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On the spectrum of the p-biharmonic operator ∗

Abdelouahed El Khalil, Siham Kellati & Abdelfattah Touzani

Abstract

This work is devoted to the study of the spectrum for p-biharmonic
operator with an indefinite weight in a bounded domain.

1 Introduction

Let Ω be a bounded domain in RN , N ≥ 1, not necessary regular; 1 < p < ∞
and ρ ∈ Lr(Ω), ρ 6= 0, an unbounded weight function which can change its sign,
with r = r(N, p) satisfying the conditions

r

{
> N

2p for N
p ≥ 2

= 1 for N
p < 2.

We assume that |Ω+
ρ | 6= 0, where Ω+

ρ = {x ∈ Ω; ρ(x) > 0} and λ ∈ R. We
consider the eigenvalue problem

∆2
pu = λρ(x)|u|p−2u in Ω

u ∈W 2,p
0 (Ω).

(1.1)

Here ∆2
p := ∆(|∆u|p−2∆u), the operator of fourth order called the p-biharmonic

operator. For p = 2, the linear operator ∆2
2 = ∆2 = ∆.∆ is the iterated

Laplacian that multiplied with positive constant appears often in Navier-Stokes
equations as being a viscosity coefficient. Its reciprocal operator denoted (∆2)−1

is the celebrated Green’s operator [5].
It is important to indicate that here we don’t suppose any boundary condi-

tions on the high order partial derivatives ∂2u
∂xi∂xj

on the boundary set ∂Ω of the
domain Ω. The particular case ρ ≡ 1 and u = ∆u = 0 on ∂Ω was considered
recently by Drábek and Ôtani [2]. There the authors proved the existence, the
simplicity, and the isolation of the first eigenvalue of (1.1) by using a transfor-
mation of a problem to a known Poisson’s problem, and using the well-known
advanced regularity of Agmon-Douglis-Niremberg [3]. Note that this transfor-
mation processus is not applicable to our situation because the quantity ∆u
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162 On the spectrum of the p-biharmonic operator

does not necessary vanished on ∂Ω and the eventual regularity is not required
in any bounded domain.

The main objective of this work is to show that problem (1.1) has at least one
non-decreasing sequence of positive eigenvalues (λk)k≥1, by using the Ljusternich-
schnirelmann theory on C1 manifolds, see e.g. [6]. Our approach is based only
on some properties of the considered operator. So that we give a direct charac-
terization of λk involving a minimax argument over sets of genus greater than
k.

We set

λ1 = inf
{
‖∆v‖pp, v ∈W

2,p
0 (Ω);

∫
Ω

ρ(x)|v|pdx = 1
}
,

where ‖.‖p denotes the Lp(Ω)-norm. It is not difficult to show that ‖∆u‖p
defines a norm in W 2,p

0 (Ω) and W 2,p
0 (Ω) equipped with this norm is a uniformly

convex Banach space for 1 < p < +∞. The norm ‖∆.‖p is uniformly equivalent
on W 2,p

0 (Ω) to the usual norm of W 2,p
0 (Ω) [3].

This paper is organized as follows: In section 2, we establish some definitions
and show certain basic lemmas. In section 3, we use a variational technique to
prove the existence of a sequence of the positive eigenvalues of p-biharmonic
operator with any unbounded weight.

2 Preliminaries

Throughout this paper, all solutions are weak, i.e, u ∈W 2,p
0 (Ω) is a solution of

(1.1), if for all ϕ ∈ C∞0 (Ω),∫
Ω

|∆u|p−2∆u∆ϕdx = λ

∫
Ω

ρ(x)|u|p−2uϕdx.

If u ∈W 2,p
0 (Ω)\{0}, then u shall be called an eigenfunction of the p-biharmonic

operator (or of (1.1)) associated to the eigenvalue λ. The following proposition
states some fundamental properties of the p-biharmonic operator.

