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Abstract

In previous work by Castro, Cossio, and Neuberger [2], it was shown
that a superlinear Dirichlet problem has at least three nontrivial solutions
when the derivative of the nonlinearity at zero is less than the first eigen-
value of −∆ with zero Dirichlet boundry condition. One of these solutions
changes sign exactly-once and the other two are of one sign. In this paper
we show that when this derivative is between the k-th and k + 1-st eigen-
values there still exists a solution which changes sign at most k times. In
particular, when k = 1 the sign-changing exactly-once solution persists
although one-sign solutions no longer exist.

1 Introduction

Let Ω be a smooth bounded region in RN , ∆ the Laplacian operator, and
f ∈ C1(R,R) such that f(0) = 0. In this paper we study the boundary-value
problem

∆u+ f(u) = 0 in Ω
u = 0 in ∂Ω.

(1.1)

We assume that there exist constants A > 0 and p ∈ (1, N+2
N−2 ) such that |f ′(u)| ≤

A(|u|p−1 + 1) for all u ∈ R. Hence f is subcritical, i.e., there exists B > 0 such
that |f(u)| ≤ B(|u|p + 1). Also, we assume that there exists m ∈ (0, 1) and
η > 0 such that

muf(u) ≥ 2F (u) (1.2)

for |u| > η, where F (u) =
∫ u

0
f(s) ds. Finally, we make the assumption that f

satisfies

f ′(u) >
f(u)
u

for u 6= 0, and lim
|u|→∞

f(u)
u

= ∞ (f is superlinear). (1.3)
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Let H be the Sobolev space H1,2
0 (Ω) with inner product 〈u, v〉 =

∫
Ω
∇u · ∇v dζ

(see [1] or [8]). Let 0 < λ1 < λ2 ≤ λ3 ≤ · · · be the eigenvalues of −∆ with
zero Dirichlet boundary condition in Ω. We let {φ1, φ2, . . . } denote a complete
orthonormal set in L2(Ω) of eigenfunctions corresponding to the latter eigenval-
ues.

Our main result is as follows.

Theorem 1 If f ′(0) ∈ [λk, λk+1) then (1.1) has a solution w which changes
sign at most k times, i.e., Ω − w−1{0} consists of at most k + 1 non-empty
connected sets.

Corollary 2 If f ′(0) ∈ [λ1, λ2) then (1.1) has a solution w which changes sign
exactly once.

Our proofs here combine Lyapunov-Schmidt reduction arguments [5], the
mountain pass lemma [11], Sard’s Lemma [12], and the index of critical points
of mountain pass type [6].

To the best of our knowledge, [2] was the first to establish the existence of a
sign-changing solution to (1.1) for a general region in the superlinear case where
f ′(0) < λ1. The proofs in [2] are based on the study of the Nehari manifold

S =
{
u ∈ H : u 6= 0,

∫
Ω

(‖∇u‖2 − uf(u)) dζ = 0
}
.

Unlike the work in [2], where S is a differentible manifold homeomorphic to the
unit sphere and bounded away from 0, here 0 is a limit point of S. Also S ∪ 0
has a singularity at 0. The intersection of S with planes spanned by {φ1, φk},
k = 2, . . . is a figure eight. The semipostione result in [10] is another example
where a more complicated variational structure is successfully analyzed via our
techniques.

For historical remarks concerning the existence of sign changing solutions to
semilinear elliptic boundary value problems we refer the reader to [4]. See also
[13].

