (4.8) allows, in particular, to extract a subsequence
n′ such that:

∇un′ → ∇u a.e. in Q.

Then by lemma 4.4 of [9], we deduce that

a(x, t, un′ ,∇un′) ⇀ a(x, t, u,∇u) weakly in LM (Q))N for σ(ΠLM ,ΠEM ).

Proof of Theorem 4.1 Step 1: For each k > 0, define Sk(s) =
∫ s

0
Tk(τ)dτ .

Since Tk is continuous, for all w ∈ W 1,xLM (Q) we have Sk(w) ∈ W 1,xLM (Q)
and ∇Sk(w) = Tk(w)∇w. So that, by mollifying as in [6], it is easy to see that
for all ϕ ∈ D(Q) and all v ∈W 1,xLM (Q) with ∂v

∂t ∈W
−1,xLM (Q) + L1(Q), we

have

〈〈∂v
∂t
, ϕTk(v)〉〉 = −

∫
Q

∂ϕ

∂t
Sk(v) dx dt. (4.9)

where 〈〈, 〉〉 means for the duality pairing between W 1,x
0 LM (Q) + L1(Q) and

W−1,xLM (Q) ∩ L∞(Q). Fix now a compact set K with K ⊂ Q and a function
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ϕK ∈ D(Q) such that 0 ≤ ϕK ≤ 1 in Q and ϕK = 1 on K. Using in (4.4)
vn = ϕK(Tk(un)− Tk(u)) ∈W 1,xLM (Q) ∩ L∞(Q) as test function yields

〈〈∂un

∂t
, ϕKTk(un)〉〉 − 〈〈∂un

∂t
, ϕKTk(u)〉〉

+
∫

Q

ϕKa(x, t, un,∇un)[∇Tk(un)−∇Tk(u)]dx dt

+
∫

Q

(Tk(un)− Tk(u))a(x, t, un,∇un)∇ϕK dx dt

= 〈〈fn, vn〉〉+ 〈〈gn, vn〉〉.

(4.10)

Since un ∈W 1,xLM (Q) and ∂un

∂t ∈W−1,xLM (Q) + L1(Q) then by (4.9),

〈〈∂un

∂t
, ϕKTk(un)〉〉 = −

∫
Q

∂ϕK

∂t
Sk(un) dx dt.

On the other hand since (un) is bounded inW 1,xLM (Q) and ∂un

∂t = hn+gn while
gn is bounded in L1(Q) and so in M(Q) and hn = div a(x, t, un,∇un) + fn is
bounded in W−1,xLM (Q), then by [8, Corollary 1], un → u strongly in Lloc

M (Q).
Consequently, Tk(un) → Tk(u) and Sk(un) → Sk(u) in Lloc

M (Q). So that∫
Q

∂ϕK

∂t
Sk(un) dx dt→

∫
Q

∂ϕK

∂t
Sk(u) dx dt

and also
∫

Q
(Tk(un)−Tk(u))a(x, t, un,∇un)∇ϕK dx dt→ 0 as n→∞. Further-

more 〈〈fn, vn〉〉 → 0, by (4.6). Since gn ∈ L1(Q) and Tk(un)− Tk(u) ∈ L∞(Q),

〈〈gn, ϕK(Tk(un)− Tk(u))〉〉 =
∫

Q

gnϕK(Tk(un)− Tk(u)) dx dt

which tends to 0 by Egorov’s theorem.
Since ϕKTk(u) belongs to W 1,x

0 LM (Q) ∩ L∞(Q) while ∂un

∂t is the sum of a
bounded term in W−1,xLM (Q) and of gn which weakly converges in L1(Q) one
has

〈〈∂un

∂t
, ϕKTk(u)〉〉 → 〈〈∂u

∂t
, ϕKTk(u)〉〉 = −

∫
Q

∂ϕ

∂t
Sk(u) dx dt.

