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TIN MELTING: EFFECT OF GRID SIZE AND SCHEME ON
THE NUMERICAL SOLUTION

VASILIOS ALEXIADES, NOUREDDINE HANNOUN, & TSUN ZEE MAI

ABSTRACT. Benchmark solutions in Computational Fluid Dynamics are nec-
essary for testing and for the verification of newly developed algorithms and
codes. For flows involving heat transfer coupled to solid-liquid phase change
and convection in the melt, such benchmark solutions do not exist. A set of
benchmark problems has recently been proposed for melting of metals and
waxes and several researchers responded by providing solutions for the given
problems. It was shown in two recent publications that there were large dis-
crepancies in the results obtained by those contributors. In the present, work
we focus on one of the four test problems, tin melting at Rayleigh number
Ra = 2.5 x 10%. Solutions obtained for several grids and two discretization
schemes are presented and compared. Our results are used to explain the ori-
gin of the discrepancies in earlier results. Suggestions for future work are also
provided.

1. INTRODUCTION

Problems of melting frequently arise in natural and industrial processes [1]. Ap-
plications include river, lake, and polar melting, magma dynamics, thermal energy
storage, casting and molding, crystal growth, welding, coating, and vapor spray de-
position, laser processing, thawing of frozen food, preserved organs, tissue cultures,
and many more.

Mathematical models describing such phase change problems are not amenable
to standard analytical tools when flow in the melt is involved. The problems are
(de facto nonlinear) moving boundary problems. For this reason, the research
community has been actively working, mostly during the last two decades, on the
development of numerical techniques suitable for phase-change problems. This was
motivated by the increasing availability of highly powerful computers along with
efficient software.

Numerical methods dealing with phase change problems may be classified into
three main categories. The first includes front tracking methods [9, 5, 33, 18, 12, 26]
that consider the solid-liquid interface as a boundary between two domains (solid
and liquid) where distinct sets of conservation equations are solved. An additional
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boundary condition is specified at the interface to account for heat transfer between
the two domains. These methods require a moving adaptive grid that distorts as
time proceeds to mimic both shape and position of the interface. Therefore, they
are not suitable for problems involving highly distorted interfaces or mergers and
breakups. The second category of numerical method includes the so called fized
grid techniques [29, 30, 4, 31, 32, 16, 24, 26] for which a single set of equations is
used for the entire computational domain (solid + liquid). Transfer of latent heat
and extinction of velocities in the solid are accounted for through the inclusion of
appropriate source terms in the transport equations. In addition to using a simpler
model, fixed grid techniques (commonly known as enthalpy methods) offer the
highly acknowledged benefit of the possibility of using a fixed Cartesian grid for
the entire calculations. A third category of numerical methods known as Fulerian-
Lagrangian methods [15, 27] attempts to combine features of the other two methods.

The problem of “Gallium melting in a rectangular enclosure heated from the
side” has been one of the most popular problems for assessing the validity of newly
developed techniques for phase change coupled to convection in the liquid. This
problem has received considerable interest from both experimentalists [11, 6, 7]
and CFD (computational fluid dynamics) practitioners [4, 8, 28, 14, 18, 24, 22, 23].
However, all comparisons were mostly qualitative, exhibiting rather large discrep-
ancies among numerical methods and experimental results [4, 18]. The controversial
work of Dantzig [8], and later the illuminating work of Stella and Giangi [23], have
cast a doubt on the validity of past numerical simulations. Both authors have
found flow patterns with several rolls in contrast to other publications where only
a single roll was observed. However, this seems to be contradicted by experimental
observations.

As a result of the lack of a reference solution ( benchmark solution) for phase
change problems, Gobin and Lequere [17] have promoted a comparison exercise with
the purpose of obtaining reference solutions that could be used by code developers
to werify [21] their own code. In that exercise, four test problems were suggested,
two for paraffin waxes (high Prandtl number Pr), and two for metals (low Pr).
The first set of results has been presented in two publications [2, 10], the emphasis
being mostly on a qualitative comparison. The authors concluded that there were
still too large discrepancies between the results from various participants and ar-
gued it would be necessary to perform additional simulations. They suggested that
participants perform grid refinement studies and validate their own codes on sim-
pler configurations. The most striking results were the fact that the less accurate
numerical solutions were actually those which best agreed with experiments.

