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On the spectrum of the p-biharmonic operator *

Abdelouahed El Khalil, Siham Kellati & Abdelfattah Touzani

Abstract

This work is devoted to the study of the spectrum for p-biharmonic
operator with an indefinite weight in a bounded domain.

1 Introduction

Let Q be a bounded domain in R, N > 1, not necessary regular; 1 < p < oo
and p € L"(Q)), p # 0, an unbounded weight function which can change its sign,
with r = r(V, p) satisfying the conditions

N
r{> o for

Y

=1 for = <2

|z |z

We assume that [Qf] # 0, where QF = {z € Q;p(z) > 0} and A € R. We
consider the eigenvalue problem

2, _ -2
Aju = Ap(x)[ulP""u  in Q

u e WP (Q). 1)
Here A2 := A(|Au[P~?Au), the operator of fourth order called the p-biharmonic
operator. For p = 2, the linear operator A3 = A? = A.A is the iterated
Laplacian that multiplied with positive constant appears often in Navier-Stokes
equations as being a viscosity coefficient. Its reciprocal operator denoted (A2)~1
is the celebrated Green’s operator [5].

It is important to indicate that here we don’t suppose any boundary condi-
tions on the high order partial derivatives aizng on the boundary set 92 of the
domain Q. The particular case p = 1 and v = Au = 0 on 9 was considered
recently by Drébek and Otani [2]. There the authors proved the existence, the
simplicity, and the isolation of the first eigenvalue of (1.1) by using a transfor-
mation of a problem to a known Poisson’s problem, and using the well-known
advanced regularity of Agmon-Douglis-Niremberg [3]. Note that this transfor-
mation processus is not applicable to our situation because the quantity Au
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162 On the spectrum of the p-biharmonic operator

does not necessary vanished on 9€) and the eventual regularity is not required
in any bounded domain.

The main objective of this work is to show that problem (1.1) has at least one
non-decreasing sequence of positive eigenvalues (A;)x>1, by using the Ljusternich-
schnirelmann theory on C! manifolds, see e.g. [6]. Our approach is based only
on some properties of the considered operator. So that we give a direct charac-
terization of A\, involving a minimax argument over sets of genus greater than
k.

We set

M = inf {[[Av]p,0 € WEP(@); [ pla)lolrds =1}
Q

where |.||, denotes the LP(€Q)-norm. It is not difficult to show that ||Aul|,
defines a norm in W (Q) and WP () equipped with this norm is a uniformly
convex Banach space for 1 < p < +0c. The norm ||A.]|, is uniformly equivalent
on WyP(2) to the usual norm of WP (Q) [3].

This paper is organized as follows: In section 2, we establish some definitions
and show certain basic lemmas. In section 3, we use a variational technique to
prove the existence of a sequence of the positive eigenvalues of p-biharmonic
operator with any unbounded weight.

2 Preliminaries

Throughout this paper, all solutions are weak, i.e, u € Wg*(€2) is a solution of
(1.1), if for all ¢ € C§°(Q2),

/Q|Au|p*2AuAg0dx = )\/Qp(:v)|u\p*2ug0dx.

If u € WP (Q)\{0}, then u shall be called an eigenfunction of the p-biharmonic
operator (or of (1.1)) associated to the eigenvalue A. The following proposition
states some fundamental properties of the p-biharmonic operator.

Proposition 2.1 For any bounded domain 2 and 1 < p < 400, A% satisfies
the following:

(i) A2 is an hemicontinuous operator from WZP(Q) into W22 ().
(i1) Af, 15 a bounded monotonous, and coercive operator.

(iii) A2 : WZP(Q) — W22 (Q) is a bicontinuous operator. Here p' = T

Proof (i) Define on W ”(£2) the potential functional

1
Alu) = EIIAUHZ-
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This functional is convex and of class C! on VVO2 P(Q). Further its derivative
operator is A’ = AIQJ. So this yields the hemicontinuity.

(ii) By a simple calculation we can show that [|A2ull. = [|Aul[5~", where ||.||.
is the dual norm associated to ||A.[|,. This implies that A2 is bounded and is a
monotonous operator. The continuity and coercivity are obvious .

(iii) The fact that, for any u,v € WZP(Q), ||Aull, = || Av]|, if AZu = AZ(v) and

(WgP(€), ||A.]l,) is a uniformly convex space completes the proof.

Definition Let X be a real reflexive Banach space and let X* stand for its
dual with respect to the pairing (.,.). T a mapping acting from X into X*.
T is said to belong to the class (ST), if for any sequence {u,} in X with u,
converges weakly to u € X and limsup,,_, | o (Tun, un —u) < 0. It follows that
uy, converges strongly to u in X. We write T € (ST).

