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Nonlinear initial-value problems with positive
global solutions *
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Abstract

We give conditions on m(t), p(t), and f(t,y, z) so that the nonlinear
initial-value problem

W(p(t)y')' + f(t,y,p(t)y’) =0, fort >0,
y(0) =0,  lim p(t)y'(t) = B,

has at least one positive solution for all ¢ > 0, when B is a sufficiently
small positive constant. We allow a singularity at ¢ = 0 so the solution
y'(t) may be unbounded near ¢t = 0.

1 Introduction

We consider the initial-value problem

)+ St ) =0, >0, (1)
y(0) =0, tliré1+ p(t)y'(t)=B, B>0. (1.2)

We allow a singularity at ¢ = 0, and so y’(¢) may not be bounded near ¢ = 0.
However, we require of a solution that it be continuous at ¢ = 0, satisfy (1.1)
a.e. on some interval (0,6), and satisfy (1.2). The singularity may be caused by
the behavior of m or p or f near t = 0 or by some combination of them.

This problem was considered earlier by Zhao [5] and by Maagli and Mas-
moudi [4]. In particular, [5] considered the case that m = p = 1 while [4]
required that m = p. In each of these papers, only one of the initial conditions
(y(0) = 0) was imposed and conditions were specified which guaranteed that
this “incomplete” initial-value problem has infinitely many positive solutions
existing on the entire interval (0,00). Both papers viewed the problem as a
boundary-value problem by imposing a condition at oo, namely

y(t)

A 1.
tggor(t) c>0, (1.3)
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where r(t) = fg(p(s))_l ds. In [5], r(t) reduces to r(t) = t. In both [4] and [5],
the Schauder fixed point theorem is the main tool and the hypotheses imposed
allow the authors to prove existence of at least one solution of the boundary-
value problem for ¢ sufficiently small.

Here, we shall treat the problem in the initial-value form (1.1), (1.2). We
shall impose conditions rather close to those of [4] and [5], and prove that our
initial-value problem has at least one positive solution for B sufficiently small.
Our methods use initial-value techniques, similar to those used already in [1, 2],
and are completely different from the previous papers discussed above. To
get started, we must have a local solution on some interval (0,¢) and for that
purpose, we need a slight generalization of the classical theorem of Carathéodory
[3], which we provide in Section 2.

In Section 3, we prove our main result, which we state below. Let r(t) =

fot(p(:s))’1 ds and assume that
M1: p(t) and m(t) are positive and continuous on (0, 00);

M2: G5 € L1(0,1);

M3: for some positive number, D < oo,
f:(0,00) x (0, Dr(c0)) x (0,D) = R

is a measurable function on (0, 00) x (0, Dr(c0)) x (0, D) and f(¢,-,-) is
continuous on (0, Dr(c0)) x (0, D) for each fixed ¢ € (0, 00);

M4:
‘f(t7 Y, Z)| < hl (ta Y, Z)y + hQ(ta Y, Z)Z
where hi(t,y,z) — 0 and ho(t,y,2) — 0 as (y,z) — (0,0), hy and hy are
nonnegative, and for a > 0, let h(t,y, z) = h1(t,y, 2)r(t) + ha(t, y, 2),
9a(s) =sup{h(s,y,2) : 0 <y < ar(s),0 < z < a},s >0,
and m(s)ga(s) € L'(0, 00) for sufficiently small o > 0.

Theorem 1.1 Under assumptions M1-Mj, there exists v > 0 so that B €
(0,7) implies that the initial-value problem (1.1), (1.2) has at least one solution
existing for 0 <t < oo and satisfying

2 <plwn <
Br(t) 3Br(t)

<y(t) < —=,
5 <) 5
for 0 <t < oco. Moreover, the two limits

i v )

exist, and if r(00) = 0o, the two limits are equal.
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Other than the fact that [4] requires that m = p, the only substantive differ-
ence in our hypotheses is that we do not require that hi, ho be nondecreasing
with respect to y and z, as they do. Of course, we prove existence for an
initial-value problem, not a boundary-value problem as they do.

The key to our proof is that our local existence theorem in Section 2 is
formulated carefully to provide a lower bound on the length of the interval of
existence. In applying it in Section 3, we show that this lower bound gives us
a uniform lower bound on the length of the interval of existence, regardless of
where in the interval [0, co) we start the solution. Thus, we are able to step from
0 to oo inductively, without fear that the sum of the lengths of our intervals will
converge, to complete the proof.

