
2004-Fez conference on Differential Equations and Mechanics

Electronic Journal of Differential Equations, Conference 11, 2004, pp. 61–70.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

DOUBLY NONLINEAR PARABOLIC EQUATIONS RELATED TO
THE P-LAPLACIAN OPERATOR

FATIHA BENZEKRI, ABDERRAHMANE EL HACHIMI

Abstract. This paper concerns the doubly nonlinear parabolic P.D.E.

∂β(u)

∂t
−∆pu + f(x, t, u) = 0 in Ω× R+,

with Dirichlet boundary conditions and initial data. We investigate here a
time-discretization of the continuous problem by the Euler forward scheme. In
addition to existence, uniqueness and stability questions, we study the long-
time behavior of the solution to the discrete problem. We prove the existence

of a global attractor, and obtain regularity results under certain restrictions.

1. Introduction

We consider problems of the form

∂β(u)
∂t

−∆pu+ f(x, t, u) = 0 in Ω×]0,∞[,

u = 0 on ∂Ω×]0,∞[,

β
(
u(., 0)

)
= β(u0) in Ω,

(1.1)

where ∆pu = div
(
|∇u|p−2∇u

)
, 1 < p < +∞, β is a nonlinearity of porous medium

type and f is a nonlinearity of reaction-diffusion type.
The continuous problem (1.1) has already been treated quite completely in [7]

for p > 1, and in the case p = 2 in [3]. Here, we shall discretize (1.1) and replace
it by

β(Un)− τ∆pU
n + τf(x, nτ, Un) = β(Un−1) in Ω,

Un = 0 on ∂Ω,

β(U0) = β(u0) in Ω.

(1.2)

The case p = 2 is completely studied in [4]. Here we shall treat the case p > 1, and
obtain existence, uniqueness and stability results for the solutions of (1.2). Then,
existence of absorbing sets is given and the global attractor is shown to exist as
well. Under restrictive conditions on f and p, a supplementary regularity result for
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the global attractor and, as a consequence, a stabilization result for the solutions
of (1.2) are obtained in the case when β(u) = u.

The paper is organized as follows: in section 2, we give some preliminaries and in
section 3, we deal with existence and uniqueness of solutions of the problem (1.2).
The question of stability is studied in section 4, while the semi-discrete dynamical
system study is done in section 5. finally, section 6 is dedicated to obtain more
regularity for the attractor.

2. Preliminaries

Notation. Let β a continuous function with β(0) = 0. we define, for t ∈ R,

ψ(t) =
∫ t

0

β(s)ds.

The Legendre transform ψ∗ of ψ is defined by

ψ∗(τ) = sup
s∈R

{τs− ψ(s)}.

Here Ω stand for a regular open bounded set of Rd, d ≥ 1 and ∂Ω is it’s boundary.
The norm in a space X will be denoted as follows:
‖ · ‖r if X = Lr(Ω), 1 ≤ r ≤ +∞;
‖ · ‖1,q if X = W 1,q(Ω), 1 ≤ q ≤ +∞;
‖ · ‖X otherwise;
and 〈., .〉 denotes the duality between W 1,p

0 (Ω) and W−1,p′(Ω). For any p ≥ 1 we
define it’s conjugate p′ by 1

p + 1
p′ = 1. On this paper, Ci and C will denote various

positive constants.

Assumptions and definition of solution. We consider the following Euler for-
ward scheme for (1.1):

β(Un)− τ∆pU
n + τf(x, nτ, Un) = β(Un−1) in Ω,

Un = 0 on ∂Ω,

β(U0) = β(u0) in Ω,

where Nτ = T is a fixed positive real, and 1 ≤ n ≤ N . We shall consider the case
u0 ∈ L2(Ω), and we assume the following hypotheses.

(H1) β is an increasing continuous function from R to R, β(0) = 0, and for some
C1 > 0, C2 > 0, β(ξ) ≤ C1|ξ|+ C2 for any ξ ∈ R

(H2) For any ξ in R, the map (x, t) 7→ f(x, t, ξ) is measurable, and ξ 7→ f(x, t, ξ)
is continuous a.e. in Ω × R+. Furthermore we assume that there exist
q > sup(2, p) and positives constants C3, C4 and C5 such that

sign(ξ)f(x, t, ξ) ≥ C3|ξ|q−1 − C4,

|f(x, t, ξ)| ≤ a(|ξ|)

where a : R+ → R+ is increasing, and

lim sup
t→0+

|f(x, t, ξ)| ≤ C5(|ξ|q−1 + 1).