3 Main results

We will use Ljusternick-Schnirelmann theory on C!-manifolds [6]. Consider the
following two functionals defined on Wi (Q):

1 1
Alw) = Sl Bl = [ pa)luPds.
p PJa

We set M = {u € WgP(Q); pB(u) = 1}.
Lemma 3.1 (i) A and B are even, and of class C* on WEP(Q). (ii) M is a

closed C'-manifold.

Proof (i) It is clear that B is of class C' on W3 (Q). M = B’l{%} so B
is closed. Its derivative operator B’ satisfies B'(u) # 0 Yu € M (i.e., B'(u) is
onto Yu € M), so B is a submersion, then M is a C*'-manifold. O

Remark 3.2 Observe that J : WP (Q) — W27 (Q),
J(u) = | Au|27P AZu ?f u#0
0 ifu=20
is the duality mapping of (WP (Q), | A.]l,).
The following lemma is the key to show existence.

Lemma 3.3 (i) B’ : W2'P(Q) — W22 (Q) is completely continuous.
(i1) The functional A satisfies the Palais-Smale condition on M, i.e., for {u,} C
M, if A(uy,) is bounded and

en = A'(un) = gnB'(uy) = 0 asn — +oc, (3.1)

where gn, = (A" (up), un) /(B (un), un). Then {u,}n>1 has a convergent subse-
. 2,p
quence in WP (Q).
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Proof (i) Step 1: Definition of B’.
First case: % >2and r > év—p. Let u,v € Wg’p(Q). By Holder’s inequality, we
have

| Qp(x)Iu(ﬂt‘)I’HU(JL‘)U(@“)GZ%‘| < llpllellullE= v,

where p% = % — % and s is given by
-1 1 1
L) (3.2)
s p2 T
Therefore,
p_l_l_l_i 1_%_i:p_1
s P2 N po P2
Then it suffices to take
max(l,p—1) < s < pa (3.3)
so that B’ is well defined.
Second case: % = 2and r > %. In this case W3P(Q) — LI(Q), for any
q € [p,+oo[. There is ¢ > p such that %—l—%—I—Z’le:%—l—%—i—l%:
We obtain that
1 1 1 1
S <z (3.4)
q p rTp
By Holder’s inequality, we arrive at
!/ )P 2u(z)o()dz| < [lpll-lulls [[vllg,

for any u,v E WZP(€). Then B’ is also well deﬁned. _
Third case: & < 2 and r = 1. In this case W, 2P (Q) — C(Q) N L=(Q). Then

for any u,v € VVO P(Q), we have

| [ autP-2utz)ote)ds] < .

with p € L1(Q), and B’ is well defined.

Step 2. B’ is completely contlnuous Let (u,) C WP(€) be a sequence
such that u, — u weakly in W?(€2). We have to show that B'(u,) — B'(u)
strongly in W P(Q), i.e.,

sup ‘/ pllun P~ 2w, — [ulP~2u)v dz| — 0, asn — 4oo.
vEW (@) |Avllp<1

For this end, we distinguish three cases as in step 1 above. For % > 2, and
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r> %. Let s be as in (3.3). Then

sup ‘ / pllwn|P?u, — |u\p_2u]vdx‘
vEW (), Av[p<1 IR
< sup [||p||r|||un|p_2un - |U|p_2“} s |v||p2]
VEWGP(Q), [|Av]p<1 e

< cllplle || lun P~ 2un = [ul"~2ul

s
p—1

where ¢ is the constant of Sobolev’s embedding [1]. On the other hand, the
Nemytskii’s operator u — |u[P~2u is continuous from L*() into L7 (£2), and
u, — u weakly in W2P(Q). So, we deduce that u, — u strongly in L*(2Q)
because s < ps. Hence,

H |un|p*2un — \u|p*2u|

— 0, asn— +4oo.

s
p—1

This completes the proof of the claim.
If % = 2 then

| /Q pllunl? 2 — [ulP~>ulv d| < [l ||l P20 — a2 o],

where ¢ is given by (3.4). By Sobolev’s embedding there exist ¢ > 0 such that
2,
[vllg < cllAvllp, Vv e WP (Q).

