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Abstract
We develop an efficient numerical method for studying the existence
and non-existence of global solutions to the initial-boundary value problem

Ut = Uge 0 <z <00, t>0,
—uz (0,8) = h(u(0,1)) t >0,
u(z,0) = f(z), u(z,0)=g(z) 0<zx<oo.

The results by this numerical method corroborate the theory presented in
[1]. Furthermore, they suggest that blow-up can occur for more general
nonlinearities h(u) with weaker conditions on the initial data f and g.

1 Introduction

In this paper, we consider the initial-boundary value problem
Ut = Uy 0< <00, t>0,
—uz(0,t) = h(u(0,t)) ¢ >0, (1.1)
u(z,0) = f(z), w(z,0)=g(x) 0<z<oo.
Here we assume that h(u) is continuous with lim,,_, o, h(u) = 0o, ¢ is continuous,
and f is continuously differentiable. To motivate our work for problem (1.1), we

point out that this problem has been recently studied by the authors in [1]. For
completeness, the main results obtained in that paper are presented as follows:

Theorem 1.1 There exists at least one mild solution of (1.1) on [0, 00) % [0, Tp)
for some Ty > 0. Moreover, if h(u) is Lipschitz continuous, then the solution is
unique.

Theorem 1.2 Suppose that |h(u)| < p(|u]) with p(r) > 0 continuous, nonde-
creasing on [0,00), and such that

then all mild solutions of (1.1) are global.
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Theorem 1.3 Suppose that f(t) + fotg(s)ds > 0 (£ 0) on [0,00) and that
h(u) > o(|u]) with o(r) > 0 continuous, nondecreasing on [0,00), and such that

then every mild solution of (1.1) blows up in finite time.

Theorem 1.4 Suppose that [~ f(t)dt + [;° fot g(s)dsdt > 0 and h(u) > clul?
(p > 1, ¢ > 0), then the mild solution of (1.1) blows up in finite time.

In [1], we point out that the blow-up occurs on the boundary z = 0 only.
Moreover, using asymptotic techniques for integral equations [4] we establish
the following blow-up rates: Letting T}, be the blow-up time,

_1
o If h(u) ~ uP, then u(0,t) ~ (pil)”‘l (T, — t)fﬁ as t — Ty;
o If h(u) ~ e*, then u(0,t) ~ log (ﬁ) ast — Ty.

The goal of this paper is to develop a numerical method for solving (1.1). In
Section 2 we discuss the numerical approximation while in Section 3, we present
numerical examples. In Section 4, we conclude with some remarks.

2 Time-Adaptive Method

We begin this section by integrating (1.1) along characteristics to obtain the
following integral representation of solutions: For t < z,

x4+t
w(z, ) = %[f(:r )+ fl— 1)+ % /4 g(s)ds, (2.1)
and for t > =,
t+x t—x
u(a, 1) :%[f(t—kx)—kf(t—x)]—k%[/o g(s)ds+/0 9(s)ds|

o (2.2)
+ /0 h(u(0, 7))dr.

A solution to the integral equations (2.1)-(2.2) defines a mild solution to the
problem (1.1). Furthermore, if the initial data f and g are smooth and satisfy
some compatibility conditions, then one can argue that a solution of (2.1)-
(2.2) is also a strong solution of (1.1). Our numerical method will focus on the
approximation of (2.1)-(2.2) rather than (1.1). This provides an efficient scheme
which does not require a rather strong regularity assumption on the initial data.
Substituting = 0 in (2.2), we get the Volterra integral equation

u(0,t) = f(¢) —|—/ g(s)ds+ [ h(u(0,7))dr. (2.3)

0 0
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Since blow-up occurs only on the boundary x = 0, a special attention will be

devoted to the development of an approximation of u(0,t) particularly near the

blow-up time T3. Once this is achieved, the approximations of the blow-up time

Ty, and u(0, t) are used to compute u(x,t) from the equations (2.1)-(2.2). To this

end, differentiating (2.3) we get the following differential equation for u(0,t):
du(0,t)  df(t)

7 = W + g(t) + h(u(()?t))

