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A selfadjoint hyperbolic boundary-value problem ∗

Nezam Iraniparast

Abstract

We consider the eigenvalue wave equation

utt − uss = λpu,

subject to u(s, 0) = 0, where u ∈ R, is a function of (s, t) ∈ R2, with
t ≥ 0. In the characteristic triangle T = {(s, t) : 0 ≤ t ≤ 1, t ≤ s ≤ 2− t}
we impose a boundary condition along characteristics so that

αu(t, t)− β
∂u

∂n1
(t, t) = αu(1 + t, 1− t) + β

∂u

∂n2
(1 + t, 1− t), 0 ≤ t ≤ 1.

The parameters α and β are arbitrary except for the condition that they
are not both zero. The two vectors n1 and n2 are the exterior unit normals
to the characteristic boundaries and ∂u

∂n1
, ∂u

∂n2
are the normal derivatives

in those directions. When p ≡ 1 we will show that the above characteristic
boundary value problem has real, discrete eigenvalues and corresponding
eigenfunctions that are complete and orthogonal in L2(T ). We will also
investigate the case where p ≥ 0 is an arbitrary continuous function in T .

1 Introduction

Consider the wave equation

utt − uss = λpu, (s, t) ∈ T := {(s, t) : 0 ≤ t ≤ 1, t ≤ s ≤ 2− t}, (1.1)

where λ is a parameter, and p ≥ 0 is a continuous function in T . We impose
the boundary conditions,

u(s, 0) = 0, 0 ≤ s ≤ 2, (1.2)

αu(t, t)− β
∂u

∂n1
(t, t) = αu(1 + t, 1− t) + β

∂u

∂n2
(1 + t, 1− t), 0 ≤ t ≤ 1, (1.3)

where the parameters α and β are arbitrary with α2 + β2 6= 0. The two vec-
tors n1 and n2 are the exterior unit normals to the characteristic boundaries
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and ∂u
∂n1

, ∂u
∂n2

are the normal derivatives in those directions. Our problem is a
generalization of the problems studied by Kalmenov [6], and Kreith [7], where
they consider the boundary conditions,

u(s, 0) = 0 = u(1, 1), 0 ≤ s ≤ 2
u(t, t) = u(1 + t, 1− t), 0 ≤ t ≤ 1.

We note two facts. First, if we only prescribe the values of u along the charac-
teristics, say, u(t, t) = f1(t) and u(1 + t, 1− t) = f2(t) then we have a classical
characteristic initial value problem,(see, e.g., Garabedian [1]) and equation (1.1)
will have a solution for all values of λ. However, the conditions (1.2), (1.3) pro-
vide a boundary value problem with spectral properties. Second, if we set β = 0
in condition (1.3) we have the case of Kreith [7] . If in addition, we set p ≡ 1 we
have the case of Kalmenov [6]. As a start we will let p ≡ 1 and use the technique
of Kalmenov [6] to show that the equation, utt − uss = λu, (s, t) ∈ T subject
to conditions (1.2), (1.3), is selfadjoint. Then we will study equation (1.1) sub-
ject to conditions (1.2), (1.3) by converting the problem into a nonhomogeneous
eigenvalue integral equation and using the method of the Fredholm alternative.
In this case we will assume that u along the characteristics is given. This will
not weaken the problem because we still require that condition (1.2) be satisfied.
As a result we will see that not all values of λ will produce a solution.

We would like to add here that the investigation into the spectral proper-
ties of the characteristic initial value problems for the wave equation has been
conducted in different directions by several authors. In this context, beside the
above mentioned references, the works of Haws [2], Kreith [8, 9] and the author
[3, 4, 5] are the ones most closely related to the present work.

2 The selfadjoint problem

Consider the equation

utt − uss = λu, (s, t) ∈ T, (2.1)

subject to the conditions (1.2), (1.3). Extend u as an odd function of t and
define,

ũ(s, t) =

{
u(s, t) if t > 0, (s, t) ∈ T
−u(s,−t) if t < 0, (s,−t) ∈ T

and reflect T in t = 0 axis to obtain the rectangle

R = {(s, t) : |t| ≤ 1, |t| ≤ s ≤ 2− |t|}. (2.2)

Now ũ must satisfy the following conditions:

ũtt − ũss = λũ, (s, t) ∈ R, (2.3)

αũ(t, t)− β
∂ũ

∂n1
(t, t) = αũ(1 + t, 1− t) + β

∂ũ

∂n2
(1 + t, 1− t), |t| ≤ 1, (2.4)