Remark 1 One can easily see that when f ′(0) ≥ λ1 there can be no one signed
solutions. In fact suppose to the contrary that f ′(0) ≥ λ1 and that u is (for
example) a positive solution. Let φ1 be a positive eigenfunction corresponding
to λ1. Then, by multiplying (1.1) by φ1 and integrating we obtain∫

Ω

{∆u+ f(u)}φ1 dζ =
∫

Ω

{u∆φ1 + f(u)φ1} dζ

=
∫

Ω

{f(u)
u

− λ1}uφ1 dζ

=
∫

Ω

{f ′(v)− λ1}uφ1 dζ

>

∫
Ω

{f ′(0)− λ1}uφ1 dζ ≥ 0,

(1.4)

where we have used the mean value theorem to find v ∈ (0, u).
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Remark 2 Theorem 1 and Corollary 2 are also valid when the Dirichlet bound-
ary condition in (1.1) is replaced by a homogeneous boundary condition for
which the spectrum of the Laplacian operator consists of isolated eigenvalues of
finite multiplicity converging to ∞. This is the case, for example, of the Neu-
mann boundary condition (∂u/∂η)(x) = 0 for region with Lipschitzian bound-
ary.

2 Preliminary Lemmas

Let k be a positive integer and f ′(0) ∈ (λk, λk+1). We define J : H → R by

J(u) =
∫

Ω

{1
2
|∇u|2 − F (u)} dζ.

By regularity theory for elliptic boundary value problems [8], u is a solution
to (1.1) if and only if u is a critical point of J . Because f is subcritical, J ∈
C2(H,R) (see [11]). The gradient and Hessian of J are given by

J ′(u)(v) = 〈∇J(u), v〉 =
∫

Ω

{∇u · ∇v − f(u)v} dζ, for all v ∈ H, (2.1)

and

〈D2J(u)v, w〉 =
∫

Ω

{∇v · ∇w − f ′(u)vw} dζ, for all u, v, w ∈ H. (2.2)

Let X be the linear subspace generated by {φ1, . . . , φk} and Y the subspace
of H generated by {φk+1, . . . }. By orthogonality properties of eigenfunctions
H = X ⊕ Y . Since (1.3) implies that f ′(t) ≥ f ′(0) > λk, one sees that there
exists m1 > 0 such that

〈D2J(u)x, x〉 ≤ −m1‖x‖2 for all u ∈ H, x ∈ X. (2.3)

Arguing as in Theorem 4 of [5], one sees that there exists a function ψ ∈
C1(Y,X) such that

Ĵ(y) ≡ J(y + ψ(y)) = max
x∈X

J(x+ y) for all y ∈ Y, (2.4)

and

〈∇Ĵ(y), v〉 = 〈∇J(y + ψ(y)), v〉 =
∫

Ω

{∇y · ∇v − f(y + ψ(y))v} dζ, (2.5)

for all y, v ∈ Y . In addition,

ψ(y) is the only critical point of x→ J(x+ y) for all y ∈ Y. (2.6)

Thus

y is a critical point of Ĵ if and only if y + ψ(y) is a critical point of J . (2.7)
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Although not obvious (see [5]), Ĵ is of class C2 in spite of only ψ ∈ C1(Y,X).
From (2.5) we see that ∇Ĵ(y) = y +K(y) where K is a compact function of y.
Also since ∇Ĵ is a variational vector field of class C1 we have dim ker(∇Ĵ)′(y)
= dim ker(D2Ĵ(y)) = codim(D2(Ĵ(y))(Y )) = codim(∇J)′(y)(Y ) for all y ∈ Y .
Thus we may apply Sard’s lemma [12] to conlcude the following lemma.

Lemma 1 There exists {qn} ⊂ Y with qn ↓ 0 as n→∞ such that if ∇Ĵ(u) =
qn then the Hessian D2Ĵ(u) is invertible.