We have thus proved that∫
Q

ϕKa(x, t, un,∇un)[∇Tk(un)−∇Tk(u)] dx dt→ 0 as n→∞. (4.11)

Step 2: Fix a real number r > 0 and set Q(r) = {x ∈ Q : |∇Tk(u)| ≤ r} and
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denote by χr the characteristic function of Q(r). Taking s ≥ r one has:

0 ≤
∫

Q(r)

ϕK

[
a(x, t, un,∇Tk(un))− a(x, t, un,∇Tk(u))

]
×

[
∇Tk(un)−∇Tk(u)

]
dx dt

≤
∫

Q(s)

ϕK

[
a(x, t, un,∇Tk(un))− a(x, t, un,∇Tk(u))

]
×

[
∇Tk(un)−∇Tk(u)] dx dt

=
∫

Q(s)

ϕK

[
a(x, t, un,∇Tk(un))− a(x, t, un,∇Tk(u)χs)

]
×

[
∇Tk(un)−∇Tk(u)χs] dx dt

≤
∫

Q

ϕK

[
a(x, t, un,∇Tk(un))− a(x, t, un,∇Tk(u)χs)

]
×

[
∇Tk(un)−∇Tk(u)χs] dx dt

=
∫

Q

ϕKa(x, t, un,∇un)
[
∇Tk(un)−∇Tk(u)] dx dt

−
∫

Q

ϕK

[
a(x, t, un,∇un)− a(x, t, un,∇Tk(un))

]
×

[
∇Tk(un)−∇Tk(u)χs] dx dt

+
∫

Q

ϕKa(x, t, un,∇un)[∇Tk(u)−∇Tk(u)χs] dx dt

−
∫

Q

ϕKa(x, t, un,∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs] dx dt.

(4.12)

Now pass to the limit in all terms of the right-hand side of the above equation.
By (4.11), the first one tends to 0. Denoting by χGn the characteristic

function of Gn = {(x, t) ∈ Q : |un(x, t)| > k}, the second term reads∫
Q

ϕK [a(x, t, un,∇un)− a(x, t, un, 0)]χGn∇Tk(u)χs dx dt (4.13)

which tends to 0 since [a(x, t, un,∇un)−a(x, t, un, 0)] is bounded in (LM (Q))N ,
by (4.1) and (4.5) while χGn

∇Tk(u)χs converges strongly in (EM (Q))N to 0 by
Lebesgue’s theorem. The fourth term of (4.12) tends to

−
∫

Q

ϕKa(x, t, u,∇Tk(u)χs)[∇Tk(u)−∇Tk(u)χs] dx dt

=
∫

Q\Q(s)

ϕKa(x, t, u, 0)∇Tk(u) dx dt
(4.14)

since a(x, t, un,∇Tk(u)χs) tends strongly to a(x, t, u,∇Tk(u)χs) in (EM (Q))N

while∇Tk(un)−∇Tk(u)χs converges weakly to∇Tk(u)−∇Tk(u)χs in (LM (Q))N

for σ(ΠLM ,ΠEM ).
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Since a(x, t, un,∇un) is bounded in (LM (Q))N one has (for a subsequence
still denoted by un)

a(x, t, un,∇un) ⇀ h weakly in (LM (Q))N for σ(ΠLM ,ΠEM ). (4.15)

Finally, the third term of the right-hand side of (4.12) tends to∫
Q\Q(s)

ϕKh∇Tk(u) dx dt. (4.16)

We have, then, proved that

0 ≤ lim sup
n→∞

∫
Q(r)

ϕK

[
a(x, t, un,∇Tk(un))− a(x, t, un,∇Tk(u))

]
×

[
∇Tk(un)−∇Tk(u)

]
dx dt

≤
∫

Q\Q(s)

ϕK [h− a(x, t, u, 0)]∇Tk(u) dx dt.