Let At > 0 be sufficiently small. Using Taylor approximation (formally) we
observe that

du(0,t)  d?u(0,¢)
t
a1 ap

A key idea in our scheme is to adapt the time step in order to keep the quantity

|u(0, t+At)—u(0,t)] ~ |At%\ bounded by a fixed constant. Since h(u) — oo
as u — oo and blow-up occurs at T, we see that % — 00, as t — Tp.
In particular, as ¢ — T} the size of the time step must approach zero if the
magnitude of Atw is to remain bounded by a fixed constant. This forces

the numerical approximation not to go beyond the blow-up time. Making use
of this fact we now present a time-adaptive algorithm for computing u(0,¢) and
the blow-up time Tj.

Let Atmin and Atpax be fixed numbers with 0 < Afpin < Atmax < 00.
Let u) be the approximation of u(0,t;) with tg = 0 and At; = t; —t;_1 €
[Atmin, Atmax]. Denote by

u(0,t + At) —u(0,t) = A A, €€ (t,t+ Ab).

i i—1
Uy — Yo

(Ut)(i) = th

the difference approximations of u:(0,¢;). Guess an initial time step A¢; and
fix a scaling factor a > 1. Choose constants d; and d, such that d; < d,.
The following is a pseudo code for the time-adaptive algorithm that we have
developed:
for 1=1,2,...
if At (u)f| < dy
then
if +>2
then
if At; < Atpax
then
if At](up)b| and At q|(ue)b b < dy
then
Ati_;,_l = HliIl(Oé Ati, Atmax)
else
Ati+1 = Atz
end
else
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At = Aty
end
else
Ati_;,_l = Atz
end
1=1+1
else A
At; = ti
a

end

done

Our adaptive method changes the current time step if one of the following
two cases arises. The first case is that if At; |(ut)6‘ > d,, then the approximated
quantity \uéﬂ — up| > d,. In this case the time step is decreased by a factor
of 1/a and the solution is recomputed at the new time step (1/a)At;. The
second case is that if the current time step At; < Atmax, \ugﬂ —up| < d; and
luy — u '] < dj, then this indicates that the time steps used for the last two
iterations are very conservative. Hence, the scheme increases this time step to
min(aAt;, Atyax) in order to save computation time. It is easy to see that near
the blow-up time, the time step At; will decrease until it reaches At,;,. When
this happens the computation stops, and the current time is an approximation
of the blow-up time T;. We remark that the accuracy of the approximations of
Ty, depends on the choice of Atyin.

To compute u) we combine the Runge-Kutta numerical method (see for
example, [5]) with the above time-adaptive algorithm: Let uJ = f (0) and

kl = Ati+ly(ti; Ué)

At; o1
ko = Ati—i—ly(ti + TH_l,UB + 5]{1)
At; |
ks = Ati+1y(ti + TH_I,UB + §k2)
k4 = Ati+1y(ti+1, ’U,é -+ kg),
where ¢ = 0,1,2,..., and At;;; is determined by the time-adaptive method

developed above. Compute ué“ as follows:
) 1
u6+1 = UB + 6 (kl + 2ko + 2k3 + k4) .

Now, to approximate the solution of (2.1)-(2.2) we choose Zmax > 0 and
divide the interval [0, Zmax] into uniform mesh x; with Az = z; —z;_1, j =
0,1,...,m. Denote by S™(a,b, I) the Simpson’s numerical method for integrat-
ing a function I(t) on the interval (a,b) with n subdivisions, and let P"(t) be
the cubic interpolant of the function h(u(0,t)) at the mesh points ¢;. Then we
let u; be the approximation of u(z;,¢;) and compute uz as follows: For t; < x;,

. 1 1
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Relative Error
=
T
I

Figure 1: The relative error between the computed function u(0, t) and the exact
solution tant.

and for t; > x;,

;1
U :é[f(ti + ;) + f(ti — ;)]
1

In the next section we present numerical results which indicate the accuracy of
such an adaptive numerical scheme in computing both w(z,t) and the blow-up
time Tp.