In this paper, we focus on one of the four test problems of the comparison
exercise [2, 10], Case 2 for tin melting at Rayleigh number Ra = 2.5 x 10°. We
present results obtained with the same code for two discretization schemes. We want
to provide an answer to whether or not the solution presented by most contributors
to the Benchmark exercise were converged or not. We conclude the study by a
discussion about the possible origin of the discrepancies between numerical results
and experiments as well as between results of the contributors to the comparison
exercise.
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FiGure 1. Configuration under study : melting of tin in a square cavity

2. PHYSICAL PROBLEM

The configuration under study is well documented in [2, 10]. A sketch of the
problem is shown in Figure 1. A square cavity (width W = H height) filled with tin
(pure metal) is initially at freezing temperature T' = T (tin is solid). The top and
bottom boundaries are adiabatic (thermally insulated), while the right boundary
is maintained at constant temperature Ty. At time ¢ = 0, the left boundary is
suddenly brought to a hot temperature T} larger than the melting temperature.
Heat transfer by conduction results in the melting of tin in the cavity. Thermal
gradients generate density gradients which in turn drive convection in the liquid
tin. Hence, the solid-liquid interface is no longer planar (as for the pure conduction
regime). We are interested in the motion as well as the shape of the solid-liquid
interface as melting proceeds. The study will also focus on the flow pattern in the
liquid as well as the heat transfer process.

3. MATHEMATICAL MODEL — GOVERNING EQUATIONS

The numerical simulations are carried out based on the transport equations (la—
d) which were developed in [4].

Mass
L yg. (pV) =0 (1a)
ot Yy = A
Momentum
opu - OP
W+V~(qu)—V~(uVu)—%—Au (1b)
0 - OP
LV (Vo) = V- (V) - 5y~ Avt prergBlh =) /ey (10)
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In these equations, p stands for density, T for temperature, P for pressure, 1%
for velocity vector, u and v for x and y components of velocity, h for sensible
enthalpy, AH for latent enthalpy content, p for dynamic viscosity, A for thermal
conductivity, ¢, for specific heat, a for A/c,, 8 for coefficient of thermal expansion,
g for gravitational acceleration, ¢ for time and x and y for Cartesian coordinates.
The subscript “ref” is used for reference quantities.

The flow is assumed to two dimensional, unsteady, and obeys the Navier-Stokes
equations for incompressible Newtonian fluids written in Cartesian coordinates
(eq. la-c). The thermophysical properties (¢,, A, o, p, ) are independent of tem-
perature and are the same for both solid and liquid. The model also assumes that
density p may vary with temperature. However the present simulations assume a
constant density along with the Boussinesq approximation (density variations due
to temperature gradients are accounted for in buoyancy terms).

The present formulation is a one-domain method wherein the same set of equa-
tions is used for both solid and liquid. The material in the cavity is regarded
as a porous medium with porosity varying with liquid fraction through Carman-
Kozenay’s law. The constant A in the source term of the momentum Equations (1b,
1c) has the form:

— V- (pVAH) (1d)

C(1— fr)?

S @
f L +4a

where fr, is the liquid fraction and C' and ¢ are two constants chosen to ensure

driving the velocities to zero in the solid, while maintaining a convergent algorithm.

The source term Sp:

A=—

sn=— 200 v (van) 3)

in the right hand side of the energy equation (1d) accounts for latent enthalpy
transfer during phase change.

4. NUMERICAL METHOD

A finite volume method is used to discretize Equations (la-d) on a Cartesian
uniform grid with staggered arrangement for the velocities [13]. Each equation is
integrated on a control volume centered at a node of the main variable for that equa-
tion. Second order accuracy is retained for quadratures, source terms and diffusion
terms. Convective fluxes are approximated with the formalism of Patankar [19]
which allows one to choose among five different schemes (upwind, hybrid, centered,
exponential, and power law). Time discretization is fully implicit (Euler Back-
ward). Nonlinearity and coupling between the various equations is handled by the
SIMPLER algorithm of Patankar [20].