(4.17)

Using the fact that [h − a(x, t, u, 0)]∇Tk(u) ∈ L1(Ω) and letting s → +∞ we
get, since |Q \Q(s)| → 0,∫

Q(r)

ϕK [a(x, t, un,∇Tk(un))− a(x, t, un,∇Tk(u))][∇Tk(un)−∇Tk(u)] dx dt

(4.18)
which approaches 0 as n→∞. Consequently∫

Q(r)∩K

[a(x, t, un,∇Tk(un))−a(x, t, un,∇Tk(u))][∇Tk(un)−∇Tk(u)] dx dt→ 0

as n→∞. As in [2], we deduce that for some subsequence ∇Tk(un) → ∇Tk(u)
a.e. in Q(r)∩K. Since r, k and K are arbitrary, we can construct a subsequence
(diagonal in r, in k and in j, where (Kj) is an increasing sequence of compacts
sets covering Q), such that

∇un → ∇u a.e. in Q. (4.19)

Step 3: As in [2] we deduce that∫
Q

ϕKa(x, t, un,∇un)∇Tk(un) dx dt→
∫

Q

ϕKa(x, t, u,∇u)∇Tk(u) dx dt

as n→∞, and that

a(x, t, un,∇Tk(un))∇Tk(un) → a(x, t, u,∇Tk(u))∇Tk(u) strongly in L1(K).
(4.20)

This implies that (see [2] if necessary): ∇Tk(un) → ∇Tk(u) in (LM (K))N for
the modular convergence and so strongly and convergence (4.8) follows.

Note that in convergence (4.8) the whole sequence (and not only for a subse-
quence) converges since the limit ∇Tk(u) does not depend on the subsequence.
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5 Nonlinear parabolic problems

Now, we are able to establish an existence theorem for a nonlinear parabolic
initial-boundary value problems. This result which specially applies in Orlicz
spaces generalizes analogous results in of Landes-Mustonen [14]. We start by
giving the statement of the result.

Let Ω be a bounded subset of RN with the segment property, T > 0, and
Q = Ω×]0, T [. Let M be an N-function satisfying the growth condition

M(t) � |t|
N

N−1 ,

and the 4′-condition. Let P be an N-function such that P �M . Consider an
operator A : W 1,x

0 LM (Q) →W−1,xLM (Q) of the form

A(u) = −div a(x, t, u,∇u) + a0(x, t, u,∇u) (5.1)

where a : Ω × [0, T ] × R × RN → RN and a0 : Ω × [0, T ] × R × RN → R
are Carathéodory functions satisfying the following conditions, for a.e. (x, t) ∈
Ω× [0, T ] for all s ∈ R and ξ 6= ξ∗ ∈ RN :

|a(x, t, s, ξ)| ≤ c(x, t) + k1P
−1
M(k2|s|) + k3M

−1
M(k4|ξ|),

|a0(x, t, s, ξ)| ≤ c(x, t) + k1M
−1
M(k2|s|) + k3M

−1
P (k4|ξ|),

(5.2)

[a(x, t, s, ξ)− a(x, t, s, ξ∗)][ξ − ξ∗] > 0, (5.3)

a(x, t, s, ξ)ξ + a0(x, t, s, ξ)s ≥ αM(
|ξ|
λ

)− d(x, t) (5.4)

where c(x, t) ∈ EM (Q), c ≥ 0, d(x, t) ∈ L1(Q), k1, k2, k3, k4 ∈ R+ and α, λ ∈
R+
∗ . Furthermore let

f ∈W−1,xEM (Q) (5.5)

We shall use notations of section 3. Consider, then, the parabolic initial-
boundary value problem

∂u

∂t
+A(u) = f in Q

u(x, t) = 0 on ∂Ω×]0, T [
u(x, 0) = ψ(x) in Ω.

(5.6)

where ψ is a given function in L2(Ω). We shall prove the following existence
theorem.

Theorem 5.1 Assume that (5.2)-(5.5) hold. Then there exists at least one weak
solution u ∈ W 1,x

0 LM (Q) ∩ L2(Q) ∩ C([0, T ], L2(Ω))of (5.6), in the following
sense:

−
∫

Q

u
∂ϕ

∂t
dx dt+ [

∫
Ω

u(t)ϕ(t)dx]T0 +
∫

Q

a(x, t, u,∇u).∇ϕdx dt

+
∫

Q

a0(x, t, u,∇u).ϕ dx dt = 〈f, ϕ〉
(5.7)
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for all ϕ ∈ C1([0, T ], L2(Ω)).