3 Numerical Results

The numerical method developed in the previous section is now used to cor-
roborate and complement theoretical results in our earlier paper [1]. For the
rest of this section let Atmax = 1073, Atpin = 1077, a =2,d, =1, d; = 0.1,
n = 10, Tpax = 5, and m = 200. In the first example we present the accuracy
of our method. To this end, we choose f =0, g = 1 and h(u) = u?. It is not
difficult to show that u(0,¢) = tant, and hence blow-up occurs at t = 7/2. In
|uf — tant;]

At . The computed blow-up time

Figure 1 we show the relative error

Ty, = 1.5704.

In the second example we let f(z) = —(zx — 2)2 + 4, g(z) = 0 and h(u) =
u3. Notice that this choice of initial data does not satisfy the assumptions of
Theorems 1.3-1.4 in Section 1. However, the numerical results presented in
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Figure 2: The computed function u(0,¢) for the data f(x) = —(z — 2)? + 4,
g(z) =0 and h(u) = u?.

Figures 2-3 indicate that blow-up occurs for this choice of functions with an
approximated blow-up time T, = 0.5118.

In our third numerical experiment we examine whether blow-up occurs for
nonlinearities such as h(u) = (1 4+ u)[log(1l + «)]P with initial data that do not
satisfy the assumptions of Theorem 1.4. In Figure 4 we present the numerical
results of u(0,t) for the case p = 6, f(x) = 3e~* cos(20x) — 0.1 and g(z) = 0,
and in Figure 5 we display the 3-D graph of the function wu(z,t). We remark
that the blow-up time is T; = 0.22296.

Using our numerical scheme, we have successfully verified the blow-up rates
given in Section 1 for the functions e* and u? (p > 1). We now use this method
to examine the blow-up rate for the function h(u) = (14 u)[log(1+ u)]?. Before
presenting the numerical results we formally derive such a rate. Near the blow-

up time the values dfd—(tt) and g(t) are negligible when compared to u(0,t), and
hence
du(0,t
1) (14 u(0,1)) o (1 + u(0, )]

Integrating the above we find

dt.

e du To
/u((),t) (1 +u) log(1 + )" J;
Solving for u we get

(b)) 7T
u(0,t) ~ e @=D(Tp=D —1. (3.1)
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Figure 3: The solution u(x,t) for the data f(z) = —(x — 2)? + 4, g(z) = 0 and
h(u) = u3.
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Figure 4: The computed function u(0, t) for the data f(z) = 3¢~ cos(20z) — 0.1
and g(z) = 0 and h(u) = (1 + u)[log(1 + u)]°.
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Figure 5: The computed solution u(x,t) for the data f(z) = 3e™* cos(20z) —0.1
and g(z) = 0 and h(u) = (1 + u)[log(1 + u)]°.

In Table 1 we give numerical results that verify such a blow-up rate. For this
computational purpose we use the following equivalent form of (3.1)

—— = (Tp, — )[log(1 + (0, £))}"~".

p—1

Table 1: The blow-up rate for the function h(u) = (1 + u)(log(1 + w))?.

p 4 6 8 10
Conjectured: =5 | 0.3333 | 0.2 0.1429 | 0.1111
Approximation 0.3205 | 0.1973 | 0.1411 | 0.1106

4 Concluding Remarks

The objective of this paper is to develop a numerical approximation for study-
ing the existence and non-existence of global solutions to the wave equation
with a nonlinear boundary condition. Our numerical results indicate that such
a scheme is very accurate and efficient for computing the blow-up time, the
blow-up rate, and the solution. These results also open up several theoretical
questions: 1) How much can the conditions on the initial data f and g be relaxed
for blow-up to occur? 2) Can one improve Theorem 1.4 for weaker nonlinearties
such as h(u) = (1 + u)[log(1+u)]? (p > 1)? 3) Can one prove the blow-up rate



EJDE/Conf/10 A. S. Ackleh, K. Deng, & J. Derouen 31

given by (3.1) for such nonlinearities? Our future research efforts will focus on
such questions as well as the application of time-adaptive methods to a system
of wave equations coupled in the boundary conditions discussed in [2].

Finally, it is worth mentioning that one can also devise a numerical method
by directly approximating the Volterra integral equation (2.3) using a combi-
nation of the time-adaptive method presented here and numerical quadrature
methods for Volterra integral equations [3].
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