ũ(s, t) = −ũ(s,−t), (s, t) ∈ R. (2.5)
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Using the change of variables, x = s − t, y = s + t and denoting ũ(s, t) =
ũ(x+y

2 , y−x
2 ) by Ũ(x, y), the rectangle R maps into S = {(x, y) : 0 ≤ x ≤ 2, 0 ≤

y ≤ 2}, and we have,

−4Ũx,y = λŨ, (x, y) ∈ S, (2.6)

αŨ(0, y) + βŨx(0, y) = αŨ(y, 2) + βŨy(y, 2), (2.7)

Ũ(x, y) = −Ũ(y, x). (2.8)

From this equation, we have Ũx(x, y) = −Ũy(y, x); therefore,

Ũ(0, y) = −Ũ(y, 0) (2.9)

Ũx(0, y) = −Ũy(y, 0). (2.10)

These two identities change the boundary condition (2.7) to,

−αŨ(y, 0)− βŨy(y, 0) = αŨ(y, 2) + βŨy(y, 2). (2.11)

Now let Ũ(x, y) = φ(x)ψ(y), and plug it into equation (2.6), we have,

[2iφ′(x)][2iψ′(y)] = λφ(x)ψ(y) (2.12)

which leads to
2iφ′(x)
φ(x)

= λ
ψ(y)

2iψ′(y)
= µ,

which in turn leads to two ODE equations:

ψ′(y) = − iλ

2µ
ψ(y) = − iδ

2
ψ(y), δ =

λ

µ
, µ 6= 0, (2.13)

φ′(x) = − iµ
2
φ(x). (2.14)

The effect of separation of variables on the boundary condition (2.11) will be

−αφ(y)ψ(0)− βφ(y)ψ′(0) = αφ(y)ψ(2) + βφ(y)ψ′(2). (2.15)

Upon cancelling φ(y) here, we have the boundary-value problem

ψ′(y) = − iδ
2
ψ(y), 0 ≤ y ≤ 2, (2.16)

−αψ(0)− βψ′(0) = αψ(2) + βψ′(2). (2.17)

We note that from (2.16) we have

ψ′(0) = − iδ
2
ψ(0), (2.18)

ψ′(2) = − iδ
2
ψ(2). (2.19)
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These relations simplify the condition (2.17) to

ψ′(0) = −ψ(2), (2.20)

The selfadjoint boundary-value problem (2.16), (2.20) is the same as the one in
[6]. The eigenvalues and eigenfunctions of problem (2.16), (2.20) are

δ = (−2n− 1)π, ψn(y) = exp(
(2n+ 1)πiy

2
), n = 0,±1,±2, . . . (2.21)

Using (2.8) differently to write Ũy(x, y) = −Ũx(y, x),

Ũ(y, 2) = −Ũ(2, y) (2.22)

Ũy(y, 2) = −Ũx(2, y). (2.23)

The substitution of (2.22), (2.23) into the boundary condition (2.7) yields

αŨ(0, y) + βŨx(0, y) = −αŨ(2, y)− βŨx(2, y). (2.24)

If we again use the separation of variables Ũ(x, y) = φ(x)ψ(y) in the equation
(2.24) and proceed as for the case of the function ψ(y), we will have

φ′(x) = − iµ
2
φ(x), 0 ≤ x ≤ 2, (2.25)

−αφ(0)− βφ′(0) = αφ(2) + βφ′(2). (2.26)

The condition (2.26) again can be replaced with

φ′(0) = −φ(2), (2.27)

The eigenvalues and eigenfunctions of problem (2.25), (2.27) are

µ = (−2m− 1)π, φm(y) = exp(
(2m+ 1)πix

2
), m = 0,±1,±2, . . . (2.28)

Both sets of eigenfunctions {ψn(y)} and {φm(x)} are complete and orthogonal
in L2(0, 2). The eigenfunctions and the eigenvalues of (2.6)–(2.8) will be

λmn = (2m+ 1)(2n+ 2)π2,

Ũmn(x, y) = exp(
(2m+ 1)x

2
+

(2n+ 1)y
2

)πi, m, n = 0,±1,±2, . . .
(2.29)

To find the eigenfunctions of the problem (1.1)–(1.3), we introduce the functions

umn(x, y) = Ũmn(x, y)− Ũmn(y, x)

= exp(
(2m+ 1)x

2
+

(2n+ 1)y
2

)πi

− exp(
(2m+ 1)y

2
+

(2n+ 1)x
2

)πi,

(2.30)

for m,n = 0,±1,±2, . . . . The set {umn(x, y)} is complete and orthogonal in
L2(T ′) where T ′ = {(x, y) : 0 ≤ y ≤ 2, 0 ≤ x ≤ y}.

