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Similarity of solution branches for two-point

semilinear problems ∗

Philip Korman

Abstract

For semilinear autonomous two-point problems, we show that all Neu-
mann branches and all Dirichlet branches with odd number of interior
roots have the same shape. On the other hand, Dirichlet branches with
even number of roots may look differently. While this result has been
proved previously by Schaaf [2], our approach appears to be simpler.

1 Introduction

We are interested in positive, negative and sign-changing solution branches of
the problem

u′′ + λf(u) = 0, on (0, 1), (1.1)

subject to either Dirichlet or Neumann boundary conditions. Here λ is a positive
parameter, and we are interested in how the solutions evolve with λ. Typically
the problem (1.1) will have infinitely many solution branches, each with a differ-
ent number of interior roots (or monotonicity changes). It turns out that these
branches tend all to have similar shapes, and there is a correspondence between
the Dirichlet and Neumann branches.

We begin with a simple “warm up” example. Let us assume that f(u) is
an odd function, and consider the problem (1.1) together with the Dirichlet
conditions (2.2) below. Then all solution curves are similar, and moreover each
sign-changing solution consists of self-similar parts. This follows from two simple
observations. First, any solution of (1.1) is symmetric with respect to any of
its critical points. Secondly, if u is a solution of (1.1) and (2.2), then so is
−u. Hence, for any sign-changing solution all positive humps are identical up to
translation, and they are identical to the negative humps via reflection across
the x-axis. So that after rescaling, we identify any sign-changing solution with a
positive one, at a different λ, and hence all solution curves have the same form.
For example, consider f(u) = u − u3. Then a familiar picture of parabola-like
curves bifurcating to the right from the zero solution at λk = k2π2 (see e.g.
[1]) follows immediately, since the same is true for positive solutions bifurcating
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at λ1 (as can be easily seen using super- and subsolutions). Exactly the same
picture, with the same justification, holds for the pendulum equation, when
f(u) = sin u.

It turns out that self-similarity holds for general f(u). In particular, it
always holds for Neumann problems. For the Dirichlet problems, we distinguish
between the cases of odd and even number of interior roots. It turns out that
all Neumann branches and all Dirichlet branches with odd number of interior
roots have the same shape. On the other hand, Dirichlet branches with even
number of roots may behave differently. These results were previously observed
by R. Schaaf [2].

2 Similarity and self-similarity of Dirichlet and
Neumann branches

We consider the problem

u′′ + λf(u) = 0, on (0, 1), (2.1)

subject to either Dirichlet
u(0) = u(1) = 0, (2.2)

or Neumann
u′(0) = u′(1) = 0 (2.3)

boundary conditions. We shall consider the solutions as the positive parame-
ter λ varies, and refer to the solution curves as either Dirichlet or Neumann
branches, depending on the boundary conditions used. Observe that any solu-
tion of the equation (2.1) is symmetric with respect to any of its critical points.
This implies, in particular, that either minimum or maximum occurs at any
critical point. It follows that any solution of Neumann problem is determined
by its values on any subinterval I ⊂ (0, 1), whose end-points are two consecutive
critical points of u(x). We can then obtain the solution on the entire interval
(0, 1) through reflections and translations. We refer to I, and any other inter-
val uniquely determining the solution through reflections and translations, as a
determining interval. The interval I, joining two consecutive critical points of
u(x), is also a determining interval for the Dirichlet problem. Another determin-
ing interval for Dirichlet problem is (ξ, η), where 0 ≤ ξ < θ < η ≤ 1 are three
consecutive roots of u(x). This interval contains both positive and negative
humps (and all positive (negative) humps are translations of one another).

The natural way to distinguish the Dirichlet branches is by the number of
interior roots, and the Neumann branches can be identified by the number of
changes of monotonicity (both properties clearly remain constant on the solution
curves). Any solution of the Dirichlet problem with at least one interior root
contains a solution of the Neumann problem on a subinterval of (0, 1). Indeed,
just consider the solution between two consecutive critical points. In order for
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solutions of the Neumann problem to contain in turn a solution of the Dirichlet
problem, we need to impose some conditions on f(u). Namely, we assume that

f(0) = 0, (2.4)

and there exist two constants −∞ ≤ m < 0 < M ≤ ∞ so that

(f1) f(u) > 0 for u ∈ (0,M),

(f2) f(u) < 0 for u ∈ (m, 0).

