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Existence and regularity of positive solutions for

an elliptic system ∗

Abdelouahed El Khalil, Mohammed Ouanan,
& Abdelfattah Touzani

Abstract

In this paper, we study the existence and regularity of positive solu-
tion for an elliptic system on a bounded and regular domain. The non
linearities in this equation are functions of Caratheodory type satisfying
some exponential growth conditions.

1 Introduction

In this work, we study the elliptic system

−∆pu = f(x, u, v) in Ω
−∆pv = g(x, u, v) in Ω
u = v = 0 on ∂Ω,

(1.1)

where Ω is a bounded regular domain in RN , 1 < p < +∞, and f and g are
Carathéodory functions satisfying some growth conditions specified later.

In the recent years; the existence and non existence for the scalar case have
been studied by several author’s by using various approaches [9, 5]. For the
system case, we mention the recent work of Bechah [4]. He study the local and
global behaviour of solutions of systems involving the p-Laplacian operator in
unbounded domains with f , g functions satisfying some growth conditions of
polynomial type. Also, we cite the work of Ahammou [2], where he studied
the positive radial solutions of nonlinear elliptic systems (1.1) using the method
of topological degree. There Ω is a ball in RN and f, g are positive functions
satisfying f(x, 0, 0) = g(x, 0, 0) = 0 under some growth conditions of polynomial
type.

Here we study the existence and regularity of positive solutions of (1.1) in a
regular bounded domain and f, g are functions of Carathéodory type satisfying
some growth conditions of exponential type. We extend the results of De Thelin
[8] for the problem

∆pu+ g(x, u) = 0
∗Mathematics Subject Classifications: 35J20, 35J45, 35J50, 35J70.
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172 Existence and regularity of positive solutions

in the case when the growth of g(x, .) is allowed to be of exponential type.
The rest of this paper is organized as follows: In section 2 we introduce the

assumptions and some results preliminaries. In section 3 we introduce the main
results of this paper.

2 Assumptions and preliminaries

Let X be a closed subspace of W 1,p
0 (Ω); f and g be two positives Carathéodory

functions satisfying the growth conditions:

(H1) For all K > 0, there exists m > 0 such that for all (ξ, η) ∈ R×R, satisfying
|ξ|+ |η| ≤ K and for almost every where x ∈ Ω we have

f(x, ξ, η) ≤ m and g(x, ξ, η) ≤ m.

(H2) There exist σ0 > 2p− 1, θ0 > 2p− 1 and R > 0 such that for all (ξ, η) ∈
R+ × R+ satisfying ξ + η ≥ R we have

ξf(x, ξ, η) ≥ (σ0 + 1)G(x, ξ, η) a.e x ∈ Ω (2.1)
ηg(x, ξ, η) ≥ (θ0 + 1)G(x, ξ, η) a.e x ∈ Ω (2.2)

where ∂G(x,ξ,η)
∂ξ = f(x, ξ, η), and ∂G(x,ξ,η)

∂η = g(x, ξ, η).

Definition We say that (u, v) is a weak solution of elliptic system (1.1) if for
all (φ, ψ) ∈ (W 1,p

0 (Ω))2 we have∫
Ω

|∇u|p−2∇u∇φ =
∫

Ω

f(x, u, v)φ∫
Ω

|∇v|p−2∇v∇ψ =
∫

Ω

g(x, u, v)ψ

Theorem 2.1 (Mountain Pass [3]) Let I be a C1-differentiable functional
on a Banach space E and satisfying the Palais-Smale condition (PS), suppose
that there exists a neighbourhood U of 0 in E and a positive constant α satisfying
the following conditions:

(I1) I(0) = 0.

(I2) I(u) ≥ α on the boundary of U .

(I3) There exists an e ∈ E\U such that I(e) < α.

Then
c = inf

γ∈Γ
sup

y∈[0,1]

I(γ(y))

is a critical value of I with Γ = {g ∈ C([0, 1]); g(0) = 0, g(1) = e}.
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3 Main result

The case p 6= N .