Theorem 2.1 Problem (1.1)–(1.3) when p ≡ 1 is selfadjoint. It has eigen-
values (2.29) and eigenfunctions (2.30). The eigenfunctions are complete and
orthogonal in L2(T ).
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3 The non-selfadjoint problem

Now consider the problem (1.1)–(1.3) and make the change of variables x = s−t
and y = s+ t, to obtain

Uxy = γP (x, y)U(x, y), (x, y) ∈ T ′, (3.1)
T ′ = {(x, y) : 0 ≤ y ≤ 2, 0 ≤ x ≤ y} (3.2)

αU(0, y) + βUx(0, y) = αU(y, 2) + βUy(y, 2), 0 ≤ y ≤ 2 (3.3)
U(x, x) = 0, 0 ≤ x ≤ 2, (3.4)

where U(x, y) = u(x+y
2 , y−x

2 ), P (x, y) = p(x+y
2 , y−x

2 ), and γ = −λ/4. Integrat-
ing (3.1) in T ′ from 0 to ξ, we have

Uy(ξ, y)− Uy(0, y) = γ

∫ ξ

0

PU dx. (3.5)

The above equation when ξ = y and y = 2 will be

Uy(y, 2)− Uy(0, 2) = γ

∫ y

0

P (x, 2)U(x, 2) dx. (3.6)

Integrating equation (3.1) in T ′ from y to η, we have

Ux(x, η)− Ux(x, y) = γ

∫ η

y

PU dy.

When x = 0 and η = 2 this equation becomes

Ux(0, 2)− Ux(0, y) = γ

∫ 2

y

P (0, y)U(0, y) dy. (3.7)

In (3.5) let ξ lie on the line y = x and integrate the equation from ξ to η in T ′,

U(ξ, η)− U(ξ, ξ)− U(0, η) + U(0, ξ) = γ

∫ η

ξ

∫ ξ

0

PUdxdy. (3.8)

Since U(ξ, ξ) = 0 by the boundary condition (3.4), we have

U(ξ, η) = U(0, η)− U(0, ξ) + γ

∫ η

ξ

∫ ξ

0

PU dx dy . (3.9)

From (3.6) when y is replaced with η we have

Uy(η, 2) = Uy(0, 2) + γ

∫ η

0

P (x, 2)U(x, 2) dx. (3.10)

From (3.7), when y is replaced with η we have

Ux(0, η) = Ux(0, 2)− γ

∫ 2

η

P (0, y)U(0, y) dy. (3.11)
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Finally from equation (3.9) we have,

U(η, 2) = U(0, 2)− U(0, η) + γ

∫ 2

η

∫ η

0

PU dx dy . (3.12)

Now, we substitute the right hand side of the equations (3.10), (3.11), (3.12)
into the boundary condition (3.3) with y replaced with η,

αU(0, η) + β(Ux(0, 2)− γ

∫ 2

η

P (0, y)U(0, y)dy)

= α(U(0, 2)− U(0, η) + γ

∫ 2

η

∫ η

0

PU dx dy) + β(Uy(0, 2)

+ γ

∫ η

0

P (x, 2)U(x, 2)dx).

Placing αU(0, η) in right-hand side and combining,

2αU(0, η) + β(Ux(0, 2) + γ

∫ 2

η

P (0, y)U(0, y)dy)

= α(U(0, 2) + γ

∫ 2

η

∫ η

0

PU dx dy) + β(Uy(0, 2)

+ γ

∫ η

0

P (x, 2)U(x, 2)dx).

(3.13)

Rewrite this equation with η replaced with ξ,

2αU(0, ξ) + β(Ux(0, 2) + γ

∫ 2

ξ

P (0, y)U(0, y)dy)

= α(U(0, 2) + γ

∫ 2

ξ

∫ ξ

0

PU dx dy) + β(Uy(0, 2)

+ γ

∫ ξ

0

P (x, 2)U(x, 2)dx).