Proof This proof follows immediately from the fact that the regular values of
∇Ĵ is the complement of a set of first category. In partiuclar it is dense. ♦

Let qn be as in the previous lemma. We define Jn : Y → R by Jn(y) =
Ĵ(y)−〈qn, y〉. We note that D2Jn(y) = D2Ĵ(y) for each y ∈ Y . Also from (12)
of [5]

〈D2Ĵ(y)h, h〉 = 〈D2J(y + ψ(y))(h+ ψ′(y)h), h+ ψ′(y)h〉. (2.8)

Lemma 2 The functional Jn has a critical point yn such that the Morse index
of D2J(yn + ψ(yn)) is less than or equal to k + 1.

proof In order to establish the existence of the critical point un we prove that
Jn satisifies the hypotheses of the Mountain Pass Lemma [11]. Since f ′(0) <
λk+1, we have 〈D2J(0)y, y〉 = J ′′(0)(y, y) ≥ (1 − f ′(0)/λk+1)

∫
Ω
|∇y|2 dζ > 0

for y ∈ Y . Thus 0 is a strict local minimum of J restricted to Y . Thus there
exist δ, η > 0 such that J(y) ≥ η for all ||y|| = δ. This and (2.4) imply that for
‖y‖ = δ we have

Ĵ(y) ≥ J(y) ≥ η > 0 . (2.9)

Now taking n sufficiently large so that ‖qn‖ ≤ η/(2δ) we have

Jn(y) ≥ η − ‖qn‖δ > η/2 > 0 , (2.10)

for ‖y‖ = δ.
Next we note that, since 0 is a critical point of J , ψ(0) = 0. Hence Jn(0) = 0.

Additionally, since we are assuming f to be superlinear, there exit numbers
m1 > λk+1 and m2 such that

2F (t) ≥ m1t
2 +m2 (2.11)

for all t ∈ R. Hence

Jn(tφk+1) = Ĵ(tφk+1)− 〈qn, tφk+1〉 ≤ J(tφk+1)− 〈qn, tφk+1〉

≤ (t‖φk+1‖2 −m1

∫
Ω

(tφk+1)2 dζ −m2|Ω|)/2 + t‖qn‖‖φk+1‖

→ −∞ as t→ +∞,

(2.12)

where we have used that ‖φk+1‖2 = λk+1

∫
Ω
φ2

k+1 dζ. For future reference we
note that, without loss of generality, we may assume that ‖qn‖ ≤ 1 for all n.
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Thus (2.12) implies that

Jn(tφk+1) ≤
(λk+1 −m1)(−m2|Ω|)− λk+1‖φk+1‖

2(λk+1 −m1)
≡ K̃ for all n, t ≥ 0.

(2.13)
From (2.12), for each n, there exists a real number tn > 0 with ‖tnφk+1‖ ≥ 2δ
such that Ĵn(tnφk+1) < 0.

Next we show that Jn satisfies the Palais-Smale condition. Suppose that
{yj} is a sequence so that {Jn(yj)} is bounded, say |Jn(yj)| ≤ M for all j
and ∇Jn(yj) → 0 as j → ∞. For ease of notation, let u = yj + ψ(yj) and
T = m

2 uf(u)− F (u). Then

M +
m

2
||u|| ≥ Jn(yj)−

m

2
[〈∇Jn(yj), yj〉+ 〈∇J(yj + ψ(yj)), ψ(yj)〉]

= (
1
2
− m

2
)||u||2 +

∫
Ω

T dζ − (1− m

2
)〈qn, u〉

≥ (
1
4
− m

4
)(||u||2 − ‖qn‖2) +M1|Ω|,

(2.14)

where M1 ∈ R is a lower bound for T (see (1.2)). The latter inequality implies
that {yj + ψ(yj)} is bounded. Hence without loss of generality we may assume
that {yj} converges weakly to ȳ ∈ Y and that ψ(yj) converges to x̄ ∈ X. Since
the imbedding of H in Lp+1(Ω) is compact, we may assume that f(yj + ψ(yj))
converges strongly in L1(Ω). Since ∇Jn(yj) = yj + K(yj) + qn → 0 with K
compact, we see that {yj} has a convergent subsequence. This proves that Jn

satisfies the Palais-Smale condition.
Now by the Mountain Pass Lemma there exists yn ∈ Y such that ∇Jn(yn) =

