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NUMERICAL ANALYSIS OF EULER-SUPG MODIFIED
METHOD FOR TRANSIENT VISCOELASTIC FLOW

MOHAMMED BENSAADA, DRISS ESSELAOUI

ABSTRACT. We study a new approximation scheme of transient viscoelas-
tic fluid flow obeying an Oldroyd-B type constitutive law. The approxima-
tion stress, velocity, pressure are respectively Pj-continuous, Ps-continuous,
P;-continuous. We use the modified streamline upwinding Petrov-Galerkin
method induced by the modified Euler method. We assume that the continu-
ous problem admits a sufficiently smooth and sufficiently small solution. We
show that the approximate problem has a solution and we give an error bound.

1. INTRODUCTION AND PRESENTATION OF THE PROBLEM

In the numerical simulation of the viscoelastic fluid flows, the hyperbolic char-
acter of the constitutive equation (when using differential models) has to be taken
into account (see [8, [13]). This hyperbolic character implies that some upwinding
is needed to avoid oscillations as in the method of characteristics [8 2], the Lesaint-
Raviart discontinuous finite element method [Il 5], the streamline-upwind method
(SU) and the streamline-upwind-Petrov-Galerkin method (SUPG) [6, 13]. The nu-
merical analysis of the steady case of the viscoelastics fluids flows is abundant.
Although the list is not exhaustive, one may see for example [I}, 6, I5]. Moreover
the numerical analysis for transient viscoelastic flow remain quite few [IT], [I6]. For
example, some difficulties appear, when we use continuous finite element approxi-
mation for (o, u,p) and the standard SUPG method for the convection of the extra
stress tensor. To give some response to this difficulties, we develop in this paper the
study of continuous finite element(F.E) approximation of a transient viscoelastic
fluid flow obeying an Oldroyd-B model. For the convective term of the constitutive
equation we use some modified SUPG method linked to a variant of implicit Euler
method (see [3]). Under this condition we are able to show that the approximate
problem is stabilized and has a solution and we give an error bound.

The transient viscoelastic fluid flow obeying an Oldroyd-B type constitutive law
is considered flowing in a bounded, connected open set 2 in IR? with lipshitzian
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boundary I'; n is the outward unit normal to I'. The basic set of equations of the
Oldroyd-B model with a single relaxation time is given by

)\(2—(2 + (u.V)o + B(0,Vu)) + 0 —2aD(u) =0 in 2x]0, T,
Re gu _ V.io—-2(1-a)V.D(u)+Vp=f inQx]0,T],
ot (1.1)

Vau=0 in Qx]0,T7,
u=0 onI'x]0,T7,
u=ug, o=o09 inQt=0.
Where A > 0, Re and 0 < a < 1 are respectively the Weissenberg number, the

Reynolds number and the viscosity ratio constant. f is a density of forces. D(u) =
%(Vu + Vu') the rate of strain tensor, and 3(co, Vu) = —Vuo — oVu'.

Remark 1.1. The boundary condition © = 0 on I' can be replaced by u = ug on
I'. Regarding o and the hyperbolic character of the constitutive equation, we have
to impose 0 = oqg on I'” = {z € T'; ug.n(x) < 0}.

Remark 1.2. The inertia term (u.V)u is neglected in the momentum equation in
order to make the analysis simpler.

Let us define the following spaces:
T = {1 = (tyhzijez : i = Tji; 7 € L*(Q); 1,5 =1,2}, X = (Hy())?
Q=0 L@/ [ ade =0}, V= {v€ X/(g. V.0) = 0:¥g € Q).
Q

The norm and scalar product in L?(Q2) of functions, vectors and tensors are denoted
respectively by || and (-,-); (|-|r and (-, -)p in L2(T")); (f,v) will denote the duality
between f € (H~1(Q2))? and v € X.

Remark 1.3. Existence results for problem ([1.1)) are proved in [9]. In order to make
some theoretical analysis of approximate problem of (1.1)) we use the regularity
imposed in [9].