Set

J(u, v) =
1
p

∫
Ω

(|∇u|p + |∇v|p) dx−
∫

Ω

G(x, u, v) dx

J is well define in (W 1,p
0 (Ω))2. In this subsection we have the following result

Theorem 3.1 Let f and g are two Carathéodory functions satisfying (H1),
(H2) and suppose that

i) X ⊂ L∞(Ω).

ii) There exist some r0 > 0, σ > p − 1, θ > p − 1 and c > 0 such that, for
almost every where x ∈ Ω and for all |ξ|+ |η| < r0 we have

G(x, ξ, η) ≤ c(ξσ+1 + ηθ+1).

Then, there is at least one positive solution (u, v) ∈ (X ∩ C1,ν(Ω̄))2 of (1.1).

Remark. The condition i) is true for X = W 1,p
0 (Ω) where Ω is an open

bounded domain in RN and p > N .
The following proposition gives another interesting example of the space X

with p > 1.

Proposition 3.2 ([8]) Let 0 < ρ < R < +∞ and Ω = {x ∈ RN : ρ < |x| < R}
an annulus in RN . Let X be the set of radially symmetric functions in W 1,p

0 (Ω).
Then, there exist a positive constant c(N, ρ, p,R) > 0 such that, for all u ∈ X
and for almost every where x ∈ Ω we have

|u(x)| ≤ c(N, ρ, p,R)‖∇u‖p.

To prove Theorem 3.1 we prove some preliminary lemmas.

Lemma 3.3 Let u ∈ X. Suppose that f and g satisfy (H1) and (H2). Then,
any sequence {(uj , vj)}j≥0 ∈ X ×X satisfying the following two hypotheses:

|J(uj , vj)| ≤ K (3.1)

and for all ε > 0 there exist j0 ∈ N∗ such that ∀j ≥ j0,

|〈J ′(uj , vj), (uj , vj)〉| ≤ ε‖(uj , vj)‖, (3.2)

is bounded in X ×X.
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Proof. Set ‖(u, v)‖ = (‖∇u‖p
p + ‖∇v‖p

p)
1/p. This is a norm in the product

space X ×X, and ‖∇u‖p = ‖u‖X . Now we proceed by contradiction. Suppose
that a subsequent denoted by {(uj , vj)}j≥0 be such that

lim
j→+∞

‖(uj , vj)‖ = +∞,

In virtue (3.1), we get

−K
‖(uj , vj)‖p

≤ 1
p
−

∫
Ω
G(x, uj , vj)dx
‖(uj , vj)‖p

≤ K

‖(uj , vj)‖p
.

By passing to limit we deduce that

lim
j→+∞

∫
Ω
G(x, uj , vj)dx
‖(uj , vj)‖p

=
1
p
. (3.3)

On the other hand, (3.2) implies

−ε
‖(uj , vj)‖p−1

≤ 1−
∫
Ω
(ujf(x, uj , vj) + vjg(x, uj , vj))dx

‖(uj , vj)‖p
≤ ε

‖(uj , vj)‖p−1
.

By passing to limit, we obtain

lim
j→+∞

∫
Ω
(ujf(x, uj , vj) + vjg(x, uj , vj))dx

‖(uj , vj)‖p
= 1. (3.4)

Combining (2.1), (2.2), (3.3) and (3.4) we deduce that

1
p
≤ 1
σ0 + 1

+
1

θ0 + 1
<

1
p
.

A contradiction, whence ‖(uj , vj)‖X is bounded. �

Lemma 3.4 Let f and g be two Carathéodory functions satisfying the hypoth-
esis of Theorem 3.1 and let {(uj , vj)}j≥0 be a sequence in X × X such that
(uj , vj) ⇀ (u, v) weakly in X ×X. Then

lim
j→+∞

∫
Ω

f(x, uj , vj)(uj − u) = 0, quad lim
j→+∞

∫
Ω

g(x, uj , vj)(vj − v) = 0.

Proof. By using Hölder’s inequality we obtain∣∣ ∫
Ω

f(x, uj , vj)(uj − u)
∣∣ ≤ ‖f(x, uj , vj)‖p′‖uj − u‖p.