Remark 5.2 In (5.6), we have u ∈ W 1,x
0 LM (Q) ⊂ L1(0, T ;W−1,1(Ω)) and

∂u
∂t ∈ W−1,xLM (Q) ⊂ L1(0, T ;W−1,1(Ω)). Then u ∈ W 1,1(0, T ;W−1,1(Ω)) ⊂
C([0, T ],W−1,1(Ω)) with continuity of the imbedding. Consequently u is, pos-
sibly after modification on a set of zero measure, continuous from [0, T ] into
W−1,1(Ω) in such a way that the third component of (5.6), which is the initial
condition, has a sense.

Proof of Theorem 4.1 It is easily adapted from the proof given in [14].
For convenience we suppose that ψ = 0. For each n, there exists at least one
solution un of the following problem (see Theorem 3.3 for the existence of un):

un ∈ C([0, T ], Vn),
∂un

∂t
∈ L1(0, T ;Vn), un(0) = ψn ≡ 0 and,

for all τ ∈ [0, T ],
∫

Qτ

∂un

∂t
ϕ dx dt+

∫
Qε

a(x, t, un,∇un).∇ϕdx dt

+
∫

Qε

a0(x, t, un,∇un).ϕ dx dt =
∫

Qε

fnϕdx dt, ∀ϕ ∈ C([0, T ], Vn).

(5.8)

where fk ⊂ ∪∞n=1C([0, T ], Vn) with fk → f in W−1,xEM (Q). Putting ϕ = un

in (5.8), and using (5.2) and (5.4) yields

‖un‖W 1,x
0 LM (Q) ≤ C, ‖un‖L∞(0,T ;L2(Ω)) ≤ C

‖a0(x, t, un,∇un)‖LM (Q) ≤ C and ‖a(x, t, un,∇un)‖LM (Q) ≤ C.
(5.9)

Hence, for a subsequence

un ⇀ u weakly in W 1,x
0 LM (Q) for σ(ΠLM ,ΠEM )and weakly in L2(Q),

a0(x, t, un,∇un) ⇀ h0, a(x, t, un,∇un) ⇀ h in LM (Q) for σ(ΠLM ,ΠEM )
(5.10)

where h0 ∈ LM (Q) and h ∈ (LM (Q))N . As in [14], we get that for some
subsequence un(x, t) → u(x, t) a.e. in Q (it suffices to apply Theorem 3.9
instead of Proposition 1 of [14]). Also we obtain

−
∫

Q

u
∂ϕ

∂t
dx dt+ [

∫
Ω

u(t)ϕ(t)dx]T0 +
∫

Q

h∇ϕdx dt+
∫

Q

h0ϕdx dt = 〈f, ϕ〉,

for all ϕ ∈ C1([0, T ];D(Ω)). The proof will be completed, if we can show that∫
Q

(h∇ϕ+ h0ϕ) dx dt =
∫

Q

(a(x, t, u,∇u)∇ϕ+ a0(x, t, u,∇u)ϕ) dx dt (5.11)

for all ϕ ∈ C1([0, T ];D(Ω)) and that u ∈ C([0, T ], L2(Ω)). For that, it suffices
to show that

lim
n→∞

∫
Q

(a(x, t, un,∇un)[∇un−∇u]+a0(x, t, un∇un)[un−u]) dx dt ≤ 0. (5.12)
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Indeed, suppose that (5.12) holds and let s > r > 0 and set Qr = {(x, t) ∈ Q :
|∇u(x, t)| ≤ r}. Denoting by χs the characteristic function of Qs, one has

0 ≤
∫

Qr

[
a(x, t, un,∇un)− a(x, t, un,∇u)

][
∇un −∇u

]
dx dt

≤
∫

Qs

[
a(x, t, un,∇un)− a(x, t, un,∇u)

][
∇un −∇u

]
dx dt

=
∫

Qs

[
a(x, t, un,∇un)− a(x, t, un,∇u.χs)

][
∇un −∇u.χs

]
dx dt

≤
∫

Q

[
a(x, t, un,∇un)− a(x, t, un,∇u.χs)

][
∇un −∇u.χs

]
dx dt

=
∫

Q

a0(x, t, un,∇un)(un − u)−
∫

Q

a(x, t, un,∇un.χs)[∇un −∇u.χs] dx dt

+
∫

Q

[
a(x, t, un,∇un)(∇un −∇u) + a0(x, t, un,∇un)(un − u)

]
dx dt

+
∫

Q\Qs

a(x, t, un,∇un)∇u dx dt.