2. DESCRIPTION OF THE APPROXIMATION SCHEME

FE approximation. We suppose {2 polygonal and we consider a triangulation
3y, on Q made of triangles K such that Q = {{JK; K € 33} uniformly regular,
dvg, 11 voh < hig < 10K where ok is the diameter of the greatest ball included
in K and Apmax = maxges, hi.

We use the Taylor-Hood finite element method for approximations in space of
(u,p): Pp-continuous in velocity, Pj-continuous in pressure and we consider P;-
continuous approximation of the stresses. The corresponding F'E space are:

X, ={veXNCQ)?:vx € P(K)*, VK € Sy}
Qrn={q€QNC(Q) : qx € P1(K),VK € S}
Vi ={veX:(q,V.u) =0, Vg € Qn}.
T,={reTnNCQ):7|x € PI(K),VK € 3.},
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where P,,(K) denotes the space of polynomials of degrees less or equal to m on
K € Ty. The term ((u.V)o,7) is approximated by means of an operator B on
Xh X Th X Th defined by

B(un,on; ) = ((up(t).V)on(t), m) + do(h, t) ((un(t)V)on(t), (un(t).V)T)
+ (1/2)(V.un)(t)o, 7).
For the steady case you can see [I5].

Numerical method. We propose Euler-SUPG modified scheme, implicit in time,
based on the scheme proposed for the transport equation (see [3]). We construct an
approximation of the solution at each time step nk,n = 0,..., N in the following
way. We start with u?L = 1g: elliptic projection of ug into Vj, 02 = 0¢: orthogonal
projection of g into Tj. Given u?,...,ul; 0%, ...,0%, because (Xp,Qy) satis-
fies the inf sup condition, we look for the solution of the following problem, find
(uptt, optt) € Vi, x Ty, such that

o'njnl — O'nun,
)\(W,ﬁ/ﬁ)\) + (o3 g ) + BOwg, o) (2.1)
— QQ(D(UZJFl)»TuZ’,A) + )\(6(0}?4_7 VUZ+1)7T“Z,’7>‘) =0 Vvre Th;
Un+1 —uyp n n
Re(—t ) 4 (0, D) +2(1 = a)) (D), D)) 5 )

= (f(tn+1,2),v) Yv €V,
where a,iwz’é = o}, + 0(h, k) (up.V)op, (i = n,n+1); Tun x = 7+ Ao (h, k) (up. V)T
for all 7 € Ty, and (,) (resp. do(,)) will be specified later. In order to show that

equation (2.1)) — (2.2) defined uniquely (uﬁ“, UZ'H), we multiply equation (2.2)) by
2a and add the equation obtained to equation (2.1)), we get
n+1 _am

A
huj,é huj,é Uy, Uy, n+1
—7TuZA) + 20 Re(———,v) + B(Auy, 0,75 1)

Al k k
+ Aug; (op T up ), (r,0) + AB(op ™ Vupth) mu 2
=20(f(tnt1)svn), Y(Th,vn) € Th X Vp.

where A(.,.) is a bilinear form on T}, x V}, defined as

A(w; (o,u), (1,0)) = (0, Twr)+2a(o, D(v))—2a(D(u), Ty x)+4a(l—a)(D(u), D(v))

From this, we can establish some error bound and then the following existence
result

Theorem 2.1. There exists My, and hg such that if problem (1.1|) admits a solution
(o, u,p) with,
M = max {|o]lc1((ty e 1)s152) 1l (b sai 19y 1PN €O (b0 04 0)s172)
lollez (e tnsaliz2ys 1l 2t o). rize) b < Mo,

then if 6(,) satisfies 6(,) = Ao(,) and h < hg there exists a unique solution in
Ty x Vi, of problem 21)- @2).
Proof. For this purpose we define a mapping ® : T, x V}, — T, x V},, which to
(01,u1) associates (o2, us3) = ®(01,u1), where (o2, u2) € T, X V}, satisfies

O2un,5 — Uﬁuﬁ,(s

k

Uy — Uy

,Tuzy)\) + 2aRe( ,UR) + B(AUZJZH;T}L)
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+A(’U;Z;(O’2,U2),(T,’U))
= 7)\(ﬁ(0’1,vul),7'u27)\) + 2a<f(tn+1),vh> R V(Th,vh) c Ty x V.