In virtue i), (H1) and by using the imbedding Sobolev space we have (uj , vj) →
(u, v) strongly in Lp(Ω)× Lp(Ω). Then, by Lebesgue’s theorem, as j → +∞,

lim
j→+∞

∫
Ω

f(x, uj , vj)(uj − u) = 0.

The proof of the second limit in this Theorem is the same. �

Lemma 3.5 Under the hypothesis of Theorem 3.1, J ∈ C1(X×X) and satisfies
the Palais-Smale condition.
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Proof. In virtue of the preceding lemma we have J ∈ C1(X × X). Let
{(uj , vj)}j≥0 be a sequence of element in X ×X satisfying the conditions (3.1)
and (3.2). Hence, by Lemma 3.3 the sequence (uj , vj) is bounded, then, there ex-
ist a subsequent still denoted {(uj , vj)}j≥0 weakly convergent to (u, v) ∈ X×X
and strongly in Lp(Ω)× Lp(Ω) . On the other hand, since

〈−∆puj , uj − u〉 = 〈J ′(uj , vj), (uj , vj)− (u, v)〉 −
∫

Ω

f(x, uj , vj)(uj − u).

As j → +∞, in virtue of Lemma 3.4 and (3.2) we have

lim
j→+∞

〈−∆puj , uj − u〉 = 0.

Or the p-Laplacian operator satisfies the condition (S+), thus

uj → u strongly in X.

The same way, we prove that vj → v strongly in X. �

Proof of Theorem 3.1 It suffices to prove that the functional J satisfies the
conditions for the Pass-Mountain lemma [3]:
J satisfies condition of Palais-Smale and J(0) = 0 (see Lemma 3.5).
For ‖(u, v)‖ = r sufficiently small, we have J(u, v) ≥ α > 0.

We prove this second conditions first. By i), for all x ∈ Ω, there exist c′ > 0
such that |u(x)|+ |v(x)| ≤ c′‖(u, v)‖; and for ‖(u, v)‖ ≤ r0)

c′ . Using ii) we deduce
that

G(x, u(x), v(x)) ≤ c(|u(x)|σ+1 + |v(x)|θ+1)
≤ c[(c′)σ+1‖(u, v)‖σ+1 + (c′)θ+1‖(u, v)‖θ+1]

≤ c
′′
(‖(u, v)‖σ+1 + ‖(u, v)‖θ+1).

Then

J(u, v) ≥ 1
p
‖(u, v)‖p − c

′′
(‖(u, v)‖σ+1 + ‖(u, v)‖θ+1)

≥ 1
p
‖(u, v)‖p − 2c

′′
‖(u, v)‖l

with l = min(σ + 1, θ + 1). It suffices to take r ≤ min( r0)
c′ , ( 1

2pc′′
)

1
l−p ).

Finally, for ‖(u, v)‖ ≤ r, we have

J(u, v) ≥ α =
rp

p
> 0.

Now, we prove the first condition. Let (u0, v0) ∈ X × X such that for almost
every where x ∈ Ω0 with meas(Ω0) > 0 we have u0(x) + v0(x) > α0 > 0with



176 Existence and regularity of positive solutions

some α0 > 0. For t large enough we have tu0 > ξ0, tv0 > η0 with ξ0 + η0 > R.
From (2.1) and (2.2) we get

ξ → G(x, ξ, η)
|ξ|σ0+1

and η → G(x, ξ, η)
|η|θ0+1

are increasing, then∫
Ω

G(x, tu0, tv0) ≥
∫

Ω0

G(x, tu0, tv0) ≥ β(tσ0+1 + tθ0+1),

with

β =
1
2

inf
( 1
ξσ0+1
0

∫
Ω0

G(x, ξ0, η0)|u0(x)|σ0+1,

1
ηθ0+1
0

∫
Ω0

G(x, ξ0, η0)|v0(x)|θ0+1
)
.

Consequently,

J(tu0, tv0) ≤
tp

p
‖(u, v)‖p − β(tσ0+1 + tθ0+1).

by passing to the limit, as t→ +∞ we have limt→+∞ J(tu0, tv0) = −∞. Then,
there exist some (e1, e2) ∈ X×X, with e1 6= 0 and e2 6= 0, such that J(e1, e2) <
0.