(5.13)
The first term of the right-hand side tends to 0 since (a0(x, t, un,∇un))

is bounded in LM (Q) by (5.2) and un → u strongly in LM (Q). The sec-
ond term tends to

∫
Q\Qs a(x, t, un, 0)∇u dx dt since a(x, t, un,∇un.χs) tends

strongly in (EM (Q))N to a(x, t, u,∇u.χs) and ∇un ⇀ ∇u weakly in (LM (Q))N

for σ(ΠLM ,ΠEM ). The third term satisfies (5.12) while the fourth term tends to∫
Q\Qs h∇u dx dt since a(x, t, un,∇un) ⇀ h weakly in (LM (Q))N for
σ(ΠLM ,ΠEM ) and M satisfies the 42-condition. We deduce then that

0 ≤ lim sup
n→∞

∫
Qs

[a(x, t, un,∇un)− a(x, t, un,∇u)][∇un −∇u] dx dt

≤
∫

Q\Qs

[h− a(x, t, u, 0)]∇u dx dt→ 0 as s→∞.

and so, by (5.3), we can construct as in [2] a subsequence such that ∇un →
∇u a.e. in Q. This implies that a(x, t, un,∇un) → a(x, t, u,∇u) and that
a0(x, t, un,∇un) → a0(x, t, u,∇u) a.e. in Q. Lemma 4.4 of [9] shows that
h = a(x, t, u,∇u) and h0 = a0(x, t, u,∇u) and (5.11) follows. The remaining of
the proof is exactly the same as in [14]. �

Corollary 5.3 The function u can be used as a testing function in (5.6) i.e.

1
2
[ ∫

Ω

(u(t))2dx]τ0 +
∫

Qτ

[a(x, t, u,∇u).∇u+a0(x, t, u,∇u)u
]
dx dt =

∫
Qτ

fu dx dt

for all τ ∈ [0, T ].

The proof of this corollary is exactly the same as in [14].
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6 Strongly nonlinear parabolic problems

In this last section we shall state and prove an existence theorem for strongly
nonlinear parabolic initial-boundary problems with a nonlinearity g(x, t, s, ξ)
having growth less thanM(|ξ|). This result generalizes Theorem 2.1 in Boccardo-
Murat [5]. The analogous elliptic one is proved in Benkirane-Elmahi [2].

The notation is the same as in section 5. Consider also assumptions (5.2)-
(5.5) to which we will annex a Carathéodory function g : Ω× [0, T ]×R×RN →
RN satisfying, for a.e. (x, t) ∈ Ω× [0, T ] and for all s ∈ R and all ξ ∈ RN :

g(x, t, s, ξ)s ≥ 0 (6.1)
|g(x, t, s, ξ)| ≤ b(|s|)(c′(x, t) +R(|ξ|)) (6.2)

where c′ ∈ L1(Q) and b : R+ → R+ and where R is a given N-function such
that R�M . Consider the following nonlinear parabolic problem

∂u

∂t
+A(u) + g(x, t, u,∇u) = f in Q,

u(x, t) = 0 on ∂Ω× (0, T ),
u(x, 0) = ψ(x) in Ω.

(6.3)

We shall prove the following existence theorem.

Theorem 6.1 Assume that (5.1)-(5.5), (6.1) and (6.2) hold. Then, there exists
at least one distributional solution of (6.3).