We define a ball B,(L"H) as follows: let C* be given. Then we define

aRe
B = {m,vh) € T x Vi : [ llon — u(tns1) [0

* h2 3
H( —o(tas1))up allg.a] /2 < C*(k + 6+ h 5o+\/%+h2)7

[1{404(1 —a)[D(vh — ultus )5 @ + 170 = o (tns1) I3 o]/

h? 5
< C*(k+6+hy/6g + —— + h2)}.
<C*(k+6+ 0+\/%+ )}

The proof is decomposed in five parts:
(a) @ is well defined for h < hy = hq(hmax, @) and bounded on bounded sets,
(b) let Cy be a positive constant independent of h,k and A\, a, Re. If h < hy =

min {hl, \/%(C Mc\;i)Q/S? C(,lM‘/k/ } and 1/d/k < ﬁ? we have B;L"H) is non-
empty. On the other hand, if My = C* = )\ﬂ, v = y/a(l —a), we can prove that

(o] ]

—~~ ~~
n+1 n+1
o(B )< B,
(c) @ is continuous on Ty, X Vj,. @(B,(l"—ﬂ)) C B,(L"H), Brouwer’s theorem then gives
the existence of fixed point (o7, u} ™) of ® solution of problem (1) — (2).

(d) Furthermore, if A\M and AM~~" is sufficiently small, ® is a contraction mapping
(n+1)
n B, .

Then a result of existence and uniqueness follows from the fixed theorem. ([l

Remark 2.2. When we use only the classical Euler-scheme in time and SUPG
method, we can’t point out result of (a) in the above proof.

3. MAIN RESULT AND ERROR ESTIMATES

Suppose that the continuous problem admits a sufficiently smooth and suffi-
ciently small solution, we can show, the following result.

Theorem 3.1. There exists My and hg such that if problem (1.1|) admits a solu-
tion (o,u,p) with o € C1([0,T], (H*)*) N C%([0,T7], (L*)*); w € CL([0,T], (H?)?) N
C?([0,T7,(L?)?); p € L*([0,T), (H?) N L) N C°([0,T], H?), satisfying

max{||0||01(O,T;H2)7 ||UH01(O,T;H3)7 ||p||CO(O,T;H2)a HUHCQ(O,T;L2)3 ||U||c2(o,T;L2)} < My

then for kh=(1%9)(0 < & < 1/2) bounded, there exists a constant C independent of
h and k such that

N
_ 71 1 1/2< o 1+e
oax [(07 =0 (tn))yp-11+( z; o — )%) C(k+5+h\f+ﬁ+h )
and
N
n _ n_ 1/2< A 14+e
ps, o = uttn) + (32 MD(, = a1 < OO+ 6+ /B + I
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where N € N* : Nk =T, u;' = uf) and (0}, u})1<i<n are solutions of ([2:1) —
(2:2))1<i<n-

Remark 3.2. The discontinuous stresses approach case with Euler semi-implicit

method in time was treated by Baranger and all. [16]. In the proof of the present
result we can fund some similar technical like in [16].

Proof of Theorem[3.1. For 0 < n < N, let u(ty), o(t,), p(t,) be respectively in
H3(Q), 2(Q), H?(2) and so, there exists (u(t,),p(tn)) € Vi X Qp such that,

[(w = @) (tn)| + 2l (u = @) (tn) 1.2 < C1h*u(tn) (3.1)
[(p = D) (ta)] < C2h®|p(ts) (3.2)

(see [10]) and there exists 6(t,) € Ty such that
(o= &) (ta)| < Csh?|lo(tn)]l2,2 (3-3)

(see [10]). We remark that we can define @(.) by the elliptic projection of u(.) on
Vi, such that a((u — @)(.),vn) = 0,Vvy, € V3, where a(u, v) = (d(u),d(v)); then the
following properties are also satisfied

di/dt = (du/dt)™

and
[(du/dt)(s) — (du/dt)™ (s)| < Cahl[(du/dt)(s) — (du/dt)™(s)]1,2 (3.4)
< Csh®|[(du/dt)(s) |32 '
(see([14])), u being in C1([0,T], H?); same properties are satisfied for o:
d&)dt = (do/dt)™

and

9 (5) ~ 97 (0)) < Canl| %2 (s) - % (a) 1% oz (35

(see([14])). O

In the sequel we shall use the following inverse inequalities (see [4]).