By the Pass-Mountain theorem, there exists (u0, v0) ∈ X×X u0 6= 0, v0 6= 0,
such that J ′(u0, v0) = 0, i.e for all (φ, ψ) ∈W 1,p

0 (Ω)×W 1,p
0 (Ω),∫

Ω

|∇u0|p−2∇u0∇φ−
∫

Ω

f(x, u0, v0)φ = 0,∫
Ω

|∇v0|p−2∇v0∇ψ −
∫

Ω

g(x, u0, v0)ψ = 0.

In virtue of Tolksdorf regularity [10], (u0, v0) ∈ C1,ν(Ω̄) × C1,ν(Ω̄) and by
Vazquez’s maximum principle [11], u0 > 0 and v0 > 0. �

Example Let f(x, ξ, η) = ξσ exp(ξq + ηr), g(x, ξ, η) = ηθexp(ξq + ηr), σ >
2p− 1, θ > 2p− 1, r, q > 0. The functions f and g satisfy the hypotheses (H1),
(H2), (ii), and X the space defined in Proposition 3.2. Hence, for σ, θ > 1;

−∆pu = uσ exp(uq + vr) in Ω

−∆pv = vθ exp(uq + vr) in Ω
u = v = 0 on ∂Ω,

has a positive solution (u, v) ∈ (X × C1,ν(Ω))2.
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The case p = N

Recall that a Young function is an even convex function from R into R+, such
that

lim
ξ→0

M(ξ)
ξ

= 0 and lim
ξ→+∞

M(ξ)
ξ

= +∞.

The conjugate function of M is defined as

M∗(ξ) = sup
s∈R

[ξs−M(s)].

The Orlicz space LM (Ω) is the set of measurable function u defined on R such
that, there is some λ > 0 with ∫

Ω

M(
u

λ
) < +∞.

This is a Banach space for the norm

‖u‖M = Inf

{
λ > 0 :

∫
Ω

M(
u

λ
) < 1

}
.

Let EM (Ω) be the closure of C∞0 (Ω) in LM (Ω).
We say that M is super-homogenous of degree (σ + 1) [8] if there exists K > 0
such that

M(hξ) ≤ hσ+1M(Kξ), ∀ξ ∈ R, ∀h ∈ [0, 1] .

Let Ω be a bounded regular domain in RN . In this case W 1,p
0 (Ω) 6⊂ L∞(Ω) but

W 1,p
0 (Ω) ⊂ EM1(Ω) [1] where

M1(ξ) = exp(|ξ|p
′
)− 1, or

1
p

+
1
p′

= 1.

So, we can get the following Theorem.

Theorem 3.6 Let f and g be two positive functions which are Caratheodory
and satisfy (H1) and (H2). Assume also that there exists a Young function of
exponential type M such that:

i) The imbedding W 1,p
0 (Ω) ↪→ EM (Ω) is compact.

ii) M is super-homogeneous of degree σ1 + 1 > p.

iii) There are some c1 > 0 and K1 > 0 such that for a.e x ∈ Ω and for all
(ξ, η) ∈ R2,

ξf(x, ξ, η) ≤ c1M(
ξ

K1
) and ηg(x, ξ, η) ≤ c1M(

η

K1
).
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iv) For all K > 0, we have

lim
|ξ|+|η|→+∞

f(x, ξ, η)
M ′( ξ

K )
= 0 and lim

|ξ|+|η|→+∞

g(x, ξ, η)
M ′( η

K )
= 0

almost every where in x ∈ Ω.

Then there is at least one positive solution (u, v) ∈ (W 1,p
0 (Ω) ∩ C1,ν(Ω̄))2 of

(1.1).

The proof of this Theorem needs the following lemma.

Lemma 3.7 Under the hypotheses of Theorem 3.6, J ∈ C1((W 1,p
0 (Ω))2 and

satisfies the Palais-Smale condition.