Proposition 2.1 For any bounded domain Ω and 1 < p < +∞, ∆2
p satisfies

the following:

(i) ∆2
p is an hemicontinuous operator from W 2,p

0 (Ω) into W−2,p′(Ω).

(ii) ∆2
p is a bounded monotonous, and coercive operator.

(iii) ∆2
p : W 2,p

0 (Ω)→W−2,p′(Ω) is a bicontinuous operator. Here p′ = p
p−1 .

Proof (i) Define on W 2,p
0 (Ω) the potential functional

A(u) =
1
p
‖∆u‖pp.
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This functional is convex and of class C1 on W 2,p
0 (Ω). Further its derivative

operator is A′ = ∆2
p. So this yields the hemicontinuity.

(ii) By a simple calculation we can show that ‖∆2
pu‖∗ = ‖∆u‖p−1

p , where ‖.‖∗
is the dual norm associated to ‖∆.‖p. This implies that ∆2

p is bounded and is a
monotonous operator. The continuity and coercivity are obvious .
(iii) The fact that, for any u, v ∈W 2,p

0 (Ω), ‖∆u‖p = ‖∆v‖p if ∆2
pu = ∆2

p(v) and
(W 2,p

0 (Ω), ‖∆.‖p) is a uniformly convex space completes the proof.

Definition Let X be a real reflexive Banach space and let X∗ stand for its
dual with respect to the pairing 〈., .〉. T a mapping acting from X into X∗.
T is said to belong to the class (S+), if for any sequence {un} in X with un
converges weakly to u ∈ X and lim supn→+∞〈Tun, un − u〉 ≤ 0. It follows that
un converges strongly to u in X. We write T ∈ (S+).

3 Main results

We will use Ljusternick-Schnirelmann theory on C1-manifolds [6]. Consider the
following two functionals defined on W 2,p

0 (Ω):

A(u) =
1
p
‖∆u‖pp, B(u) =

1
p

∫
Ω

ρ(x)|u|pdx.

We set M = {u ∈W 2,p
0 (Ω); pB(u) = 1}.

Lemma 3.1 (i) A and B are even, and of class C1 on W 2,p
0 (Ω). (ii) M is a

closed C1-manifold.

Proof (i) It is clear that B is of class C1 on W 2,p
0 (Ω). M = B−1{ 1

p} so B

is closed. Its derivative operator B′ satisfies B′(u) 6= 0 ∀u ∈ M (i.e., B′(u) is
onto ∀u ∈M), so B is a submersion, then M is a C1-manifold. �

Remark 3.2 Observe that J : W 2,p
0 (Ω)→W−2,p′(Ω),

J(u) =

{
‖∆u‖2−pp ∆2

pu if u 6= 0
0 if u = 0

is the duality mapping of (W 2,p
0 (Ω), ‖∆.‖p).

The following lemma is the key to show existence.

Lemma 3.3 (i) B′ : W 2,p
0 (Ω)→W−2,p′(Ω) is completely continuous.

(ii) The functional A satisfies the Palais-Smale condition onM, i.e., for {un} ⊂
M, if A(un) is bounded and

εn := A′(un)− gnB′(un)→ 0 as n→ +∞, (3.1)

where gn = 〈A′(un), un〉/〈B′(un), un〉. Then {un}n≥1 has a convergent subse-
quence in W 2,p

0 (Ω).
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Proof (i) Step 1: Definition of B′.
First case: N

p > 2 and r > N
2p . Let u, v ∈ W 2,p

0 (Ω). By Hölder’s inequality, we
have ∣∣ ∫

Ω

ρ(x)|u(x)|p−2u(x)v(x)dx
∣∣ ≤ ‖ρ‖r‖u‖p−1

s ‖v‖p2

where 1
p2

= 1
p −

2
N and s is given by

p− 1
s

+
1
p2

+
1
r

= 1. (3.2)

Therefore,
p− 1
s

= 1− 1
r
− 1
p2

> 1− 2p
N
− 1
p2

=
p− 1
p2

.