(H3) There is C6 > 0 such that for almost (x, t) ∈ Ω×R+, ξ 7→ f(x, t, ξ) +C6β(ξ)
is increasing.
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Definition 2.1. By a weak solution of the discretized problem, we mean a sequence
(Un)0≤n≤N such that β(U0) = β(u0), and Un is defined by induction as a weak
solution of the problem

β(U)− τ∆pU + τf(x, nτ, U) = β(Un−1) in Ω,

U ∈W 1,p
0 (Ω).

3. Existence and uniqueness result

Theorem 3.1. If p ≥ 2d
d+2 , then for each n = 1, . . . , N there exists a unique solution

Un of (1.2) in W−1,p(Ω) provided that 0 < τ < 1
C6

.

Proof. We can write (1.2) as

−τ∆pU + F (x, U) = h,

U ∈W 1,p
0 (Ω),

where U = Un, h = β(Un−1) and F (x, ξ) = τf(x, nτ, ξ) + β(ξ). From (H1) and
(H2) we obtain

rmsign(ξ)F (x, ξ) ≥ −τC4 and h ∈W−1,p′(Ω) for p ≥ 2d
d+ 2

.

Hence the existence follows from a slight modification of a result in [1] (there,
C4 = 0). To obtain uniqueness, we set for simplicity

w = Un, f(x,w) = f(x, nτ, Un), g(x) = β(Un−1) .

Then problem (1.2) reads

−τ∆pw + τf(x,w) + β(w) = g(x),

w ∈W 1,p
0 (Ω) ∩ L∞(Ω).

(3.1)

If w1 and w2 are two solutions of (3.1), then we have

−τ∆pw1 + τ∆pw2 + τ(f(x,w1)− f(x,w2)) + β(w1)− β(w2) = 0. (3.2)

Multiplying (3.2) by w1 − w2 and integrating over Ω, gives

〈−τ∆pw1 + τ∆pw2, w1 − w2〉+ τ

∫
Ω

(
f(x,w1)− f(x,w2)

)
(w1 − w2)dx

+
∫

Ω

(
β(w1)− β(w2)

)
(w1 − w2)dx = 0.

(3.3)

Applying (H3) yields∫
Ω

(
f(x,w1)−f(x,w2)

)
(w1−w2)dx ≥ −C6

∫
Ω

(
β(w1)−β(w2)

)
(w1−w2)dx. (3.4)

Now, (3.4) and the monotonicity condition of the p-Laplacian operator reduce (3.3)
to

(1− τC6)
∫

Ω

(
β(w1)− β(w2)

)
(w1 − w2) dx ≤ 0.

So by (H1), if τ < 1
C6

, we get w1 = w2. �
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4. stability

Theorem 4.1. Assume p ≥ 2d
d+2 . Then there exists a positive constant C(T, u0)

such that, for all n = 1, . . . , N∫
Ω

ψ∗(β(Un))dx+ τ

n∑
k=1

‖Uk‖p
1,p + Cτ

n∑
k=1

‖Uk‖q
q ≤ C(T, u0) (4.1)

and

max
1≤k≤n

‖β(Uk)‖2
2 +

n∑
k=1

‖β(Uk)− β(Uk−1)‖2
2 ≤ C(T, u0). (4.2)

Proof. (a) Multiply the first equation of (1.2), with k instead of n, by Uk. Then
using (H2) and the relation∫

Ω

ψ∗(β(Uk))dx−
∫

Ω

ψ∗(β(Uk−1))dx ≤
∫

Ω

(
β(Uk)− β(Uk−1)

)
Ukdx,

we get, after summing from k = 1 to n,∫
Ω

ψ∗(β(Un))dx+τ
n∑

k=1

‖Uk‖p
1,p +Cτ

n∑
k=1

‖Uk‖q
q ≤ Cτ

n∑
k=1

‖Uk‖1 +
∫

Ω

ψ∗(β(u0))dx.

Thanks to Young’s inequality, for all ε > 0 there exists Cε(T, u0) such that∫
Ω

ψ∗(β(Un))dx+ τ

n∑
k=1

‖Uk‖p
1,p + Cτ

n∑
k=1

‖Uk‖q
q ≤ ετ

n∑
k=1

‖Uk‖p
p + Cε(T, u0).

Now for a suitable choice of ε, we have

ετ
n∑

k=1

‖Uk‖p
p ≤ Cε(T, u0).

