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ERROR ESTIMATE FOR THE CHARACTERISTIC METHOD
INVOLVING OLDROYD DERIVATIVE IN A TENSORIAL
TRANSPORT PROBLEM

MOHAMMED BENSAADA, DRISS ESSELAOUI, PIERRE SARAMITO

ABSTRACT. An optimal a priori error estimate O(h*+! 4 At), result is pre-
sented for a tensor problem involving Oldroyd derivative when using a suitable
characteristic method and a finite element method. To conclude, we present
results of numerical tests which confirm the previous estimates. Our long time
goal is to deal with the viscoelastic fluid flow problem.

1. INTRODUCTION

The Oldroyd derivative of a symmetric tensor ¢ is defined by

PD.0 0o T
91 = Bt + (u.V)o + oM, (u) + M, (u)o, (1.1)

where u is a given velocity field, M,(u) = ((1—a)Vu— (1+a)Vu’) /2 and
a € [—1,1] is the parameter of the Oldroyd derivative. In this paper, we suppose
also, for simplicity, that u = 0 on 0. Problems involving the Oldroyd derivative
appear in viscoelasticity (non-Newtonian polymer melt flow problems, see e.g. [6]),
in turbulence modelling (R;; — e models) or in liquid crystals modelling. Let Q be a
bounded polygonal subset of RY, d = 1,2 or 3, T > 0 be a time constant, v a given
symmetric tensor defined in Qx]0,T|, o¢ given in Q. and A > 0. The aim of this
paper is to study, as a preliminary result, the approximation of the linear transport
equation involving the Oldroyd derivative: find o defined in 2x]0,T[ such that

D0

A@t

+o0=7v in Qx]0,T7, (1.2)

0(0) =0¢ in Q.
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and its discrete counterpart: find a,(ln) €Th, 1 <n <N, such that, for all 7, € T},

T
n+1 n n n n
Uf(l = R(At) X Uf(z "o X(At) X (R(At)) (n+1)
(A At Th aTh) = (v(tnt1), ), (1.3)

and U,(lo) = mp0o9, where N > 1, At =T/N, t,, = nAt, XX;)(.T) =z — Atu(z,tpy1),
RX? (r) = I— At MT(u)(z,tn11), and T}, denotes the space of continuous piecewise
polynomial symmetric tensors T, = {r € (C°(Q) ﬂL2(Q))dXd; Tk € P, VK €
). _

Here, (J,)n>0 denotes a suitable family of regular triangulations of 2. The
Lagrange interpolation operator from L? tensors into T}, is denoted by m, k > 1.

The characteristic method [1] has been proposed for the numerical treatment of
convected-dominated flows and transport equations. It is based on an approxima-
tion of the material derivative 2 = 2 + (u.V):

D(p (p(:L’,t) _LP(X(m:t; S),S)
—(x,t) & 14
Dt @) t—s (14)
The trajectory X (z,s;.) is defined for all (z,s) € Q x [0,T] by
190.4
E(xysat) —u(X(m,s,t),t), tE]O)T[a (15)

X(z,s;s) = z.

In 1987, D. Esselaoui and M. Fortin [3] extended the characteristic method for
the approximation of the Oldroyd derivative of a symmetric tensor. For all fixed
s € [0,T], these authors considered the following transformed problem: find & (.,.;s)
defined in Qx]0,T|[ such that
D
NS (@, :5) +5(a,t55) = Rl t;5)y(@, )R (2, t55),  (2,1) € 2x]0, T,

Dt (1.6)

(x,0;5) = R(z,0;8)00(2)R" (,0;5), = €9,
where o'(z,t;s) = R(z,t;s)0(z,t) R(x, t; 5)T and the tensor flow R(z,.;s) is defined
for all (z,s) € Q@ x [0,T] by

DR
E(m,t;s) = R(z,t;s) M (u)(x,t), t€]0,T], (L)
R(z,s;s) = 1.

The Oldroyd derivative has been replaced by a material derivative of a tensor,
suitable for the characteristic method, as (1.3). A short computation shows that

D™g  omy . Do T b
W(w,t,s)—R (x,t;8) im (z,t)(R™)" (z,t;8), Vm €N, (1.8)

and thus problems (1.2) and (1.6) are equivalent. Numerical computations involv-
ing the scheme (1.6) has been already performed in [3] while the corresponding nu-
merical analysis was not yet available. We show a & (h’chl + At) optimal estimate.
Moreover, since the trajectories and the transformation are both approximated, the
scheme (1.6) is of practical interest. To conclude, we present results of numerical
tests that confirm the previous estimates.
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2. ERROR ESTIMATE

Let || || the L2(2) norm, || - ||« the L>®(Q) one and | - |, po the W™P(Q)
semi-norm, for m > 0 et p € [1,00]. Also, C%!(Q) denotes the space of lipschitzian
functions Q. For a Banach space Y, let us denote C'(Y) the space C([0,T],Y).
We suppose also that the data u € C(C%!(Q)): the existence and the continuity
of © — X(z,s;t) follow then from the Cauchy-Lipschitz theorem. Let us denote
finally X ("™ (z) = X (&, tnt1;tn) and R0 (z) = R(X™(z),tp;tns1). In this paper,
C;, i € N is a positive constant, independent of h and At.