Then it suffices to take
max(1, p− 1) < s < p2 (3.3)

so that B′ is well defined.
Second case: N

p = 2 and r > N
2p . In this case W 2,p

0 (Ω) ↪→ Lq(Ω), for any
q ∈ [p,+∞[. There is q ≥ p such that 1

q + 1
r + p−1

p = 1
q + 1

r + 1
p′ = 1.

We obtain that
1
q

=
1
p
− 1
r
≤ 1
p
. (3.4)

By Hölder’s inequality, we arrive at

∣∣ ∫
Ω

ρ(x)|u(x)|p−2u(x)v(x)dx
∣∣ ≤ ‖ρ‖r‖u‖p−1

p ‖v‖q,

for any u, v ∈W 2,p
0 (Ω). Then B′ is also well defined.

Third case: N
p < 2 and r = 1. In this case W 2,p

0 (Ω) ↪→ C(Ω) ∩ L∞(Ω). Then
for any u, v ∈W 2,p

0 (Ω), we have

∣∣ ∫
Ω

ρ(x)|u(x)|p−2u(x)v(x)dx
∣∣ <∞,

with ρ ∈ L1(Ω), and B′ is well defined.
Step 2. B′ is completely continuous. Let (un) ⊂ W 2,p

0 (Ω) be a sequence
such that un → u weakly in W 2,p

0 (Ω). We have to show that B′(un) → B′(u)
strongly in W 2,p

0 (Ω), i.e.,

sup
v∈W 2,p

0 (Ω) ‖∆v‖p≤1

∣∣∣ ∫
Ω

ρ[|un|p−2un − |u|p−2u]v dx
∣∣→ 0, as n→ +∞.

For this end, we distinguish three cases as in step 1 above. For N
p > 2, and
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r > N
2p . Let s be as in (3.3). Then

sup
v∈W 2,p

0 (Ω), ‖∆v‖p≤1

∣∣∣ ∫
Ω

ρ
[
|un|p−2un − |u|p−2u

]
vdx

∣∣∣
≤ sup
v∈W 2,p

0 (Ω), ‖∆v‖p≤1

[
‖ρ‖r

∥∥|un|p−2un − |u|p−2u
∥∥

s
p−1
‖v‖p2

]
≤ c‖ρ‖r

∥∥|un|p−2un − |u|p−2u
∥∥

s
p−1

,

where c is the constant of Sobolev’s embedding [1]. On the other hand, the
Nemytskii’s operator u 7→ |u|p−2u is continuous from Ls(Ω) into L

s
p−1 (Ω), and

un → u weakly in W 2,p
0 (Ω). So, we deduce that un → u strongly in Ls(Ω)

because s < p2. Hence,∥∥|un|p−2un − |u|p−2u
∥∥

s
p−1
→ 0, as n→ +∞.

This completes the proof of the claim.
If N

p = 2 then

∣∣ ∫
Ω

ρ
[
|un|p−2un − |u|p−2u

]
v dx

∣∣ ≤ ‖ρ‖r∥∥|un|p−2un − |u|p−2u
∥∥p−1

p
‖v‖q,

where q is given by (3.4). By Sobolev’s embedding there exist c > 0 such that

‖v‖q ≤ c‖∆v‖p, ∀v ∈W 2,p
0 (Ω).

Thus

sup
v∈W2,p

0 (Ω)

‖∆v‖p≤1

∣∣ ∫
Ω

ρ[|un|p−2un − |u|p−2u]v dx
∣∣ ≤ c‖ρ‖r∥∥|un|p−2un − |u|p−2u

∥∥p−1

p
.

From the continuity of u 7→ |u|p−1u from Lp(Ω) into Lp
′
(Ω), and from the

compact embedding of W 2,p
0 (Ω) in Lp(Ω), we have the desired result.