(3.14)

Subtract equation (3.14) from (3.13),

2α(U(0, η)− U(0, ξ)) + βγ(
∫ 2

η

P (0, y)U(0, y)dy −
∫ 2

ξ

P (0, y)U(0, y)dy)

= αγ(
∫ 2

η

∫ η

0

PUdxdy −
∫ 2

ξ

∫ ξ

0

PU dx dy) (3.15)

+ βγ(
∫ η

0

P (x, 2)U(x, 2)dx−
∫ ξ

0

P (x, 2)U(x, 2)dx).
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Solve for U(0, η)− U(0, ξ) in (3.15), assuming α 6= 0, and substitute in (3.9),

U(ξ, η) =− β

2α
γ(

∫ 2

ξ

P (0, y)U(0, y)dy −
∫ 2

η

P (0, y)U(0, y)dy)

+
γ

2
(
∫ 2

η

∫ η

0

PU dx dy −
∫ 2

ξ

∫ ξ

0

PU dx dy)

+
β

2α
γ(

∫ η

0

P (x, 2)U(x, 2)dx−
∫ ξ

0

P (x, 2)U(x, 2)dx)

+ γ

∫ η

ξ

∫ ξ

0

PU dx dy .

(3.16)

Rewrite (3.16) in a compact form using the Green’s function, G(ξ, η;x, y) de-
scribed in Figure 1,

U(ξ, η) =γ(
∫ ∫

T ′
G(ξ, η;x, y)PU(x, y) dx dy

−
∫ 2

0

g(ξ, η, x)(P (0, x)U(0, x)− P (x, 2)U(x, 2))dx),
(3.17)

where

g(ξ, η, x) =


0 if 0 ≤ x ≤ ξ

β/(2α) if ξ ≤ x ≤ η

0 if η ≤ x ≤ 2

Now, let G be the operator,

G[U ] =
∫ ∫

T ′
G(ξ, η;x, y)PU(x, y) dx dy (3.18)

defined on the Hilbert space of weighted square integrable functions H =
LP

2 (T ′). Assume the function U along the characteristics x = 0 and y = 0
in T ′ is given, and denote,

f(ξ, η) =
∫ 2

0

g(ξ, η, x)(P (0, x)U(0, x)− P (x, 2)U(x, 2))dx. (3.19)

Also, let Γ = 1/γ when γ 6= 0. Then, (3.13) can be written as

G[U ] = ΓU + f. (3.20)

The operator G in (3.18), is the same as the one in [7], where it is shown to
be selfadjoint in H. Denote the normalized eigenfunctions of G by Ek, and the
inner product in H by 〈., .〉. Using the standard Fredholm alternative [10] we
have the following theorem.

Theorem 3.1 Let Γk be the eigenvalues of GU = ΓU , where by the selfadjoint-
ness of G, are real and satisfy |Γk| → 0, as k →∞ then, we have
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Figure 1: The Green’s function G(w, z;x, y)

1. Γ 6= Γk for any integer k. A unique solution of (3.20) exists and is given
in the form U = − f

Γ +
∑

k
Γk

Γ(Γk−Γ) 〈f,Ek〉Ek.

2. Γ = Γm, one of the eigenvalues of G, and Γm is not degenerate. If
〈f,Em〉 6= 0 the equation (3.20) has no solution. If 〈f,Em〉 = 0 then,
(3.20) has infinitely many solutions

U = − f

Γm
+

∑
k 6=m

Γk

Γm(Γk − Γm)
〈f,Ek〉Ek + cEm,

with c an arbitrary constant.

3. Γm is degenerate, Γm1 = Γm2 = · · · = Γmj
, for successive indices m1,

m2,. . .mj, with some mi = m, i = 1, 2, . . . j, where j is the multiplicity
of Γm. Then, unless 〈f,Ei〉 = 0, i = 1, 2, . . . , j, the equation (3.20) has
no solution. If however, these j solvability conditions are satisfied, the
solution can be represented by,

U = − f

Γm
+

∑
k 6=mi

Γk

Γm(Γk − Γm)
〈f,Ek〉Ek +

j∑
i=1

ciEmi
,

where ci’s are arbitrary constants.

Remark When p ≡ 1 in problem (1.1)–(1.3), the problem is selfadjoint if
α2 + β2 6= 0. When p is not necessarily 1, the case α 6= 0, β = 0, reduces the
problem to the selfadjoint problem of [7]. When α 6= 0, β 6= 0, Theorem 2 holds.
When α = 0, no conclusion can be drawn.
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