For a Banach space Y, with norm ||.||y and 1 < p < co we introduce

1/p
PO,7:Y) = {0 (b1, tn) = Y5 [llio 1) = (lew Igat) < oof,

120,73Y) = { (b1, ) = Villelle o) = max [lp(t)ly < oo}

Theorem 2.1 (Error estimate). Let o and o, the solutions of (1.2) and (1.3),
respectively. Suppose that u is in (C(C%(Q)) r‘lWl"x’(Wl"x’(Q))d and o is in
(Whee(H™1(Q) N WZ’W(LZ(Q)))dXd, with m > 0. Then, there exist three posi-
tive constants Aty, hg and c, independent of h and At, such that, if At < Aty and
h < hg, we have

(F" ' + At), (2.1)
(W + At), (2.2)

llo = onllie(o,7;2(2)) < €
lo = onlliz0,7;22(02)) < €
where r = min(k, m).

Proof. Let us introduce &4(t) = mpo(t), t € [0,T], N(n) = p(tn) and 52n) =
agn) — 5,(Ln). By a development and using (1.3), we get

n+1 n n
(;gﬂ R xeft o x4 x (1)

(n+1), EgnJrl)) — (p2n+1)’851n+1))

At +é&, ,
(2.3)
where
T
~(n+1 n ~(n n n
(n+1) ~(n+1) U’(l = R(At) X U’(‘ Yo X(At) X (R(At))
=Y(tnt1) — 7y, - (2.4)

At
From the Cauchy-Schwartz inequality and using the identity ab < (a? + b?)/2,

(REm o X0 (RS e+

< 2 (1RG0 X5 (R) 7 + )

and
(A7) < (R + 2
Then, (2.3) becomes

s < < 3
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From lemma 3.1 (paragraph 2), for At small enough, we get

2 AL (nay||?
o

From the discrete Gronwall lemma, and using n < N = T'/At,

HEE{‘ﬂ) H2 < (14 CoAt) Hsin)

CoT

[ < S llones (2.5)
h = 92 12(L?)
where pp, = (pgtl), . ,pgN)). It still remains to bound the right-hand side. From
(1.6) with s =t = tp41, we get
Do
A g @ tnstitnr) +0(2,tni1) = (@, tasr) = 0. (2.6)
Adding (2.6) to the expression (2.4) of pgn"_l),
oY = (0= n)(tne)
T
~(n+1 n ~(n n n
s ) < R <o 0 X x (51)
+>‘{E(xatn+1§tn+1)_ At }
Let us introduce the splitting pgn'H) = f(L"'H) + n,(Ln+1), where
(n+1)
h
~ A ~ n ~ n n
= (7 = 0)(ta1) + 5= {7 = 50)(ta1) = B x (0 = 50)(X), 1) x (RO},
and
ngn—i-l)

T
(Do ) o(tpt1) — R™ x o (XM t,) x (R™)
_A{E(xatn-i-lvtn-i-l)_ At }

— Ait{R(n) X & (X(”),tn) X (R(”))T — Rglt) X 0 (X(AZ),tn) X (R(A”t))T }

On the one hand, using a classical interpolation result [2], we have ||¢ — mpo|| <
Cih™Yplrs1,2.0, for all ¢ € H™(Q). Then, lemma 3.2 (paragraph 2) yields

||C,(z"+1)|| = ¢(h"*1). On the other hand, the lemma, 3.2 and 3.3 (paragraph 2) and
the continuity of 7, in H'(Q) give ||17,(z"+1)|| = ¢(At). Thus, the result yields by
reporting [|p\" V|| = @(hr+! + At) in (2.5). O

3. AUXILIARY LEMMA

Lemma 3.1 (Estimate on the approximate transformation). There exist two pos-
itive constants Coy and Aty such that, if At < Aty, then

T
RS x 70 XY x (Rg?) I” < (14 CoAd)Irl?, Vre L} Q).
Proof. Let d(z) = dist(z,00) for x € Q. Since u =0 on 0f2, we have