If N
p < 2 and r = 1, W 2,p

0 (Ω) ⊂ C(Ω), then we obtain

sup
v∈W2,p

0 (Ω)

‖∆v‖p≤1

∣∣ ∫
Ω

ρ
[
|un|p−2un − |u|p−2u

]
v dx

∣∣ ≤ c‖ρ‖1 sup
Ω

∣∣|un|p−2un − |u|p−2u
∣∣,

where c is the constant given by embedding of W 2,p
0 (Ω) in C(Ω)∩L∞(Ω). It is

clear that
sup

Ω

∣∣|un|p−2un − |u|p−2u
∣∣→ 0, as n→ +∞.

Hence B′ is completely continuous, also in this case.
(ii) {un} is bounded in W 2,p

0 (Ω). Hence without loss of generality, we can
assume that un converges weakly in W 2,p

0 (Ω) for some function u ∈ W 2,p
0 (Ω)
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and ‖∆un‖p → c. For the rest we distinct two cases:
If c = 0 then un converges strongly to 0 in W 2,p

0 (Ω).
If c 6= 0, then we argue as follows:

〈∆2
pun, un − u〉 = ‖∆un‖pp − 〈∆2

p(un), u〉.

Applying εn of (3.1) to u, we deduce that

Θn := 〈∆2
p(un), u〉 − ‖∆u‖pp〈B′(un), u〉 → 0 as n→ +∞. (3.5)

Thus
〈∆2

pun, un − u〉 = ‖∆un‖pp −Θn − ‖∆un‖pp〈B′(un), u〉.

That is,
〈∆2

pun, un − u〉 = ‖∆un‖pp(1− 〈B′(un), u〉)−Θn.

Hence,
lim sup
n→+∞

〈∆2
pun, un − u〉 ≤ cplim sup

n→+∞
(1− 〈B′(un), u〉).

On the other hand, from (i) B′(un) → B′(u) in W−2,p′(Ω) and pB(u) = 1,
because pB(un) = 1 for all n ∈ N∗. So pB(u) = 〈B′(u), u〉 = 1. This yields that

1− 〈B′(un), u〉 =〈B′(u), u > − < B′(un), u〉 ≤ ‖B′(u)−B′(un)‖∗‖∆u‖p,

where ‖.‖∗ is the dual norm associated with ‖∆.‖p.
From (i) again B′(un)→ B′(u) in W−2,p′

0 (Ω), we deduce that

lim sup
n→+∞

〈∆2
pun, un − u〉 ≤ 0 (3.6)

We can write ∆2
pun = ‖∆un‖p−2

p J(un), since ‖∆un‖p 6= 0 for n large enough.
Therefore,

lim sup
n→+∞

〈∆2
pun, un − u〉 = cp−2 lim sup

n→+∞
〈Jun, un − u〉.

According to (3.5) we conclude that

lim sup
n→+∞

〈Jun, un − u〉 ≤ 0

J being a duality mapping, thus it satisfies the condition S+. Therefore, un → u
strongly in W 2,p

0 (Ω). This achieves the proof of the lemma. �

Remark 3.4 A′ is continuous, odd, (p-1)-homogeneous, continuously invertible
and ‖A′(u)‖∗ = ‖∆u‖p−1

p , ∀u ∈W 2,p
0 (Ω).

Remark 3.5 We can give another method to prove that the functional A sat-
isfies the Palais-Smale condition on M.



Abdelouahed El Khalil, Siham Kellati & Abdelfattah Touzani 167

Indeed, {un} is bounded in W 2,p
0 (Ω), we can assume for a subsequence if

necessary that un converges weakly in W 2,p
0 (Ω). The claim is to prove that un

is of Cauchy in W 2,p
0 (Ω). Set

G(un, um) =
∫

Ω

(|∆un|p−2∆un − |∆um|p−2∆um).∆(un − um).