The energy equation requires a special treatment due to the presence of latent
enthalpy content in the source terms arising from phase change. To obtain the
new enthalpy value h**! for the current outer iteration (k + 1), one needs AH*+1
which itself depends on the unknown solution h**!. The process for handling this
problem is described in [4]. At each outer iteration (k + 1) the latent enthalpy
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content is updated from the values at the previous outer iteration (k) through the
formula:

o
P

k1 k a’i) k Ty, —Ts k
AH =AH erAHah{h —Cp |:LAH +Ts]} (4)
In equation (4), a’ and a%" stand for the central coefficient of the discretized
energy equation and the unsteady term coefficient respectively [4], while wap is
a relaxation factor used to avoid divergence of outer iterations. Latent enthalpy
content AH is related to temperature T' through a linear relationship over a small
interval ¢ = T, — Ts where T;, and T are the liquidus and solidus temperatures
respectively. for T' > T, the latent enthalpy content is equal to the latent heat, L
while for T' < Tg it is zero.
After relation (4) is applied at every node of the computational domain, an
overshoot cutoff procedure (5) is used to ensure that AH lies between 0 and L.

L if AHM>[
k+1 __ =
AHTT = { 0 if AHMI <O ®)

The new enthalpy 2**! may then be obtained from the energy equation (1d) using
the known values of AHF1,

To ensure a better consistency between temperature T" and liquid fraction f7, ob-
tained at a given outer iteration, several sweeps are performed over equations (1d,4).
This amounts to performing an energy update loop within the outer iteration.

The linear systems obtained at each step of the numerical procedure are solved
with two solvers. A BICGSTAB-SIP solver is used for each of u, v, h and pressure
equations while the pressure correction and streamfunction equations are solved
with a CG-SSIP solver. The latter equation is needed to recover the streamlines
from the velocity field for plotting purposes.

5. NUMERICAL PARAMETERS AND EXPERIMENTS

It is a standard practice to pick the numerical range of solidification [Ts,T7]
centered at the physical freezing temperature T¢. For our application, the coldest
boundary temperature is prescribed and equal to Ty. The Maximum Principle
implies that nowhere and at no time should the temperature be smaller than the
melting temperature. This led us to pick the choice: Ts =Ty and Ty, = Ty + €.

Table 1 gives the physical parameter values used for the numerical simulations.
These correspond to Case#2 of the Benchmark problems [2]. Simulations are car-
ried out up to time 1000s for three grids (100 x 100, 200 x 200, and 400 x 400) and
two discretization schemes (upwind and hybrid).

Inner iterations are stopped when the 1-norm of the residual is reduced by a
factor €; set to 10~7 for the u, v, h, and pressure equations, and to 10~° for the
pressure correction equation. In addition, an upper bound is preset for the total
number of inner iterations. This upper bound is grid as well as time dependent for
the pressure correction equation, while a value of 10 works fine for the other four
equations and for all computations.

The convergence criterion for outer iterations is based on a total number of
outer iterations rather than a prescribed value for the residual. The choice of total
number of outer iterations is based on the monitoring of the outer iteration errors
(ratio of the norms of the difference between two consecutive iterates | pF1 — ¢ |
and the difference between the first two iterates, where ¢ stands for any of u, v,
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Tin properties

Thermal conductivity A 60 (W/m K)
Specific heat Cp 200 (J/Kg K)
Coefficient of thermal expansion Jé] 2.67 x 1074 (K1)
Kinematic viscosity v 8 x 1077 (m?/s)
Density P 7,500 (Kg/m?)
Latent heat of fusion L 6 x 10* (J/Kg)
Fusion temperature T 505 (K)

Other parameters

Gravity g 10 (m?/s)
Cavity size (height, width) H,W 0.1 (m)
Hot wall temperature Ty, 508 (K)

Dimensionless numbers

Rayleigh number R, =gB(T, — Ty)H?/av 2.5 x 10°
Prandtl number P.=v/a 0.02
Stefan number St = c, (T, — Ty)/L 0.01

TABLE 1. Physical parameter values

h, or P). The total number of outer iteration is determined by trial and error.
The number selected is one after which the outer iteration error was not decreasing
anymore. The residuals are checked as well to ensure that an appropriate level is
reached. The values for total number of outer iterations and energy sweeps retained
for the various runs are as follows: 60 and 5 for coarse grids (100 x 100), 80 and 1
for fine grids (200 x 200), and 80 and 6 for very fine grids (400 x 400).