Lemma 3.3. Let k > 0 be an integer and Wy = {v,v, € Pp(K)VK € Sy},
Let v and p be reals with 1 < r;p < oo and let | > 0 and m > 0 be integers
such that I < m. Then there exists a constant C = C(vo,v1,l,7,m,p, k) such that
Yo € W, NWET(Q) N W™P(Q), [v]|m, < ChIZ™ 2max{0,1/r— 1/p}|v\l

We shall also use the following Sobolev’s imbedding theorems.

Lemma 3.4. Let m > 0 be an integer. The following embedding hold algebraically
and topologically:

WmHL2(Q) € W) Vg € [Lool,  and  WTP(Q) € CO(Q).
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Now, let us denote e} = uff —i(ty,), e}l = of' — & (t,). From equations (2.1)-(2.2)
we have for (1,v) € T}, x V},

1 n
en+1 — el En+n 5 ‘Eh n g
QaRe(hTh)’rU) + A(%

+ Alup; (€5 e ™), (7,0)

wr 5(tne1) — Ohur 5(tn i(tyq) — @ty 3.6
Thup s( +1)k Thup s( ),Tu;,A)*Qae(M,v) (3.6)

= B(Auy, 6 (tny1): ) + A(up; (=6 (tng), —U(tns1)), (1, 0))
= AB(oy, Vuy), Tup 2) + 2a(f (tn+1,®),v),  V(T,v) € T) X Vj.

But (o,u,p) being the exact solution of problem (1.1, it satisfies the following
consistency equation

s Tup A) + B(Auy, eptlr)

= —X(

204Re(%(t), v) + )\(Z—:(t), Tup ) + BAu(t), Ay, o(t); 7)

+ A(ug; (o(t), u(t)), (7, v))

= 2a(p(t), V’U) + 2a<f(t),v> - )‘(B(J(t)’ vu(t))v’]—uﬁ,)\) V(T,’U) € Th X Vh
Inserting the value of (f(t,+1),.) in equation we obtain
n n n+l
Re(eth ) 0+ Ehup .6 Ehu;;,a

( Tun )+B(>\uh, n+17 )
+ A(up; (57 e ™), (1,0))

)
= )\(ga( ( n+1) (tn+1)) ga(ah ’ Vuh) )
+QQR6(CCZTU( tg1) — %m)
+ )\(Ccllt (tnt1) — Tuk (tnﬂ)ki Tui (tn),TuZ,A)

+ A(upy, (0 = 0)(tnt1), (u = @) (tn41)), (1, 0))
+ ABAu(tni1), Aupy, 0(tni1); 7) = B(Auy, 6 (tny1); 7)] 4 20(p(tn 1), V.v).
(3.7)
Taking v = eZ“ and T = 52‘“ in equation (3.7) and using the identity (a —b,a) =
1(la]* = [b]* + |a — b[?), and coercivity, we obtain

aRe n+1|2

— e

lenl? + lep ™t = eh} + lep ™

n n n n 3.8
*{|5h:5,\|2 - |5hu2,)\‘2 + ‘%Iﬂl A " Ehup, N (38)
+2a(1 = a)[D(e ™) + (1/2)lef ™ + (Jo/4) . Ve ™ 2

which is less than ro equal to the right-hand side of . To bound each term of

the second member of inequality 1) let us define for Cy > 0, the ball B}, for
0<m< N, by
= {(75,vi)i=0,.m € (Tn x Vi)™ omax {](r: = 0 (t:))usa P+ |oi — ()P}
B2

< Co(k + 6+ hy/6g + —= + h'*9) and
o(++\/>o+\/%+ ) an
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Zk{ln—a )2+ |D(v; — u(ty))| }]1/2<00(k+5+h\/%+ﬁ+h1+5)}