From (ii) of the proposition 2.1, ∆2
p is a monotonous operator on W 2,p

0 (Ω). So
that

0 ≤ G(un, um) =〈∆2
pun −∆2

pum, un − um〉
=〈εn − εm, un − um〉+ 〈hn − hm, un − um〉,

with εn defined as in (3.1) and hn = ‖∆un‖ppB′(un).

G(un, um) ≤ ‖εn − εm‖∗‖∆un −∆um‖p + ‖hn − hm‖∗‖∆un −∆um‖p.

Or hn converges for a subsequence if necessary in W 2,p
0 (Ω). Indeed, from (i) of

Lemma 3.3 B′ : W 2,p
0 (Ω)→ W−2,p′(Ω) is completely continuous. On the other

hand, for a subsequence if necessary ‖∆un‖ → c ≥ 0. It follows that (hn)n≥0 is
convergent in W−2,p′(Ω). Then

G(un, um)→ 0, as n→ +∞. (3.7)

From [4], we have the following inequality

|t1 − t2|p ≤ c{(|t1|p−2t1 − |t2|p−2t2).(t1 − t2)}
γ
2 (|t1|p + |t2|p)1− γ2 ,

for any t1, t2 ∈ R, with γ = p if 1 < p < 2 and γ = 2 if p ≥ 2. By applying
Hölder’s inequality, we deduce that

‖∆un −∆um‖pp ≤ c{G(un, um)}
γ
2 (‖∆un‖pp + ‖∆um‖pp)1− γ2 (3.8)

for some positive constante c independent of n and m. According to (3.7), (3.8)
shows that (un)n is a Cauchy’s sequence in W 2,p

0 (Ω). This proves the claim. �
Set

Γk = {K ⊂M : K is symmetric,compact and γ(K) ≥ ‖},

where γ(K) = k is the genus of k, i.e., the smallest integer k such that there
exists an odd continuous map from K to Rk − {0}.

Now, by the Ljusternick-Schnirelmann theory, see e.g. [6], we have our main
result formulated as follows.

Theorem 3.6 For any integer k ∈ N∗,

λk := inf
K∈Γk

max
u∈K

pA(u)
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is a critical value of A restricted on M. More precisely, there exists uk ∈ Kk ∈
Γk such that

λk = pA(uk) = sup
u∈Kk

pA(u)

and (λk, uk) is a solution of (1.1) associated with the positive eigenvalue λk.
Moreover,

λk → +∞, as k → +∞.

Proof We need only to prove that for any k ∈ N∗, Γk 6= ∅ and the least
assertion. Indeed, since W 2,p

0 (Ω) is separable, there exist (ei)i≥1 linearly dense
in W 2,p

0 (Ω) such that supp ei∩ supp ej = ∅ if i 6=j. We can assume that ei ∈M.
Let k ∈ N∗, denote Fk = span{e1, e2, . . . , ek}. Fk is a vectorial subspace and
dimFk = k. If v ∈ Fk, then there exist α1, . . . αk in R such that v =

∑k
i=1 αiei.

Thus B(v) =
∑k
i=1 |αi|pB(ei) = 1

p

∑k
i=1 |αi|p. It follows that the map v 7→

(pB(v))1/p := ‖v‖ defines a norm on Fk. Consequently, there is a constant
c > 0 such that

c‖∆u‖p ≤ ‖v‖ ≤
1
c
‖∆u‖p.

This implies that the set

V = Fk ∩ {v ∈W 2,p
0 (Ω) : B(v) ≤ 1

p
}

is bounded. Thus V is a symmetric bounded neighbourhood of 0 ∈ Fk. By (f)
in [6, Prop. 2.3], γ(Fk ∩M) = ‖. Because Fk ∩M is compact and Γk 6= ∅. Now,
we claim that λk → +∞, as k → +∞. Indeed let be (en, e∗j )n,j a bi-orthogonal
system such that en ∈ W 2,p

0 (Ω) and e∗j ∈ W−2,p′(Ω), the en are linearly dense
in W 2,p

0 (Ω); and the e∗j are total for W−2,p′(Ω), see e.g. [6]. For k ∈ N∗, set

Fk = span{e1, . . . , ek}, F⊥k = span{ek+1,ek+2,...}.

