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Monotone method for nonlinear nonlocal

hyperbolic problems ∗

Azmy S. Ackleh & Keng Deng

Abstract

We present recent results concerning the application of the monotone
method for studying existence and uniqueness of solutions to general first-
order nonlinear nonlocal hyperbolic problems. The limitations of compari-
son principles for such nonlocal problems are discussed. To overcome these
limitations, we introduce new definitions for upper and lower solutions.

1 Introduction

This paper is concerned with the first-order hyperbolic initial-boundary value
problem

ut + (g(x, t)u)x = F (x, t, u, φ(u)(x, t)) in DT ,

g(a, t)u(a, t) =
∫ b

a

β(y, t)u(y, t)dy on (0, T ),

u(x, 0) = u0(x) in [a, b] .

(1.1)

Here DT = (a, b) × (0, T ) for some T > 0, 0 ≤ a < b ≤ ∞, and φ is a
function of u. Problem (1.1) often arises in applications. For example, the well-
known size-structured model, where F (x, t, u, φ) = −m (x, t, φ)u and φ(u)(t) =∫ b
a
d(y)u(y, t)dy, fits under the class of problems given in (1.1). For the size-

structured model g, m and β denote the individuals growth, mortality and
reproduction rates, respectively, and φ denotes a population weight.

There are three common methods used in the literature to prove the exis-
tence and uniqueness of solutions to certain cases of (1.1). One is the semigroup
of operators theoretical approach. This approach is very elegant but has been
applied only to special cases where the parameters are time-independent, i.e.,
g = g(x) and β = β(x). The idea is to write the PDE as an abstract evolution
equation of the form du/dt = Au + F(u), u(0) = u0 and show that A is the
infinitesimal generator of a C0-semigroup of operators, and hence establish the
existence and uniqueness of solutions under some regularity conditions on the
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mapping F(u) (see, e.g.,[1, 9, 11]). The second approach is based on the clas-
sical characteristics method [12, 14]. This approach is, in general, feasible and
relatively easy to apply provided the function F (x, t, u, φ) is linear in u. In such
a case one can obtain an implicit representation of the solution and use this
representation to transform the PDE into an equivalent system of nonlinear in-
tegral equations. Then the contraction mapping principle is applied to establish
the result. The third approach to study the well-posedness of solutions is via
the finite difference approximation technique used for the classical conservation
laws (see, e.g., [13, 15]). The crucial step in this technique is to show that the
developed finite difference approximation has a bounded total variation. Then,
through the compact imbedding of the space of functions of bounded variation
in L1(a, b) one can extract a convergent subsequence and show that the limit is
indeed a solution [2, 8, 10]. Application of such a technique results not only in
the existence of solutions but also in a numerical scheme that can be used to
investigate the solution quantitatively.

The goal of this paper is to present recent results on the employment of the
monotone method for investigating the existence and uniqueness of solutions of
(1.1). The idea behind such a method is to replace the actual solution in all the
nonlinear and nonlocal terms with some previous guess for the solution, then
solve the resulting linear model to obtain a new guess for the solution. Iteration
of such a procedure yields the solution of the original problem upon passage
to the limit. A novelty of such a technique when applied to (1.1) is that an
explicit solution representation for each of these iterates is obtained, and hence
an efficient numerical scheme can be developed (see [4, 5]). The key step is a
comparison principle between consecutive guesses.

To carry out our program, let CB(Ω) denote the space of continuous and
uniformly bounded functions on Ω. The following assumptions will be imposed
on our parameters throughout the paper:

(A1) g ∈ C1
B(DT ), g > 0 on [a, b)×[0, T ]. In addition, if b <∞ then g(b, t) = 0,

t ∈ [0, T ]. Otherwise, limx→∞ g(x, t) = 0 for t ∈ [0, T ].

(A2) β ∈ CB(DT ) is a nonnegative function.

(A3) F ∈ C1
B(DT × R× R).

(A4) u0 ∈ C1
B(a, b) is nonnegative and satisfies the compatibility condition

g(a, 0)u0(a) =
∫ b

a

β(y, 0)u0(y)dy.