Lemma 2.1 Under the conditions (2.4), (f1) and (f2) any solution of the Neu-
mann problem for (2.1), satisfying

m < u(x) < M for all x (2.5)

has a root between any two critical points.

Proof: Follows immediately, by multiplying the equation (2.1) by u′, and
integrating between any two consecutive critical points. ♦

Definition. We call two solution branches of (2.1) to be similar if for any
solution on the either branch there is a determining interval so that by stretching
of x, or by reflection x→ 2a− x, for some a ∈ (0, 1), we obtain a solution from
the other branch on a (different) determining interval.

Clearly, if solution branches are similar then the corresponding solution
curves in (λ, u) ”plane” have the same shape.

Theorem 2.2 All Neumann branches of (2.1) are similar, and if f(u) satisfies
the conditions (2.4), (f1) and (f2), while all solutions satisfy (2.5), then the
Neumann branches are similar to the Dirichlet ones with an odd number of
interior roots (and these Dirichlet branches are also all similar).

Proof: We begin with Neumann branches. If a Neumann solution changes
monotonicity twice, then its increasing part is a reflection of its decreasing part
with respect to x = 1

2 . If a Neumann solution changes monotonicity n times,
then all critical points occur at i/n, i = 1, . . . , n− 1, and the graphs of solution
on all intervals where it is increasing (decreasing) are translations of one another.
Since an interval connecting any two critical points is a determining interval,
the equivalence of the Neumann branches follows (via rescaling).

If a Dirichlet solution has 2k − 1 interior roots, it has k identical positive
humps and k identical negative humps. Assume for definiteness that solution
starts with a negative hump, followed by a positive one, and so on. If ξ is the
first point of (negative) minimum of u(x), then the first interior root occurs
at 2ξ. If 2ξ + η is the point of the first (positive) maximum, then the second
interior root occurs at 2ξ + 2η. The last critical point, a positive maximum,
occurs at 1− η. Observe that k(2ξ + 2η) = 1, i.e. ξ + η = 1

2k . So while both ξ
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and η vary with λ, u(x) solves the Neumann problem on the interval (ξ, 1− η),
and this interval has a fixed length of

1− η − ξ =
2k − 1

2k
.

So that any Dirichlet solution curve “carries” inside it a solution of a Neumann
problem on a fixed interval (which can be made to be (0, 1) by rescaling), and
hence the Dirichlet branch cannot have any more complexity (like extra turns)
than any Neumann branch.

Conversely, consider the Neumann problem with 2k + 1 changes of mono-
tonicity. Assume for definiteness that u(0) < 0. Then u(1) > 0. Assume that
ξ = ξ(λ) is the smallest interior root, and 1 − η is the largest one, η = η(λ).
On the interval (0, 1) we then have 2k +1 negative half-humps, each of width ξ,
and 2k+1 positive ones, each of width η. So that ξ +η = 1

2k+1 . On the interval
(ξ, 1− η) we have a solution of the Dirichlet problem with 2k− 1 interior roots,
and the length of this interval is

1− η − ξ =
2k

2k + 1
,

which does not vary with λ. So that any Neumann branch ”carries” inside it a so-
lution of a Dirichlet problem on a fixed interval, and hence the Neumann branch
cannot have any more complexity than the corresponding Dirichlet branch with
an odd number of interior zeroes.

Finally, the Dirichlet branches with odd number of interior zeroes are all
similar, since any two such branches are similar to a pair of Neumann branches,
but Neumann branches are all similar. ♦

The Dirichlet branches with even number of interior zeroes may behave
differently, as the following example due to Schaaf [2] shows.

Example ([2]) For the problem

u′′ + λ(eu − 1) = 0 on (0, 1), u(0) = u(1) = 0

the branch bifurcating from the principal eigenvalue does not turn, while all
other branches have exactly one turn.
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