X (@) — 2] = |u(@, tni1)] At < [l poewre) d(z)At.
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This leads to X\ (z) € Q for At < 1/|u|geo (.. Since x{(60) = 09, and
from the continuity of u(.,tp4+1), we get X(AZ)(Q) Q. Let J(AZ) = det (R(n)). Let

|.| denotes the matrix norm in R¥*?. We get
/Q|R(Ant) X TOX(AT? X (RX?)TP dz
<UL [ ro XS ao
< IRGY 1A /XW( [ ()I” TKY () dy < IRE A TEY 1 i
¢

From the definition of R(Ant), we get ||RA"2||OO < 14 Atlul|gee(w1.) and, for At
small enough, there exists a positive constant ¢ depending only of u such that
||J(A7;)||OO < 1+ cAt. Then we obtain the result. O

Lemma 3.2 (Time approximation). There exists K1, C1 and Cy such that, if
At < Ki/||uf[peewee), then
(i) for all T € W10 (L2((2))4xd

I7(tng1) = B™ x 7(X 1, ) x ( ) I < ClAt” Pt ||L°°(L2)

(ii) for all T € W2 (L?(22))?*? we have

(o tngr) — R x 7(X ™ £,) x (R(n))T
H tnt1tns1) — N H
@2
D2

< CQAt‘

= (L?)
Proof. Let f(t) = 7(X(x, tpnt1,t),t;tnt1). From one hand, remark that f(t,41) =
7(2,tny1) and f(t,) = R™ x 7(X)t,) x (R(”))T. From other hand, by the

property of the material derivative f("™)(t) = gTT(X(x,th,t),t;th), m > 0.

Then, the result yields from the error estimate for the Taylor interpolation poly-
noms, from (1.8) and from the properties of the solution R(z,.;t,+1) of the linear
dlfferentlal equation (1.7). O

Lemma 3.3 (Trajectories and transformation approximations). If u is in the space
Wheo(Who)d gnd 7 in H'(Q)?*? then there exists Cs such that

T T
[R xroxx (R) - REY <m0 XG) x (REY) |
< C3AF ||[ul|wroo (o) [|7]1,2,0

Proof. Let us consider the following splitting
T T
R™ x 710 XM x (R(m) ~RW x 70X x (Rgg)
T
= (R(n) - Rglt)) x 70X x (R(”))

+Rglt) x 10X x (R(”) —Rglt))T—l-RXlt) X (ToX(”) —TOXX?) X (R(Ant))T.
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From the Taylor expansion of fi(t) = R(X (x,tni1,t),t, tns1), we get R — RX? =
O(At?). Then, from the expansion of fo(t) = X (,t,41,t), we get X — X(AZ) =
O(At?). Finally, from the development of

g(0) = (X (@) + (1 -HX (@),
we have 70 X — 70 X\ = 0(A#2). O

4. NUMERICAL EXPERIMENTS
In this paragraph, we present numerical results for d = 2 and k = 1. We choose
u = (—m,z1) Q@ =]—1/2,1/2[%, T = 2m, v = 0 and the initial condition o is
chosen such that the solution of (1.2) is given by
ot (@ @) A (22— @20(1)?
A r2

(1 +cos(2t)  sin(2t) >
sin(2t) 1 — cos(2t)

1
o(x,t) = 2 exp

where 1 .(t) = 1 . cos(t) —Ta,c sin(t) et z2,c(t) = T1 ¢ sin(t) +Z2 . cos(t) with ro > 0
and (Z1,¢, T2,.) € R?. The numerical tests are performed for A = 1, ro = 1/10 and
(57170, ZE27C) = (1/4, 0).

The scheme (1.3) is based on the free software rheolef [7]. The computation of
the scalar product (RXL) U,(l") ox (R(A"))T, 7h) in the approximate problem (1.3)
is not an obvious task (see also [4, 5]). In each triangle, we use the six point fourth
order Gauss quadrature formulae.

Since our domain is a square, we split each edge in M segments, and obtain M?
small squares of length 1/M. Then we split each of them in two triangles: the step
of the mesh is then h = v/2/M. Fig. 1.a represents ||y, — mho|i2(L2) as a function
of At for four triangulations given by h = /2 /2%, 3 <i < 6. We observe that when
At — 0, the error starts to decrease and then tends to a constant that behaves
as h?. A simultaneous choice of (h,At) such that At = €(h?) is convenient : let
us choose (h,At) = (v/2/2¢, 2n/4"), 3 < i < 6. Fig. 1.b and 1.c presents the
corresponding error for the [2(L?) and [°°(L?) norms as a function of h and At,
respectively. These tests confirm the optimality of our estimates (2.1)-(2.2).
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F1cURE 1. Method convergence versus h and At.
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