Thus

_ _ _ _ -1
sup ‘/p[|un|p 2y — |ulP Qu]vda:’ §c||pH,.H|un|p 20, — |ul? 2uHZ .
v€W02’p(Q) Q

[|Av][,<1

From the continuity of u — |u[P~'u from LP(Q) into L¥' (), and from the
compact embedding of Wj*(Q) in LP(Q2), we have the desired result.
If % <2and r =1, W;*() C C(Q), then we obtain

sup | / pllun P2 un — [ulP"?ulv dz| < cl|plly sup |[un P ?u, — [ulP~?ul,
vew2P(a) v Q
[Av][,<1

where ¢ is the constant given by embedding of W (Q) in C(Q) N L2(Q). Tt is
clear that
sup | [un [P up — |[ulP"?u| — 0, asn — +oo.
Q
Hence B’ is completely continuous, also in this case.
(ii) {u,} is bounded in WZ(2). Hence without loss of generality, we can
assume that u,, converges weakly in Wy (Q) for some function u € Wg?(Q)
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and ||Auy||, — ¢. For the rest we distinct two cases:
If ¢ = 0 then w,, converges strongly to 0 in WOQ’p(Q).
If ¢ # 0, then we argue as follows:

(Afun, un — u) = || Aun |} — (AP (un), u).

Applying €, of (3.1) to u, we deduce that

On = (A7 (un), u) — | AulB(B (un),u) — 0 asn — +oo. (3.5)
Thus
(Aftn, un — u) = [|Aun [} — On — || Auy [[5(B (un), w).
That is,
(A2, — ) = || Aug |[2(1 = (B (un), u)) — Oy
Hence,

limsup<A§un, ty — u) < Plimsup(l — (B’ (uy), u)).

n—-+4oo n——+oo

On the other hand, from (i) B'(u,) — B'(u) in W=22(Q) and pB(u) = 1,
because pB(u,) = 1 for all n € N*. So pB(u) = (B’(u),u) = 1. This yields that

1= (B (un), u) =(B'(u),u> = < B'(un),u) < [|B'(u) = B (un)||«[| v,

where ||.||. is the dual norm associated with ||A.||,.
From (i) again B’(u,) — B'(u) in WO_Q’p/ (Q), we deduce that

lim sup(A]QDun7 Up —uy <0 (3.6)
n—-+o0o
We can write A2u, = [|Aup |52 (uy), since ||Auy |, # 0 for n large enough.

Therefore,

lim sup(AIQJun, Up — u) = 2 limsup (Jun, u, — u).
n—-+oo n—-—+00

According to (3.5) we conclude that

lim sup(Juy,, un —u) <0

n—-+4oo

J being a duality mapping, thus it satisfies the condition S*. Therefore, u,, — u
strongly in Wg "P(Q). This achieves the proof of the lemma. O

Remark 3.4 A’is continuous, odd, (p-1)-homogeneous, continuously invertible
and [|A'(u)|« = ||Au|\§_1, Yu € Wg’p(ﬂ).

Remark 3.5 We can give another method to prove that the functional A sat-
isfies the Palais-Smale condition on M.
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Indeed, {u,} is bounded in WP (), we can assume for a subsequence if
necessary that u, converges weakly in VVO2 "P(Q). The claim is to prove that u,
is of Cauchy in WP (). Set

G(Un, Up) = / (|Aun|p72Aun — |Aum\p72Aum).A(un — U )-
Q

From (ii) of the proposition 2.1, A2 is a monotonous operator on WZP(€). So
that
0 < G(tn, um) :(Af,un - Af,um,un — Up,)

:<€n — €m,Up — um> + <hn - hmaun - um>,
with e, defined as in (3.1) and hy, = [|Au,|[) B’ (un).
G(tn, tm) < |lén — €m |l [[Atn — Atlp + (1A = P[]« | Aty — Aty -

Or h,, converges for a subsequence if necessary in W (). Indeed, from (i) of
Lemma 3.3 B’ : W2P(Q) — W~2#'(Q) is completely continuous. On the other
hand, for a subsequence if necessary ||Auy,|| — ¢ > 0. It follows that (hy,),>0 is
convergent, in W27 (Q). Then

G(Un,Um) — 0, asn — +oo. (3.7)
From [4], we have the following inequality
= ol < el (=20 — [a202) (0 — ) (2P )2,

for any t1,t2 € R, with y =pif 1l <p <2 and v = 2if p > 2. By applying
Holder’s inequality, we deduce that

J
2

1A, = A |} < e{ G, win) } 2 (| Aun[h + | Au|[P) (3.8)

for some positive constante ¢ independent of n and m. According to (3.7), (3.8)
shows that (uy,), is a Cauchy’s sequence in W;**(€2). This proves the claim. [J
Set

'y = {K Cc M: K is symmetric,compact and v(K) > ||},

where v(K) = k is the genus of k, i.e., the smallest integer k such that there
exists an odd continuous map from K to R* — {0}.