The time steps used for the calculations vary from At = 1s down to 0.1s. The
solidification range is set to € = 0.025 and the constants in the momentum source
terms take on the values C' = 10'® and ¢ = 1075, Under-relaxation factors are used
for outer iterations: w, = 0.7, wp = 0.8, wp = 0.9, way = 0.3 where subscripts
refer to the corresponding equation’s main variable.

6. RESULTS

Streamlines. Figures 2 and 3 display the streamlines in the melt as well as the
solid-liquid interface obtained by the upwind and hybrid schemes respectively. The
plots are given at four times, ranging between 250s and 1000s and for three grid
sizes (100 x 100, 200 x 200, and 400 x 400). The solid-liquid interface is where
liquid fraction contour value f; = 0.5. Only part of the computational domain
is displayed: the left boundary of each figure corresponds to the hot wall, while
the solid area to the right of the interface has been truncated. At time 250s, the
upwind scheme (Fig.2) shows one, two, and three rolls for the 100 x 100, 200 x
200, and 400 x 400 grids respectively. A similar scenario may be observed for the
hybrid scheme (Fig.3) at time 400s. As expected, the hybrid scheme is overall more
accurate than the upwind scheme. For example, at time 250s with a 100 x 100 grid,
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(a) 250s (b) 400s (c) 600s (d) 1000s

FI1GURE 2. Upwind scheme : streamlines and solid-liquid interface
at several times for three choices of grid

only one roll is obtained with the upwind scheme while two are gotten with the
hybrid scheme. Similarly, for a 200 x 200 grid, two rolls are obtained with the
upwind scheme and three with the hybrid scheme. At the same time 250s and for
the finer grid 400 x 400, both upwind and hybrid scheme show three rolls but those
for hybrid scheme are stronger than the ones for upwind scheme.
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At later times, a smaller number of rolls remain in the cavity, due to the merging
of the original rolls. Finer grids 400 x 400 capture two rolls at time 1000s even
with the upwind scheme. But this shows that a very fine grid is necessary in
order to get the accuracy desired. That could explain why most of the Benchmark
contributors [2, 10] did not get a two roll structure at that time since they used
grids coarser than 100 x 100.

Interface. The number of rolls present in the liquid has a strong influence on
both the shape and position of the solid-liquid interface. This may be observed
on the interface plots shown in Figure 4 for both upwind and hybrid schemes.
The plots show the solid-liquid interface at several times and for three grid sizes
(100 x 100, 200 x 200, and 400 x 400). The interface moves from left to right as
time increases. At time 100s, the interface is identical for all three grids (and both
schemes). Moreover the interface is flat as for the pure conduction regime. This
is due to the fact that only one roll is present in the cavity and the convection is
not strong enough to affect the interface shape. At time 250s the interface acquires
a wavy shape due to faster melting at the rolls locations (3 bumps for hybrid
scheme and 400 x 400 grid corresponding to 3 rolls in the liquid). As time proceeds,
the depth of the bumps increases and the difference between fine grid and coarse
grid solutions becomes more pronounced. The benchmark contributors [2, 10] were
divided into two groups. In the first group, the largest, contributors found a one
bump interface at time 1000s, while in the second group, a two-bump interface was
reported. Clearly, our results indicate that finer grids will result in more bumps on
the interface for both the upwind and the hybrid scheme. Another interesting fact
to notice is that the interface position at the bottom wall seems to be insensitive to
the accuracy of the solution elsewhere (number of rolls captured). therefore, this
parameter should not be retained as a criterion for evaluating the accuracy of the
solution. On the other hand, the top part of the interface is strongly affected by
the number of rolls present in the cavity.

Number of rolls. Figure 5 summarizes the flow patterns obtained by both upwind
and hybrid scheme for three grid sizes (100 x 100, 200 x 200, and 400 x 400). The
number of rolls present in the cavity at a given time is indicated by a corresponding
number of small circles (3 circles—3 rolls). Each jump or drop of the solid horizontal
line, for a particular choice of scheme and grid size, corresponds to a merging of
two rolls into one. Consequently, the total number of rolls is reduced by one.

The sketch shows that at early times only one roll is present in the cavity. Later,
as many as four rolls are captured for some choices of scheme and grid size. The
number of rolls decreases afterward from four to three, then two, and one, as time
proceeds. It may be noticed that the number of rolls present in the cavity at any
particular time is larger for finer grids and higher order schemes.

Nusselt number. Another parameter monitored by the benchmark contribu-
tors [2, 10] is the average Nusselt number at the hot wall defined by Equation 6.