2 Local Solutions

In this section, we consider the initial-value problem

%(p(t)y’)’ + f(t,y,p()y) =0, t>to, (2.1)
y(to) = A, tlirﬁ p(t)y'(t) = B. (2.2)

We use ©1 = y, x2 = p(t)y’ to transform to the two-dimensional system

o= 2
p(t (2.3)
wy = —m(t)f(t, x1,72)
with initial conditions
lim z1(t) = A, lim x5(t) = B. (2.4)
t—td t—tl

Let R(t) = j;to (p(s))~* ds. We shall assume that

L1: There exists b > to such that p(t) and m(t) are positive and continuous
on (to, b)

.1
L2 m € Ll(to,b).

L3: f:S — R, where S = {tg <t <b,A+cR(t) <y < A+dR(t),c < z < d},
and f is measurable in ¢ for each fixed (y, z) and continuous in (y, z) for
each fixed t.

L4: There exists h(t) € L'(tg,b) such that m(t)|f(t, v, 2)| < h(t), almost ev-
erywhere on the set S.

We shall prove the following generalization of Carathéodory’s local existence
theorem. The proof follows the same general lines as the well-known proof in

[3].
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Theorem 2.1 Suppose hypotheses L1-L4 are satisfied. Let 0 < d* < min{d —
B,B — ¢} and suppose § € (0,b) and satisfies j:;”ﬂ h(s)ds < d*. Then, the
initial-value problem (2.1), (2.2) has a solution existing on the interval [to, to+0]
and satisfies

A+ cR(t) <x1(t) < A+ dR(t)
c<xy(t) <d

fortg <t <tyg+p.

Proof: Choose a fixed integer n > 1. Let h, = 3/n and let ¢, = to + kh,, for
k=1,2,--- ,n. Define
IU/Q)n(t):B, for to StStl-
Note that B — d* < ug ,(t) < B+ d* for tg <t <t;. Also define
t
Ui (t) = A+/ U2n() g g b <t <ty
to p(s)
It follows that
(B~ d")R(t) < urat) — A < (B +d")R(1)

and so
A+ (B—=d)R(t) <uin(t) <A+ (B+d")R(?).
Thus, (t,ulm(t),uQ,n(t)) € S for to <t < 1.
We extend the pair (41, u2,,) to the entire interval [¢g, to+ 5] by recursively
defining the pair on the subintervals [t;_1,t;]. Thus, for each j = 2,3,--- ,n,
we define

t—ho,
Uz (t) = B — / m(s) f(s,u1.n(s), uzn(s))ds, for t;_1 <t<ty,
to

¢
U2.n(S)
uLp(t) = A+ /to o(5) ds, for tj_; <t<t,.

(The measurability of the integrand in the integral for us,, follows from L3 by
approximating with simple functions.) Using L4, we have

t—hy
fusn(t) — B| < / (3| (5, 1. (5), z.n(5) |5

to

to+p
/ h(s)ds < d*,

to

IN

and therefore, B — d* < us ,,(t) < B + d*. Further,
(B—d")R(t) < uin(t) — A< (B+d")R(¢),
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and so
A+ (B—d")R(t) <uin(t) < A+ (B+d")R(t).

These inequalities show that (¢, u1 (t), u2.,(t)) remains in S on each subinterval
and the recursive definition is allowed. Moreover, the two sequences {us ,},
{u2,»} are uniformly bounded on ¢ty <t <ty + .

We shall show that these sequences are equicontinuous so that Ascoli’s the-
orem may be applied. Suppose tg <t <t* <tyo+ (. Then

t* o
i) = nlt)| = | [ 22 | < [ s
¢ p(s) ¢ p(s)
where @ = max{|B — d*|,|B + d*[}. Moreover,

t* —hy,
[ug,n(t) —u2,(t*)] = ‘/t_ m(s) f(s,u1n(s), ug,n(s))ds

hn

t* —hy,
< / h(s) ds.
t

—hn

The desired equicontinuity follows from absolute continuity of the integral. Us-
ing Ascoli’s theorem, we may assume without loss of generality that both se-
quences converge uniformly on [tg,to + 5] to limit functions uy (¢), usa(t). We
may use the Lebesgue dominated convergence theorem (for us , the dominating
function is h(s); for uj ,, the dominating function is (p(s))™!) to take limits
under each integral sign as n — oo to show that

[T ua(s) s
w(f) _»/tg p(s) s

UZ(t) =B - m(s)f(s,ul(s),UQ(s))ds,

to

for tg <t < tg+ (3, from which we obtain

uy(t) = —m(t) f(t, u1(t), ua(t)),
uz(t)

almost everywhere on [tg,to + 3].

The specific size of § provided by the hypotheses of this last theorem is
crucial for our main proof in the next section.