Our aim is to prove that we can choose My, hg, Cy such that for M < My, h < hg
if (Uﬁ,uz)ogngm,1 € B}lel for a Cy = C‘o(]\fo7 ho7 Cl> then (UZ,UZ)QSTLSW € B;{fk
for the same Cj, thus for all m such mk < T'. Firstly, by equations (3.1]) to (3.5)
we have
(o = 0(0))ug | + |up — u(0)] < MA*{C3(1 + AMbh™") + C1}
and
[k{|oh — o(0)]* + [D(up — w(0)[*}]'/? < V2k(Cy + C3) MA>.

To ensure that (o9, ul) = (50, 9) € ng, it suffices to impose, for h < hq,

MRY2{C3(1 + AMh™) + C1} < Co
and for h < ha,
(C1 + Cs)V20MK"T" < .
So, if we take hg < min{hi, ha} we have for h < hg: BY) # (. Now, let us suppose
that (o, u})o<n<m—1 € B,(:,Z_l). We multiply inequality by k and sum it for
n=0ton=m—1,

m—1 m—1

aRe Z |e"+1 2 \eh|2 + |e"+1 er|’] + (1/2) Z k:|£"+1 2
n=

A — n n n n = n
5 Z h;f;?,ﬂz - |5hu;;,,\| + |5h1-f;1},/\ - Ehu;a/\| J+20(l -« Z k|D(e +1)‘
n=0 n=0
m—1
+(60/4) > kldup. Vep
n=0
<A Z k(ga(o(tnt1), Vultni1)) — ga(ah+l Vun+1) EZI"l N (3.9)
m—1 ~ ~
do Fup 5(tns1) = Oup s(tn)
+AY B (tnn) - - it 2) (3.10)
n=0
m—1 ~ ~
+ 2aRe Z k(— du (tni1) — M eZ-H) (3.11)
m—1
+ Z kA(up; (0 = 6) (tnsn), (u— @) (tnsr), (e ey ™) (3.12)
m—1
A RBOU(t1) A 0 ()i ™) — BOWRL 6(tar )i ™)) (3.13)
n=0
+ 20 Z k(p(tny1), Vel th). (3.14)

We use for the estimate of terms 3.11)-(3.14)), the results (3.1)-(3.5). However, for
the estimation of the term we choose the fixed point (JZ’, u}) of the mapping
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® defined in section 2. This choice is possible because we have, B;LO) N Bg,m #
and by construction:

(0hs p)i=05.5m—1 € By'at = (021 Lupty e By,
On the other hand for estimate of the term we prepare the following lemma;:
Lemma 3.5. Let f hold. Then

do Gup 6 (tnt1) = Gup o(tn)
(g (tn1) = =R = )

m—1
< AM[Crh® + k+ 6MCro(M + hM + CiMh2)|(Y k)2 max epihd )]
n=0 -

m—1

+ {6M[C7Cskn (Y K|V (uf; — u(t,))[?)"/?

n=0
m—1
+ (Cr A 1R? C—CcSM - k)1/?
+( +C 900 ( +0<17}1<3%<1|U upl))] Z
n=0

m—1

AL+ VE0)sh (7 kI (g — u(ta))?)?)
n=0

m—1

N n " 1/2
% (32 BLleR A2 + Sl AR V) 2D 2,
n=0

Proof. To proof the inequality in this lemma, we write each term as follows:

do Gup s(tn+1) — Gup 6(tn)
(tn+1) -
dt k

do oup §(tnt1) — oun s(tn)
= (E(tn-i-l) - A )