_ or (Ty —Th)
Nu—//\ - wdy/)\iw H (6)

Figure 6 displays the time evolution of Nu for the upwind scheme (left) and hybrid
scheme (right), and for three choices of grid. The correlation proposed by the
benchmark contributors [2] is also represented in each subfigure.
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(a) 250s (b) 400s (c) 600s (d) 1000s

FIGURE 3. Hybrid scheme : streamlines and solid-liquid interface
at several times for three choices of grid

As may be seen on the plots, coarse grid (100 x 100) curves agree very well with
the correlation. The step like pattern at early times on the Nu curves is due to the
use of an enthalpy method with too coarse a grid. On the other hand, finer grid
solutions return higher values of the Nusselt number and the plots exhibit sudden
drops corresponding to roll merging. The larger values of the Nusselt number for
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FIGURE 4. Solid-liquid interface at times 100, 250, 400, 600, 1000s
for three grid sizes and two discretization schemes
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FIGURE 5. Number of rolls as a function of time for two discretiza-
tion schemes (upwind top and hybrid bottom) and three choices of

grids

finer grids may be explained by the stronger convection in the liquid, resulting in
higher heat transfer near the wall.

Volume of melt. The total fraction of liquid in the cavity as a function of time
is displayed in Figure 7. The volume of melt achieved is seen to increase with the
number of rolls present in the cavity (finer grids and higher order discretization
schemes). Therefore, more accurate solutions are expected to return faster melting
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FIGURE 7. Time evolution of the total fraction of melt in the cavity
for three choices of grid and two discretization schemes

rates. This is a natural expectation since convection is better resolved (stronger)
in the liquid.

CPU requirements. Several machines have been used to perform the compu-
tations. A run with a 100 x 100 grid takes about 15 hours on a Sun Ultra 30
workstation. A 200 x 200 run takes about 60 hours on a CRAY SV1 supercom-
puter, while a 400 x 400 run requires about 240 hours on one processor of a Compaq
Alphaserver SC clusters. These timings are for the Upwind scheme. Runs with the
Hybrid scheme require slightly larger times.

7. CONCLUSION

In the present work we have performed numerical simulations of a tin melting
benchmark problem suggested in [2, 10]. The calculations were done for two choices
of discretization scheme (upwind and hybrid) and three grid sizes (100 x 100, 200 x
200, and 400 x 400). Plots were presented for streamlines in the liquid, solid-liquid
interface, average Nusselt number at the hot wall, and volume of melt in the cavity.

Our results indicate that more rolls are expected in the liquid as grid is refined
and discretization scheme order is increased. In particular, a 100 x 100 grid is not
enough to capture the multiple cell structure of the flow with either the upwind or
the hybrid scheme. The roll structure was shown to have a strong impact on the
solid-liquid interface shape and position. Therefore a judicious choice of grid and
discretization scheme is necessary in order to simulate the flow correctly.

Most contributors to the benchmark exercise [2, 10] used a grid coarser than
100 % 100 along with either the upwind (mostly) or the hybrid discretization scheme.
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Our work indicates that these solutions may not have been sufficiently resolved
spatially. This resulted in a solid-liquid interface with a single bump at time 1000s
in contrast to the two-bump interface shape obtained by four of the benchmark
participants as well as in our work.

“Why do coarse grid solutions agree better with experimental results than fine
grid solutions?” is a question that still needs to be addressed. This issue was
actually raised for the problem of Gallium melting [11], since to date, there are no
experimental results for the melting of tin. We suggest two possible ideas. First,
the experimental setup may not have reproduced exactly the model assumptions.
The two-dimensional assumption generally requires a long cavity in the transverse
direction, uniform initial temperature and isothermal boundaries are generally diffi-
cult to implement experimentally, and the visualization is particularly difficult due
to the opacity of the melt. A second path to follow in order to explain the dis-
crepancies between experiments and numerical results is the validity of the mathe-
matical model and in particular the basic assumptions such as two-dimensionality,
no expansion upon melting, and constant thermophysical properties. This work
has shown that the solution of the mathematical model used for simulating the
benchmark problem is expected to be a multiple-roll solution.

The current work is in progress. Results for higher order schemes and longer
melting times will be presented soon and a summary of all the results obtained will
be compiled.
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