0 and
Jn(yn) = inf

σ∈Σ

[
max

t∈[0,1]
Jn(σ(t))

]
, (2.15)

where Σ = {σ : [0, 1] → Y ;σ is continuous, σ(0) = 0 and σ(1) = tnφk+1}. Thus
from (2.10), (2.13) and (2.15) we have

η/2 ≤ Jn(yn) ≤ K̃. (2.16)

In addition, since D2Jn(yn) is invertible (see Lemma 1), by Theorem 2 of [6],
we may assume that the Morse index of D2Jn(yn) is 1. Since D2J(yn + ψ(yn))
is negative definite in a subspace of dimension k, namely X, then we conclude
that the Morse index of D2J(yn + ψ(yn)) is at most k + 1, and this concludes
the proof. ♦

3 Proof of Main Theorem

First we consider the case f ′(0) > λk. Let {yn} be as in Lemma 2. By (2.16)
one sees that {yn +ψ(yn)} is bounded. Thus, without loss of generality, we may
assume that {yn} converges weakly to ȳ ∈ Y and {ψ(yn)} converges to x̄ ∈ X.
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From (2.4) we have 0 = ∇Jn(yn) = yn +K(yn)− qn where K is a compact op-
erator. Since, in addition {qn} converges to 0, actually {yn} converges strongly
to ȳ. Also since Jn(yn) ≥ η/2 > 0, we see that Ĵ(ȳ) ≥ η/2 > 0 and ȳ 6= 0. Now
for v ∈ X one has

〈x̄, v〉 −
∫

Ω

{f(ȳ + x̄)v} dζ

= lim
n→∞

[
〈ψ(yn), v〉 −

∫
Ω

{vf(yn + ψ(yn))} dζ − 〈qn, ψ(yn)〉
]

= 0.

(3.1)

Hence x̄ = ψ(ȳ) and ∇J(x̄ + ȳ) = 0. Thus x̄ + ȳ 6= 0 is a solution to (1.1).
Let us see that x̄ + ȳ has at most k + 1 nodal regions. If not, by defining vj ,
j = 1, . . . , k+2, as x̄+ ȳ on Wj and as zero on Ω̄−Wj , then from (1.3), (2.1) and
(2.2), we see that 〈D2J(x̄+ ȳ)vj , vj〉 < 0. Since the v′js are mutually orthogonal
then we have thatD2J(x̄+ȳ) is negative definite on a k+2-dimensional subspace.
By continuity then D2J(yn + ψ(yn)) is negative definite on the same k + 2-
dimensional subspace. This contradicts that the Morse index ofD2J(yn+ψ(yn))
is less than or equal to k+ 1. This contradiction proves that x̄+ ȳ is a solution
to (1.1) having at most k + 1 nodal regions.

Finally we consider the case f ′(0) = λk. Let {εj} be a sequence of positive
numbers converging to 0. Without loss of generality we may assume that εj <
(λk+1−λk)/2 for all positive integers j. By our previous arguments, there exists
a sequence {uj = x̄j + ȳj} of functions in H that satisfy

∆uj + εjuj + f(uj) = 0 in Ω
uj = 0 in ∂Ω.

(3.2)

In addition, each xj + yj is the limit a of a sequence {xn,j + yn,j} with each
xn,j + yn,j satisfying (2.16). Hence, by continuity η/2 ≤ J(x̄j + ȳj) ≤ K̃ and∫

Ω

{∇v · ∇v − (f ′(uj) + εj)v2} dζ

defines a quadratic form of Morse index at most k + 1. Arguing as above one
sees that x̄j + ȳj has a convergent subsequence with limit x̄+ ȳ. The function
x̄+ ȳ is a solution to (1.1) and, as in the case f ′(0) > λk, it has at most k + 1
nodal regions. This concludes the proof of our main theorem; the corollary is
obvious.
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