Now, by the Ljusternick-Schnirelmann theory, see e.g. [6], we have our main
result formulated as follows.

Theorem 3.6 For any integer k € N*,

A = Klglﬁk Iunea%pA(u)
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is a critical value of A restricted on M. More precisely, there exists uy € Kj €
Ty such that

Ak = pA(uy) = sup pA(u)
ue Ky

and (A, ux) is a solution of (1.1) associated with the positive eigenvalue .
Moreover,
A — +00, as k — 4o0.

Proof We need only to prove that for any & € N*, T'y # () and the least
assertion. Indeed, since WO2 P(£2) is separable, there exist (e;);>1 linearly dense
in WOQ’p(Q) such that supp e; Nsuppe; = 0 if ¢ #j. We can assume that e; € M.
Let k € N*| denote Fy, = span{ej,es,...,ex}t. Fg is a vectorial subspace and

dim Fj, = k. If v € F}, then there exist aq, ... o in R such that v = Zle ;€.
Thus B(v) = Y1, [P Ble;) = £ 30, [aif?. Tt follows that the map v
(pB(v))Y/P := |jv|| defines a norm on Fj. Consequently, there is a constant
¢ > 0 such that )

ellAul, < o] < /Al

This implies that the set
1
V=Fn{ve W) : Bv) <=}
b

is bounded. Thus V is a symmetric bounded neighbourhood of 0 € F.. By (f)
in [6, Prop. 2.3], v(F,NM) = ||. Because Fj, "M is compact and T'y, # 0. Now,
we claim that Ay, — +00, as k — +o0. Indeed let be (e, e})n ; a bi-orthogonal
system such that e, € W;*(€) and e; € W=22'(Q), the e, are linearly dense

in W2P(€); and the e} are total for W27 (Q), see e.g. [6]. For k € N*, set

Fj, = span{ey,... e}, F,,CL = span{eri1,e,40,... }-
By (g) of Proposition 2.3 in [6], we have for any A€ 'y, AN Fi- | # 0. Thus

tp:= inf  sup pA(u) — +oo.
ALk yeanFE |

Indeed, if not, for k is large, there exists uy € Fi- | with [|ug|l, = 1 such that
te < pA(ux) < M,

for some M > 0 independent of k. Thus ||Augl||, < M. This implies that (ug)
is bounded in W}?(€2). For a subsequence of {uy} if necessary, we can assume
that {us} converge weakly in Wy *(2) and strongly in L?(Q). By our choice of
Fi- |, we have uj, — 0 weakly in WZP(€). Because (ef,e) = 0, Vk > n. This
contradicts the fact that ||ug||, = 1Vk. Since Ay > ¢, the claim is proved. This
completes the proof. O

Corrolary 3.7 (i) A\; = inf{[|Av|[b,v € I/VOZ”D(Q);IQ p(x)|v|Pdx = 1}.
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Proof (i) For u € M, we put Ky = {u, —u}. It is clear that v(K7) = 1, that
A is even and that

Au) = A > inf A.
pAlu) =mgxpd 2 Jof, mper

Hence

i > i = A1.
S PAE 2 g e d =

On the other hand, VK € 'y, Yu € K,

A > pA(u) > inf pA(w).
suppA > p (U)fulenMp (u)

So

. e |
W2, TPA =2 2 g pA)

Thus
M= inf pA() = int{|[Av],v e WEP(@) / p(2)[v]Pdz = 1.
u Q

(ii) For all ¢ > j, I'; C T';. From the definition of A;,i € N*, we have A\; > A;.
An — 400 is already proved in Theorem 3.6. Which completes the proof. O

Corrolary 3.8 Assume that [, | # 0 with Q) = {z € Q: p(x) < 0}. Then
A2 has a decreasing sequence of the negative eigenvalues (A_p)(p)n>0, such that
limn_,+oo )\_n = —0Q.

Proof First, remark that Q, = Q{_p), S0 |Q(+_p)\ = |Q; ] # 0. From Theorem
3.6, Ag has an increasing sequence of the positive eigenvalues A, (—p), such that

limy, 4 oo An(—p) = +00. Note that A\, (—p) satisfies
AZu = A (=p)(=p)[ul’u = =An(=p)plul”~?u,

for u € WZP(Q). Put A_,(p) := —An(—p) then \,(—p)n>o is an increasing
positive sequence so (A_,)(p)n>0 is a negative decreasing sequence. On the
other hand, lim,—, . An(—p) = +00. So

li - = —o0.
plpe Aon(p) = —00
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