Uu2,6(tn+l> - 0u275(tn) &uﬁ,é(tnjtl) - &u;:,(S(tn)
+ ( Lk - k )

we can write the second term in the form,

1, [t do  do N §, [t  _do do .
TG -G sy 1w v - sy

k dt k), dt
S0,
Uuz,é(thrl) - Uuz,é(trH»l) &uﬁ,é(thrl) - 5—uz,6(tn+1) n+1
|k ( 2 - L "ghu;i,)\)l
it do do b do do
i TG - G@ sl v - G ds i)

we estimate the first term in this inequality using (3.5):

i do’ do do
n < ) J— n"l‘nl
l/n O T st D <k max 12— (et

tn<s<tpi1

< CrMER?|epti | .
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To study the second term, we write

it do do n
([ G = G st

n

o do do natl
G - s

() [ - G ds )

bt do  do n
ool [ = (G ds ART)e )

n

and
ot dodo n
Sl VG = G st )
do do

<A 'k max (=

tn<s<tni1 dt

= () )A Uy V)™

tokae e -y

NIV (uh = ultn))lleh ™ lo,c0

do do n
thdodluflose max |5 ()l V)

tn<s<tni1 dt
using (3.5 and the result of Lemma we obtain the following estimate

tn1 do  do
5/ up.V(— — (— sds,a";fnl
VG - G s e )

< 6CsCrMOKh|V (uf — u(ty))|lep ™|

n

+ {oX"rCrMR? + cg%Mhaoéh—l|u;;|}k|A(uz.V)g;§+1|
< CrCy MSkR|V (ujy — u(t >>|sh+1|

h2
+ {CroA~ lMﬁ + C9 M(s\/&o M+ max |up - u(tn)])}
x /S| M(up.V)ept
and finally
m—1 ~ ~
Oyunr.8 tn—i—l Uu”,é(tn-l-l) Uu”,é(tn+1) - Juf,é(thrl) n
>\| Z ]{) h : h _ h : F 7€hj;1A)|
m—1
< ACrME* (Y k) [ max_[enn |
n=0 - =
m—1 m—1
+ AC7Cs MOKR( Y K|V (upy — u(tn)) 2D klept?)1/? (3.15)
n=0 n=0

h? c7
1 no__
+ 6M{C7A™ Vol C, CoVoo(M + | max  |ufi —u(tn)])}
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m—1 m—1
< (DKM kol hup Vept )2,
n=0 n=0
O
Now, we return to the first part of term (3.10).
do oup s (tnt1) — oup s(tn) |,
|k(E<tn+l) - A . Emjl,\”
do U(tn ) — U(tn) n n n
< \k(a(tnﬂ) - Hfaghqflxﬂ + 0|(up-V(o(tnt1) — U(tn))ﬁhiﬁ,,\”
tnt1 d2 n+1 fat n dU n+1
< -0 @ s i+l TG ) s )

n n

do
<2 i : 20 (o) aleptt .

<k max Idtg( ihup Al + 0kluhlooo max [-7-(s)lalehup »
Using the regularity of o, we have

do oup 5(tns1) = oup s(tn)
k(g (tasr) — — Fa— g )| < MK + kg lo,00) g -

On the other hand, by the imbedding result W* C L> (see Lemma [3.3) and the
inverse inequality result | - 9,00 < (jwh%l| - lo,4 (see Lemma we can prove,

Up 0,00 = L10 U||3,2 1 g % U\lp) — Up, .
[uhlo.co < Cro(M + hljulls2 + C1Mh> 4+ h™2 [V (u(tn) — uj)l)

So we have,

Oup (tns1) = Oup.o(tn)
AIZk (tgr) = —ERETE O )]

< AM[k + 6MCyo(M + hM + Cy Mh?)] Zk _max_|eph

n=0

AL+ \/00)5h ™3 Zsz up)2)'’?

m—1

Z k|€n+1 2 1/2 Z k60|)\u V5n+1‘2)1/2]

n=0

Then Lemma follows from the above inequality and ([3.15]).

Conclusion. We conclude this analysis with some comments. The proof given here
can be extended to the more realistic rheological PTT model, to a quadrilateral FE
approximation, following [I] and to the higher finite element methods(Py, k > 1).
With a judicious coeflicient choice of stabilization § and §y, we find the error bound
given respectively by Baranger and al. [I6] and Ervin and al. [7].

The use of a decoupled fractional step scheme would be computationally cheaper,
following [6]. Numerical analysis of such method is currently in progress.
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