Proof. Let {(uj , vj)}j≥0 be a bounded sequence in W 1,p
0 (Ω)×W 1,p

0 (Ω). By i)
there exist some K > 0 such that∫

Ω

M
(uj

K

)
≤ 1,

∫
Ω

M
(vj

K

)
≤ 1.

Let c > 0 be large enough such that M∗( 1
c ) meas(Ω) < 1. From iv) for all

(ξ, η) ∈ R2 and for a.e x ∈ Ω we have

|f(x, ξ, η)|+ |g(x, ξ, η)| ≤ c

2
+

1
4
(
M ′(

ξ

K
) +M ′(

η

K
)
)
,

or M∗ is a Young function satisfies the “∆2-condition”. Then

M∗(f(x, uj , vj)
c2

)
≤ 1

2
M∗(

1
c
) +

1
2
M∗(1

2
M ′(

uj

c2K
) +

1
2
M ′(

vj

c2K
)
)

≤ 1
2
M∗(

1
c
) +

1
4
(
M(

2uj

c2K
) +M(

2vj

c2K
)
)

≤ 1
2
M∗(

1
c
) +

1
4
(
M(

uj

K
) +M(

vj

K
)
)
.

Hence ∫
Ω

M∗(f(x, uj , vj)
c2

)
≤ 1. (3.5)

In the same we obtain ∫
Ω

M∗(g(x, uj , vj)
c2

)
≤ 1. (3.6)

Let {(uj , vj)}j≥0 be a subsequent of the least sequence of element in (W 1,p
0 (Ω))2

converges to (u, v) ∈ (W 1,p
0 (Ω))2. For δ > 0 sufficiently small, for all ε > 0 and
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A ⊂ Ω such that meas(A) ≤ δ we have∫
A

M∗(f(x, uj , vj)
c2

)
≤1

2
M∗(1

c

)
meas(A) +

1
4

∫
A

[
M

( 2uj

c2K

)
+M

( 2vj

c2K

)]
≤1

2
M∗(1

c

)
meas(A) +

1
8

∫
A

[
M

(uj − u

K

)
+M

( u
K

)
+M

(vj − v

K

)
+M

( v
K

)]
≤ε,

then M∗( f(x,uj ,vj)−f(x,u,v)
c2

)
is equi-summable and

lim
j→+∞

∫
Ω

M∗(f(x, uj , vj)− f(x, u, v)
c2

)
= 0

By ii) and since M∗ satisfies “∆2-condition” we have

lim
j→+∞

‖f(., uj , vj)− f(., u, v)‖M∗ = 0.

In the same way we have

lim
j→+∞

‖g(., uj , vj)− g(., u, v)‖M∗ = 0

Whence J ∈ C1((W 1,p
0 (Ω))2. Let {(uj , vj)}j≥0 be a sequence satisfying (3.1)

and (3.2) then by lemma 3.3 the sequence {(uj , vj)}j≥0 is bounded in (W 1,p
0 (Ω))2

,hence {(uj , vj)}j≥0 converges weakly to (u, v) ∈ (W 1,p
0 (Ω))2 and strongly in

(EM (Ω))2. In view of (3.5) (3.6) we deduce that f(x, uj , vj), g(x, uj , vj) con-
verge with σ(LM ×LM , EM ×EM ). So the same proof of lemma 3.5 shows that
the Palais-Smale condition is satisfied. �

Proof of Theorem 3.6 Let us show that for ‖(u, v)‖ = r sufficiently small,
J(u, v) ≥ α > 0. By (H2) and iii), for a.e x ∈ Ω, for all ξ ∈ R,and for all
h ∈ [0, 1], we have

G(x, ξ, η) ≤ 1
2

[ 1
σ0 + 1

ξf(x, ξ, η) +
1

θ0 + 1
ηg(x, ξ, η)

]
≤ c1

2

[ 1
σ0 + 1

M
( ξ

K1

)
+

1
θ0 + 1

M
( η

K1

)]
≤ c1

2

[
hσ1+1M

( Kξ
hK1

)
+ hθ1+1M

( Kη
hK1

)]
on the other hand, in virtue of i) there exists c > 0 such that for all (u, v) ∈
W 1,p

0 (Ω)2 we have
‖u‖M + ‖v‖M ≤ c‖(u, v)‖.
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Whence for ‖(u, v)‖ = r ≤ K1
cK and h = cKr

K1
we get∫

Ω

M(
u

cr
) ≤ 1 and

∫
Ω

M(
v

cr
) ≤ 1.