It is worth noting that (A4) can be considerably relaxed for certain cases (see,
e.g., [4, 6, 7]).

The paper is organized as follows. In Section 2, we present a comparison
principle and show that this principle holds for the case Fφ(x, t, u, φ) ≥ 0. In
Section 3, we discuss the case Fφ(x, t, u, φ) ≤ 0. Section 4 is devoted to the
case where Fφ has no sign restriction. An unbounded domain (i.e., b = ∞) is
considered in Section 5.
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2 The case Fφ(x, t, u, φ) ≥ 0

In this section we assume that g = g(x), β = β(x), b < ∞, φ(u)(t) =∫ b
a
u(y, t)dy, Fφ ≥ 0 and Fu +M ≥ 0 for some positive constant M . We begin

with the definition of upper and lower solutions of problem (1.1).

Definition 2.1 A function u(x, t) is called an upper (a lower) solution of (1.1)
on DT if all the following hold.

(i) u ∈ C(DT ) ∩ L∞(DT ).

(ii) u(x, 0) ≥ (≤) u0(x) in [a, b].

(iii) For every t ∈ (0, T ) and every nonnegative ξ(x, t) ∈ C1(DT ),∫ b

a

u(x, t)ξ(x, t)dx

≥ (≤)
∫ b

a

u(x, 0)ξ(x, 0)dx+
∫ t

0

ξ(a, τ)
∫ b

a

β(x)u(x, τ) dx dτ

+
∫ t

0

∫ b

a

u(x, τ)[ξτ (x, τ) + g(x)ξx(x, τ)] dx dτ

+
∫ t

0

∫ b

a

ξ(x, τ)F (x, τ, u, φ(u)(τ)) dx dτ.

The following comparison principle is established in [3]. To our knowledge,
this result is the only comparison result for problem (1.1) available in the liter-
ature.

Theorem 2.2 Let u and v be an upper solution and a lower solution of (1.1),
respectively. Then u ≥ v in DT .

Next we construct the following monotone approximation. Let u0 and u0 be
a lower solution and an upper solution of (1.1), respectively. For k = 1, 2, . . .
let uk and uk satisfy the uncoupled systems

(uk)t + (guk)x = F (x, t, uk−1, φ(uk−1))−M(uk − uk−1) in DT ,

g(a)uk(a, t) =
∫ b

a

β(y)uk(y, t)dy on (0, T ),

uk(x, 0) = u0(x) in [a, b]

and

(uk)t + (guk)x = F (x, t, uk−1, φ(uk−1))−M(uk − uk−1) in DT ,

g(a)uk(a, t) =
∫ b

a

β(y)uk(y, t)dy on (0, T ),

uk(x, 0) = u0(x) in [a, b].
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The functions uk and uk exist since they satisfy linear equations. Furthermore,
it can be shown that (see [3])

u0 ≤ u1 ≤ · · · ≤ uk ≤ uk ≤ · · · ≤ uk ≤ u0 in DT .

The following convergence result was established in [3].

Theorem 2.3 Let u0 and u0 be a lower solution and an upper solution of (1.1),
respectively, and they are continuously differentiable in t. Then the monotone
sequences defined above converge in L2(a, b) to the unique solution u(x, t) uni-
formly on 0 ≤ t ≤ T . Moreover, the order of convergence is linear.

In [3] it was shown via a counter example that the restriction Fφ ≥ 0 is
necessary for establishing a comparison between upper and lower solutions. To
overcome this obstacle, in the next section we define a new pair of upper and
lower solutions and use this definition to establish a comparison principle.

3 The case Fφ(x, t, u, φ) ≤ 0

In this section we restrict our attention to the case F (x, t, u, φ) = −m(x, t, φ)u.
We assume that b < ∞, φ(u)(t) =

∫ b
a
u(y, t)dy, and mφ ≥ 0. We introduce the

following definition of upper and lower solutions.

Definition 3.1 A pair of functions u(x, t) and v(x, t) are called an upper so-
lution and a lower solution of (1.1) on DT , respectively, if all the following
hold.