3 Proof of Main Theorem

First note that the hypotheses M1-M4 imply that the earlier hypotheses L.1-1.4
hold on any interval (¢p,b) with 0 < ¢y < b < 00, so we may apply Theorem 2.1
as needed.
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From hypothesis M4, we have m(s)ga,(s) € L*(0,00) if g > 0 is sufficiently
small. Further, M4 implies that m(s)ga(s) < m(8)ga,(s) whenever 0 < a <
and also that m(s)ga(s) — 0 as a — 0, for all s > 0. Thus, by the Lebesgue
Dominated Convergence Theorem,

/ m(t)ga(t)dt - 0 as o — 0.
0

Hence, there exists ¢ € (0, ap] such that 0 < a < ¢ implies

/000 m(t)ga(t)dt < i

We shall show that v = 3 min{D, 6}, where D is the number from our hypothesis
M3, satisfies the requirements of our theorem. To apply Theorem 2.1, we pick
0<C <~ d=C/2,c=0,d=2C,1,=0,b=1, B=C, and A = 0.
Note that d* = % <d-d/2=d-C=d—-Bandd* < C=DB—-c So
d* < min{d — B, B — c}.

By absolute continuity of the integral, there exists 8 € (0,b) = (0, 1) so that
for k=0,1,---,

(k+1)8
/ am(s)ga(s)ds < d*. (3.1)
kg

This last inequality, for K = 0 allows us to apply Theorem 2.1 to get a solution
y1(t) on [0, 8] so that for 0 < t < 3,

0<wy(t) <2Cr(t), 0<p(t)y;(t) <2C. (3.2)

Integrating (1.1) from 0 to ¢ and using M4, we obtain

p®yi(t) —Cl < 0m(S)\f(S,y1(8),p(8)y’1(8))\ds

ot .
< 20 [ m(s)gac(s)ds < 5.
0
if t € [0, 8]. Hence,
C , 3C
5 <p)yi(t) < o
Then .
p(s)yi(s)
t) = ds
yl( ) /O p(s)
and so
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We claim that for k = 2,3,..., there exists a solution yi(t) of (1.1) on the
interval (k — 1)8 <t < kf so that

Yr+1(kB) = yr(kB),
Y1 (kB) = yi.(kB),

for k> 1, and
C 3C
57’(t) < y(t) < 77‘(15),
(3.3)

o <ptmi < %

for (k —1)8 <t <kp.
Noting that y; (¢) has already been constructed, we continue by induction and
assume that yi(t),y2(t),. .., yn(t) have been constructed. Next, we construct
Yn+1(t). To use Theorem 2.1, we keep C, d*, ¢, d, b, and § as before and let
to =nB, A=A, = y,(nB), and B = B,, = p(nf)y,(nB3). Inequality (3.1)
for k = n allows us to apply Theorem 2.1 to get a solution y,41(¢) of (1.1) on

[to,to + ] = (8, (n + 1)8] 50 that y41(nB) = ya(nf) and
t

1
—ds,
to p(s)

0 < p(t)yn1(t) < 2C.

An < yn+1<t) < An + 2C

To complete the induction, we must verify that y,11(t) satisfies (3.3). Define
y(t) for 0 <t < (n+1)8 by y(t) = yx(t) for (k —1)8 <t < kp.
Since

% <p(s)y'(s) < %, for 0 < s < nf3

and
0 <p(s)y'(s) <20, fornf <s<(n+1)p,

it follows that
0 < p(s)y'(s) < 2C

for the larger interval, 0 < s < (n + 1), and it follows by integrating that
0<y(t) <2Cr(t), for0<t<(n+1)p.

The calculation appearing just after (3.2) may now be repeated to show that

C 3C

5 <pt)y'(t) < - for 0 <t < (n+1)3,
which implies, as before, that

3C
Er(t) <y(t) < 77’(25), for 0 <t<(n+1)8.

Finally, we define y(¢) for 0 < ¢ < oo by y(t) = yx(t) for (k—1)8 <t < k3, and
each k =1,2,.... Clearly, y(t) is the desired solution.
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To investigate the limit of p(¢)y’(¢) at infinity, we examine

pOY(t) = plto)y(to) + / (p(s)y/ ()’ ds

to

= p(to)y'(to) — /Oo(m(S)f(S,y(S),p(S)y’(S))X[to,t](8) ds.

to

Since (1m(s) (5, 9(5),(5)5'(5) Xigou1 (5) < m($)g20(5), and m(s)gac(s) is in
L1(0,00), we can use the Lebesgue Dominated Convergence Theorem to take
the limit of both sides as ¢ approaches co and conclude that lim;_, o p(t)y'(¢)
exists. If r(oco) = oo, then

which we have already proven to exist.
If r(00) < o0, then y(t) is a monotone increasing function which is bounded
above by 3Z7(c0). Hence, limy_.o y(t)/r(t) exists.
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