By (g) of Proposition 2.3 in [6], we have for any A∈ Γk, A ∩ F⊥k−1 6= ∅. Thus

tk := inf
A∈Γk

sup
u∈A∩F⊥k−1

pA(u)→ +∞.

Indeed, if not, for k is large, there exists uk ∈ F⊥k−1 with ‖uk‖p = 1 such that

tk ≤ pA(uk) ≤M,

for some M > 0 independent of k. Thus ‖∆uk‖p ≤M . This implies that (uk)k
is bounded in W 2,p

0 (Ω). For a subsequence of {uk} if necessary, we can assume
that {uk} converge weakly in W 2,p

0 (Ω) and strongly in Lp(Ω). By our choice of
F⊥k−1 , we have uk ↪→ 0 weakly in W 2,p

0 (Ω). Because 〈e∗n, ek〉 = 0, ∀k ≥ n. This
contradicts the fact that ‖uk‖p = 1∀k. Since λk ≥ tk, the claim is proved. This
completes the proof. �

Corrolary 3.7 (i) λ1 = inf{‖∆v‖pp, v ∈W
2,p
0 (Ω);

∫
Ω
ρ(x)|v|pdx = 1}.

(ii) 0 < λ1 ≤ λ2 ≤ · · · ≤ λn → +∞.
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Proof (i) For u ∈ M, we put K1 = {u,−u}. It is clear that γ(K1) = 1, that
A is even and that

pA(u) = max
K1

pA ≥ inf
K∈Γ1

max
K

pA.

Hence
inf
u∈M

pA(u) ≥ inf
K∈Γ1

max
K

pA = λ1.

On the other hand, ∀K ∈ Γ1, ∀u ∈ K,

sup
K
pA ≥ pA(u) ≥ inf

u∈M
pA(u).

So
inf
K∈Γ1

max
K

pA = λ1 ≥ inf
u∈M

pA(u).

Thus

λ1 = inf
u∈M

pA(u) = inf{‖∆v‖pp, v ∈W
2,p
0 (Ω) :

∫
Ω

ρ(x)|v|pdx = 1}.

(ii) For all i ≥ j, Γi ⊂ Γj . From the definition of λi, i ∈ N∗, we have λi ≥ λj .
λn → +∞ is already proved in Theorem 3.6. Which completes the proof. �

Corrolary 3.8 Assume that |Ω−ρ | 6= 0 with Ω−ρ = {x ∈ Ω : ρ(x) < 0}. Then
∆2
p has a decreasing sequence of the negative eigenvalues (λ−n)(ρ)n≥0, such that

limn→+∞ λ−n = −∞.

Proof First, remark that Ω−ρ = Ω+
(−ρ), so |Ω+

(−ρ)| = |Ω
−
ρ | 6= 0. From Theorem

3.6, ∆2
p has an increasing sequence of the positive eigenvalues λn(−ρ), such that

limn→+∞ λn(−ρ) = +∞. Note that λn(−ρ) satisfies

∆2
pu = λn(−ρ)(−ρ)|u|p−2u = −λn(−ρ)ρ|u|p−2u,

for u ∈ W 2,p
0 (Ω). Put λ−n(ρ) := −λn(−ρ) then λn(−ρ)n≥0 is an increasing

positive sequence so (λ−n)(ρ)n≥0 is a negative decreasing sequence. On the
other hand, limn→+∞ λn(−ρ) = +∞. So

lim
n→+∞

λ−n(ρ) = −∞.
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