(i) u, v ∈ L∞(DT ).

(ii) u(x, 0) ≥ u0(x) ≥ v(x, 0) in [a, b].

(iii) For every t ∈ (0, T ) and every nonnegative ξ(x, t) ∈ C1(DT ),

∫ b

a

u(x, t)ξ(x, t)dx

≥
∫ b

a

u(x, 0)ξ(x, 0)dx+
∫ t

0

ξ(a, τ)
∫ b

a

β(x, τ)u(x, τ) dx dτ

+
∫ t

0

∫ b

a

[ξτ (x, τ) + g(x, τ)ξx (x, τ)]u(x, τ) dx dτ

−
∫ t

0

∫ b

a

ξ(x, τ)m(x, τ, φ(v)(τ))u(x, τ) dx dτ

(3.1)
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and ∫ b

a

v(x, t)ξ(x, t)dx

≤
∫ b

a

v(x, 0)ξ(x, 0)dx+
∫ t

0

ξ(a, τ)
∫ b

a

β(x, τ)v(x, τ) dx dτ

+
∫ t

0

∫ b

a

[ξτ (x, τ) + g(x, τ)ξx (x, τ)]v(x, τ) dx dτ

−
∫ t

0

∫ b

a

ξ(x, τ)m(x, τ, φ(u)(τ))v(x, τ) dx dτ.

(3.2)

A function u(x, t) is called a solution of (1.1) on DT if u satisfies (3.1) with
“≥” replaced by “=” and φ(v)(τ) by φ(u)(τ). Based on this definition, the
following comparison result was established in [4].

Theorem 3.2 Let u and v be a nonnegative upper solution and a nonnegative
lower solution of (1.1), respectively. Then u ≥ v a.e. in DT .

As a consequence, the following uniqueness result can be proved (see [4]).

Theorem 3.3 Let u(x, t) be a nonnegative solution of (1.1) with φ(u)(t) ∈
C([0, T ]). Then u is unique.

We now construct monotone sequences of upper and lower solutions. To this
end, let u0(x, t) and u0(x, t) be a nonnegative lower solution and a nonnegative
upper solution of (1.1), respectively. We then define two sequences

{
uk

}∞
k=0

and
{
uk

}∞
k=0

as follows: For k = 1, 2, . . .

ukt + (g(x, t)uk)x = −m(x, t, φ(uk−1))uk in DT ,

g(a, t)uk(a, t) = Bk−1(t) on (0, T ),

uk(x, 0) = u0(x) in [a, b],

where Bk−1(t) ≡
∫ b
a
β(y, t)uk−1(y, t)dy, and

ukt + (g(x, t)uk)x = −m(x, t, φ(uk−1))uk in DT ,

g(a, t)uk(a, t) = B
k−1

(t) on (0, T ),

uk(x, 0) = u0(x) in [a, b],

where B
k−1

(t) ≡
∫ b
a
β(y, t)uk−1(y, t)dy.

Since Bk−1 and B
k−1

are given functions, the existence of solutions uk and
uk easily follows. Furthermore, we can show that these sequences satisfy

u0 ≤ u1 ≤ · · · ≤ uk ≤ uk ≤ · · · ≤ u1 ≤ u0 a.e. in DT .

Upon establishing the monotonicity of our sequences, we can prove the following
convergence result (see [4]).
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Theorem 3.4 Suppose that u0(x, t) and u0(x, t) are a nonnegative lower solu-
tion and a nonnegative upper solution of (1.1), respectively. Then, the sequences{
uk

}∞
k=0

and
{
uk

}∞
k=0

converge uniformly to the unique solution u(x, t) of prob-
lem (1.1) on DT . Moreover, the order of convergence is linear.

Remark 3.5 In [4] this monotone method was used to numerically solve (1.1).
The resutls in that paper indicate that such a scheme converges rapidly to the
solution.