Hence ∫
Ω

G(x, u, v)dx ≤ c1
2

[
hσ1+1 + hθ1+1

]
≤ c′

[
‖(u, v)‖σ1+1 + ‖(u, v)‖θ1+1

]
The same proof as in Theorem 3.1 gives (u, v) ∈ (W 1,p

0 (Ω))2, u 6≡ 0, v 6≡ 0,
solution of (1.1). The rest of the proof is a consequence of the following lemma.
�

Lemma 3.8 Under the hypotheses of Theorem 3.6, if (u, v) is a solution of
(1.1) then (u, v) ∈ C1,ν(Ω̄)× C1,ν(Ω̄).

Proof. This proof is inspired by the work of De Thélin [8] and Otani [6] (see
also [7]).
In view of iii), there exists s > 1 such that uf(x, u, v) ∈ Ls(Ω) and vg(x, u, v) ∈
Ls(Ω). Consider the following sequences:

q1 = 2ps∗ =
2ps
s− 1

, qk+1 = 2(p+ qk)

mk = s∗qk.

Multiplying the first equation of (1.1) by |u|qku and the second equation by
|v|qkv, we obtain:∫

Ω

|∇u|p−2∇u∇(|u|qku) =
∫

Ω

uf(x, u, v)|u|qk∫
Ω

|∇v|p−2∇v∇(|v|qkv) =
∫

Ω

vg(x, u, v)|u|qk

by Hölder’s inequality we deduce that

( p

p+ qk

)p
∫

Ω

|∇u
p+qk

p |p =
∫

Ω

f(x, u, v)|u|qku

≤‖uf(., u, v)‖s‖uqk‖s∗

≤c‖u‖qk
s∗ .

(3.7)

Since the imbedding W 1,p
0 (Ω) ↪→ L2ps∗(Ω) is compact, there exists K > 0 such

that

‖u‖p+qk

2s∗(p+qk) ≤ Kp

∫
Ω

|∇u
p

p+qk |p. (3.8)
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By combining (3.7) and (3.8) we have

‖u‖mk+1/(2s∗)
2s∗(p+qk) ≤ c

(K(p+ qk)
p

)p‖u‖mk/s∗

mk
.

Since p+ qk ≤ 4kps∗ we get

‖u‖mk+1
mk+1

≤ c2s∗(4Ks∗)2ps∗42(k−1)ps∗‖u‖2mk
mk

.

Set Ek = mk log ‖u‖mk
, a = 42ps∗ , b = log[c2s∗(2Ks∗)2ps∗ ] and rk = b + (k −

1) log a. We obtain
Ek+1 ≤ rk + 2Ek

then, by the result’s of Otani [6] we deduce that

‖u‖∞ ≤ lim sup
k→+∞

exp
(Ek

mk

)
< +∞.

Finally, by the regularity of Tolksdorf’s results u ∈ C1,ν(Ω̄). In the same way
we have v ∈ C1,ν(Ω̄). �

Example Let f(x, ξ, η) = ξσ exp(ξq − ηr), g(x, ξ, η) = ηθ exp(−ξq + ηr), σ >
2p − 1, θ > 2p − 1, N ≥ 2, 0 < r, q < p

p−1 , and M(ξ) = |ξ|σ+θ+1−l(e|ξ|
l − 1)

with max(p, r) < l < 2 hence the functions f and g satisfy the hypothesis (H1),
(H2), (i), (ii), (iii) and (iv). Then

−∆pu = uσ exp(uq − vr) in Ω

−∆pv = vθ exp(−uq + vr) in Ω
u = v = 0 on ∂Ω,

has a positive solution (u, v) ∈ (W 1,p
0 (Ω)× C1,ν(Ω̄))2.
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