Proof It is easily adapted from the proof of theorem 3.2 in [2] Consider first

gn(x, t, s, ξ) =
g(x, t, s, ξ)

1 + 1
ng(x, t, s, ξ)

and put An(u) = A(u)+gn(x, t, u,∇u), we see that An satisfies conditions (5.2)-
(5.4) so that, by Theorem 5.1, there exists at least one solution un ∈W 1,x

0 LM (Q)
of the approximate problem

∂un

∂t
+A(un) + gn(x, t, un,∇un) = f in Q

un(x, t) = 0 on ∂Ω×]0, T [
un(x, 0) = ψ(x) in Ω

(6.4)

and, by Corollary 5.3, we can use un as testing function in (6.4). This gives∫
Q

[a(x, t, un,∇un).∇un + a0(x, t, un,∇un).un] dx dt ≤ 〈f, un〉

and thus (un) is a bounded sequence in W 1,x
0 LM (Q). Passing to a subsequence

if necessary, we assume that

un ⇀ u weakly in W 1,x
0 LM (Q) for σ(ΠLM ,ΠEM ) (6.5)
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for some u ∈W 1,x
0 LM (Q). Going back to (6.4), we have∫

Q

gn(x, t, un,∇un)un dx dt ≤ C.

We shall prove that gn(x, t, un,∇un) are uniformly equi-integrable on Q. Fix
m > 0. For each measurable subset E ⊂ Q, we have∫

E

|gn(x, t, un,∇un)|

≤
∫

E∩{|un|≤m}
|gn(x, t, un,∇un)|+

∫
E∩{|un|>m}

|gn(x, t, un,∇un)|

≤ b(m)
∫

E

[c′(x, t) +R(|∇un|)] dx dt+
1
m

∫
E∩{|un|>m}

|gn(x, t, un,∇un)| dx dt

≤ b(m)
∫

E

[c′(x, t) +R(|∇un|)] dx dt+
1
m

∫
Q

ungn(x, t, un,∇un) dx dt

≤ b(m)
∫

E

c′(x, t) dx dt+ b(m)
∫

E

R(
|∇un|
λ′

) dx dt+
C

m

Let ε > 0, there is m > 0 such that C
m < ε

3 . Furthermore, since c′′ ∈ L1(Q)
there exists δ1 > 0 such that b(m)

∫
E
c′′(x, t) dx dt < ε

3 . On the other hand,
let µ > 0 such that ‖∇un‖M,Q ≤ µ, ∀n. Since R � M , there exists a constant
Kε > 0 depending on ε such that

b(m)R(s) ≤M(
ε

6
s

µ
) +Kε

for all s ≥ 0. Without loss of generality, we can assume that ε < 1. By convexity
we deduce that

b(m)R(s) ≤ ε

6
M(

s

µ
) +Kε

for all s ≥ 0. Hence

b(m)
∫

E

R(
|∇un|
λ′

) dx dt ≤ ε

6

∫
E

M(
|∇un|
µ

) dx dt+Kε|E|

≤ ε

6

∫
Q

M(
|∇un|
µ

) dx dt+Kε|E|

≤ ε

6
+Kε|E|.

When |E| ≤ ε/(6Kε), we have

b(m)
∫

E

R(
|∇un|
λ′

) dx dt ≤ ε

3
, ∀n.

Consequently, if |E| < δ = inf(δ1, ε
6Kε

) one has∫
E

|gn(x, t, un,∇un)| dx dt ≤ ε, ∀n,
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this shows that the gn(x, t, un,∇un) are uniformly equi-integrable on Q. By
Dunford-Pettis’s theorem, there exists h ∈ L1(Q) such that

gn(x, t, un,∇un) ⇀ h weakly in L1(Q). (6.6)

Applying then Theorem 4.1, we have for a subsequence, still denoted by un,

un → u,∇un → ∇u a.e. in Q and un → u strongly in W 1,x
0 Lloc

M (Q). (6.7)

We deduce that a(x, t, un,∇un) ⇀ a(x, t, u,∇u) weakly in (LM (Q))N for
σ(ΠLM,ΠLM ) and since ∂un

∂t → ∂u
∂t in D′(Q) then passing to the limit in (6.4)

as n→ +∞, we obtain

∂u

∂t
+A(u) + g(x, t, u,∇u) = f in D′(Q).

This completes the proof of Theorem 6.1.
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