4 No restriction on the sign of Fφ(x, t, u, φ)

In this section we assume that b < ∞, φ(u)(t) =
∫ b
a
d(y)u(y, t)dy, and that

F (x, t, u, φ) = −m(x, t, φ)u with M + mφ ≥ 0 for some positive constant M .
Consider the following new definition of upper and lower solutions:

Definition 4.1 A pair of functions u(x, t) and v(x, t) are called an upper so-
lution and a lower solution of (1.1) on DT , respectively, if all the following
hold.

(i) u, v ∈ L∞(DT ).

(ii) u(x, 0) ≥ u0(x) ≥ v(x, 0) a.e. in (a, b).

(iii) For every t ∈ (0, T ) and every nonnegative ξ(x, t) ∈ C1(DT ),∫ b

a

u(x, t)ξ(x, t)dx

≥
∫ b

a

u(x, 0)ξ(x, 0)dx+
∫ t

0

ξ(a, τ)
∫ b

a

β(x, τ)u(x, τ)dx dτ

+
∫ t

0

∫ b

a

[ξτ (x, τ) + g(x, τ)ξx (x, τ)]u(x, τ) dx dτ

−
∫ t

0

∫ b

a

ξ(x, τ) [m(x, τ, φ(v)(τ)) +Mφ(v)(τ)−Mφ(u)(τ)]u(x, τ) dx dτ

(4.1)
and∫ b

a

v(x, t)ξ(x, t)dx

≤
∫ b

a

v(x, 0)ξ(x, 0)dx+
∫ t

0

ξ(a, τ)
∫ b

a

β(x, τ)v(x, τ) dx dτ

+
∫ t

0

∫ b

a

[ξτ (x, τ) + g(x, τ)ξx (x, τ)]v(x, τ) dx dτ

−
∫ t

0

∫ b

a

ξ(x, τ) [m(x, τ, φ(u)(τ)) +Mφ(u)(τ)−Mφ(v)(τ)] v(x, τ) dx dτ.

(4.2)
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A function u(x, t) is called a solution of (1.1) on DT if u satisfies (4.1) with “≥”
replaced by “=” and φ(v)(τ) by φ(u)(τ). Using this definition, we establish the
following comparison principle [6].

Theorem 4.2 Let u and v be a nonnegative upper solution and a nonnegative
lower solution of (1.1), respectively. Then u ≥ v a.e. in DT .

Furthermore, we prove the following uniqueness result.

Corollary 4.3 Let u(x, t) be a nonnegative solution of (1.1) with φ(u)(t) ∈
C([0, T ]). Then u is unique.

We now construct a pair of nonnegative lower and upper solutions of (1.1).
Let u0(x, t) = 0. Choose a constant γ large enough such that

max
DT

β(x, t)/min
[0,T ]

g(a, t) ≤ γ/2.

Fix this γ and choose δ large enough such that

‖u0‖∞ ≤ (δ/2) exp(−γb).

Now choose σ large enough such that

σ ≥ 2Mδ‖η‖∞ exp(−γa)/γ + γmax
DT

g(x, t) + max
DT

|gx(x, t)|.

Let u0(x, t) = δ exp(σt) exp(−γx). Then it can be easily shown that u0 and
u0 are a pair of lower and upper solutions of (1.1) on [a, b] × [0, T0] with
T0 = min{T, (ln 2)/σ}. We then define two sequences

{
uk

}∞
k=0

and
{
uk

}∞
k=0

as follows:
For k = 1, 2, . . .

ukt + (g(x, t)uk)x = −Dk−1(x, t)uk in DT0 ,

g(a, t)uk(a, t) = Bk−1(t) on (0, T0),

uk(x, 0) = u0(x) in [a, b],

(4.3)

where

Dk−1(x, t) = m(x, t, φ(uk−1)) +Mφ(uk−1)−Mφ(uk−1),

Bk−1(t) ≡
∫ b

a

β(y, t)uk−1(y, t)dy,

and
ukt + (g(x, t)uk)x = −Ek−1(x, t)uk in DT0 ,

g(a, t)uk(a, t) = B
k−1

(t) on (0, T0),

uk(x, 0) = u0(x) in [a, b],

(4.4)
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where

Ek−1(x, t) = m(x, t, φ(uk−1)) +Mφ(uk−1)−Mφ(uk−1)

B
k−1

(t) ≡
∫ b

a

β(y, t)uk−1(y, t)dy.

The existence of solutions to problems (4.3) and (4.4) follows from the fact that
Bk−1 and B

k−1
are given functions.

By similar reasoning, we can show that uk ≤ uk+1 ≤ uk+1 ≤ uk and that
uk+1 and uk+1 are also a lower solution and an upper solution of (1.1), respec-
tively. Thus by induction, we obtain two monotone sequences that satisfy

u0 ≤ u1 ≤ · · · ≤ uk ≤ uk ≤ · · · ≤ u1 ≤ u0 a.e. in DT0 .

Hence, it follows from the monotonicity of the sequences
{
uk

}∞
k=0

and
{
uk

}∞
k=0

that there exist functions u and u such that uk → u and uk → u pointwise in
DT0 . It is not too difficult to argue that u = u a.e. in DT0 . We denote this
common limit by u.

Upon establishing the monotonicity of our sequences, we can also prove the
following convergence result.

Theorem 4.4 The sequences
{
uk

}∞
k=0

and
{
uk

}∞
k=0

converge uniformly along
characteristic curves to a limit function u(x, t). Moreover, the function u is the
unique solution of problem (1.1) on [a, b]× [0, T0].

Remark 4.5 It is not too difficult to show that this local solution is indeed a
global solution.

5 Unbounded Domains

This section is concerned with a special model which describes the aggregation
of phytoplankton (see [9]). Here a = 0, b = ∞,

φ(u) (x, t) =
1
2

∫ x

0

η(x− y, y)u(x− y, t)u(y, t)dy −
∫ ∞

0

η(x, y)u(x, t)u(y, t)dy

and
F (x, t, u, φ) = φ+ f(x, t)u.

We assume that η and f are bounded continuous functions. Let C1
0,r(DT ) =

{ψ ∈ C1(DT ) : ∃ xψ ∈ (0,∞) such that ψ ≡ 0 for x ≥ xψ}. We then introduce
the following definition of coupled upper and lower solutions of problem (1.1).

Definition 5.1 A pair of functions u(x, t) and v(x, t) are called an upper so-
lution and a lower solution of (1.1) on DT , respectively, if all the following
hold.
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(i) u, v ∈ L∞((0, T );L1(0,∞)).

(ii) u(x, 0) ≥ u0(x) ≥ v(x, 0) a.e. in (0,∞).

(iii) For every t ∈ (0, T ) and every nonnegative ξ ∈ C1
0,r(DT ),∫ ∞

0

u(x, t)ξ(x, t)dx

≥
∫ ∞

0

u(x, 0)ξ(x, 0)dx+
∫ t

0

ξ(0, τ)
∫ ∞

0

β(x, τ)u(x, τ) dx dτ

+
∫ t

0

∫ ∞
0

[ξτ (x, τ) + g(x, τ)ξx(x, τ)]u(x, τ) dx dτ

+
∫ t

0

∫ ∞
0

ξ(x, τ)F(u)(x, τ) dx dτ

−
∫ t

0

∫ ∞
0

ξ(x, τ)
∫ ∞

0

η(x, y)u(x, τ)v(y, τ)dydxdτ

(5.1)

and ∫ ∞
0

v(x, t)ξ(x, t)dx

≤
∫ ∞

0

v(x, 0)ξ(x, 0)dx+
∫ t

0

ξ(0, τ)
∫ ∞

0

β(x, τ)v(x, τ) dx dτ

+
∫ t

0

∫ ∞
0

[ξτ (x, τ) + g(x, τ)ξx(x, τ)]v(x, τ) dx dτ

+
∫ t

0

∫ ∞
0

ξ(x, τ)F(v)(x, τ) dx dτ

−
∫ t

0

∫ ∞
0

ξ(x, τ)
∫ ∞

0

η(x, y)v(x, τ)u(y, τ)dydxdτ,

(5.2)

where

F(w)(x, t) =
1
2

∫ x

0

η(x− y, y)w(x− y, t)w(y, t)dy + f(x, t)w(x, t).

A function u(x, t) is called a solution of (1.1) on DT if u satisfies (5.1) with “≥”
replaced by “=” and v(y, τ) in the last integral by u(y, τ).

The following comparison principle was established in [7].

Theorem 5.2 Let u and v be a nonnegative upper solution and a nonnegative
lower solution of (1.1), respectively. Then u ≥ v a.e. in DT .

Corollary 5.3 Let u and u be a nonnegative lower solution and a nonnegative
upper solution of (1.1), respectively. If u is a solution of (1.1), then u ≤ u ≤ u
a.e. in DT .
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We now construct monotone sequences of upper and lower solutions. Sup-
pose that u0(x, t) and u0(x, t) are a pair of lower and upper solutions of (1.1).
Since f and η are bounded we can choose a positive constant M such that
M −

∫∞
0
η(x, y)u(y, t)dy + f(x, t) ≥ 0 for (x, t) ∈ DT and u0(x, t) ≤ u(x, t) ≤

u0(x, t). We then set up two sequences {uk}∞k=0 and {uk}∞k=0 by the following
procedure:
For k = 1, 2, . . . let uk and uk satisfy the systems

ukt + (guk)x = F(uk−1)−M(uk − uk−1)− uk−1

∫ ∞
0

η(x, y)uk−1(y, t)dy in DT ,

g(0, t)uk(0, t) =
∫ ∞

0

β(y, t)uk−1(y, t)dy on (0, T ),

u(x, 0) = u0(x) in [0,∞)

and

ukt + (guk)x = F(uk−1)−M(uk − uk−1)− uk−1

∫ ∞
0

η(x, y)uk−1(y, t)dy in DT ,

g(0, t)uk(0, t) =
∫ ∞

0

β(y, t)uk−1(y, t)dy on (0, T ),

u(x, 0) = u0(x) in [0,∞).

By induction, we can show that the sequences satisfy

u0 ≤ u1 ≤ · · · ≤ uk ≤ uk ≤ · · · ≤ u1 ≤ u0 a.e. in DT .

Then, we have the following existence-uniqueness result.

Theorem 5.4 Suppose that u0(x, t) and u0(x, t) are a nonnegative lower solu-
tion and a nonnegative upper solution of (1.1), respectively. Then there exist
monotone sequences {uk(x, t)} and {uk(x, t)} which converge to the unique so-
lution of (1.1).

Remark 5.5 As an example, for a large class of initial data such as u0(x) =
O(e−x) as x → ∞, we can construct a pair of nonnegative lower and upper
solutions of (1.1) as follows: Let u0(x, t) = 0 and u0(x, t) = c3e

c2t/(1 + c21x
2)

with c1, c2, c3 positive constants. First choose c1 so large such that

πmax
D1

β(x, t)/min
[0,1]

g(0, t) ≤ c1.

Fix this c1 and choose c3 large enough such that c3/(1 + c21x
2) ≥ u0(x) for

0 ≤ x <∞. We then determine c2. Through a routine calculation, we find∫ x

0

dy

[1 + c21(x− y)2](1 + c21y
2)

=
2
c21x

[
c1x tan−1(c1x) + log(1 + c21x

2)
4 + c21x

2

]
≤ 2(1 + π)
c1(1 + c21x

2)
.
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Thus we can choose c2 sufficiently large such that

c2 ≥
2c3
c1

(1 + π) + max
D1

g(x, t) + max
D1

|f(x, t)− gx(x, t)|.

Then it follows that u0 is a desired upper solution of (1.1) on DT with T =
min{1, log 2/c2}.

We now show that the solution of (1.1) has the following property.

Theorem 5.6 For the solution u(x, t) of (1.1), P (t) =
∫∞
0
u(x, t)dx is contin-

uous in the existence interval.

Finally, we establish the existence of a global solution.

Theorem 5.7 The unique solution of (1.1) exists for 0 ≤ t <∞.
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