That is, (4.1) is satisfied.
(b) Multiplying the first equation of (1.2), with k instead of n, by β(Uk). Then
using (H2), we have∫

Ω

(
β(Uk)− β(Uk−1)

)
β(Uk)dx+ τ〈−∆pU

k, β(Uk)〉 ≤ Cτ

∫
Ω

|β(Uk)|dx. (4.3)

With the aid of the identity 2a(a− b) = a2 − b2 + (a− b)2, we obtain from (4.3),

‖β(Uk)‖2
2 − ‖β(Uk−1)‖2

2 + ‖β(Uk)− β(Uk−1)‖2
2 ≤ Cτ‖β(Uk)‖1. (4.4)

Summing (4.4) from k = 1 to n, yields

‖β(Un)‖2
2 +

n∑
k=1

‖β(Uk)− β(Uk−1)‖2
2 ≤ ‖β(u0)‖2

2 + Cτ

n∑
k=1

‖β(Uk)‖1. (4.5)

As in (a), we conclude to (4.2). �
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5. The semi-discrete dynamical system

We fix τ such that 0 < τ < min(1, 1
C6

), and assume that p > 2d
d+2 . Theorem 3.1

allows us to define a map Sτ on L2(Ω) by setting

SτU
n−1 = Un.

As Sτ is continuous, we have Sn
τ U

0 = Un.
Our aim is to study the discrete dynamical system associated with (1.2) . We

begin by showing the existence of absorbing balls in L∞(Ω). ( We refer to [13] for
the definition of absorbing sets and global attractor).

Absorbing sets in L∞(Ω).

Lemma 5.1. If p > 2d
d+1 , then there exists n(d, p) ∈ N∗ depending on d and p, and

C > 0 depending on d,Ω and the constants in (H1)–(H3) such that

Un ∈ L∞(Ω) for all n ≥ n(d, p) (5.1)

and

‖Un(d,p)‖∞ ≤ C

τα+α2+···+αn(d,p)

(
‖u0‖αn(d,p)

2 + 1
)
, (5.2)

where α = p′/p. Moreover, if d = 1, d = 2 or d < 2p, then n(d, p) = 1.

The proof of the lemma above follows from a repeated application of the following
lemma (cf. [11])

Lemma 5.2. If u ∈W 1,p
0 (Ω) is a solution to the equation

−τ∆pu+ F (x, u) = T,

where T ∈ W−1,r(Ω) and F satisfies ξF (x, ξ) ≥ 0 in Ω × R then we have the
following estimates

(a) If r > d
p−1 , then u ∈ L∞(Ω) and

‖u‖∞ ≤ C
(‖T‖−1,r

τ

)p′/p

(b) If p′ ≤ r < d
p−1 , then u ∈ Lr∗(Ω) and

‖u‖r∗ ≤ C
(‖T‖−1,r

τ

)p′/p
,

where 1
r∗ = 1

(p−1)r −
1
d

(c) If r = d
p−1 and r ≥ p′ then u ∈ Lq(Ω) for any q, 1 ≤ q <∞ and

‖u‖q ≤ C
(‖T‖−1,r

τ

)p′/p
.

We can write (1.2) as

−τ∆pU
m + Fm(x,Um) = β(Um−1) + C4sign(Um) = Tm in Ω,

Um = 0 on ∂Ω,

where
Fm(x, ξ) = τf(x,mτ, ξ) + β(ξ) + C4sign(ξ).
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Note that by (H1) and (H2) we have

ξFm(x, ξ) ≥ 0 for all ξ,

Tm ∈W−1,p′(Ω).

Now, applying lemma 5.2, we can find an increasing sequence
(
α(m)

)
m≥1

such that

α(m) ≥ p′,
1

α(m+ 1)
=

1
(p− 1)α(m)

− 1
d
, (5.3)

and

‖Um‖α(m) ≤
Cm

τα+α2+···+αm

(
‖u0‖αm

2 + 1
)

(5.4)

We shall stop the iteration on m once we have α(m−1) > d
p . Indeed, if q > d

p , then
there exists r > d

p−1 such that Lq(Ω) ⊂ W−1,r(Ω). Then we have Tm ∈ W−1,r(Ω)
and thus Um ∈ L∞(Ω). n(d, p) will be the first integer m such that α(m− 1) > d

p .
Finally (5.2) will follow from (5.4) and lemma 5.2.

Remark 5.3. (i) If d = 1 or d = 2, then for all q > 1, we have L2(Ω) ⊂W−1,q(Ω),
in particular for q > d

p−1 . If d ≥ 3 and d < 2p, we can choose q > 1 to be such
that d

p−1 < q < 2d
d−2 . In the two cases, T1 ∈W−1,q(Ω) for some q > d

p−1 and, from
lemma 5.2, U1 ∈ L∞(Ω). We have then n(d, p) = 1.

(ii) If α(m) ≤ d
p for all m , then l = limm→∞ α(m) exists and equals 2−p

p−1d.
Consequently, for p > 2d

d+1 , we have l < p′ , which contradicts the fact that
α(m) ≥ p′. Hence, the existence of n(d, p) is justified.

(iii) If p = 2d
d+1 , then α(m) = p′ for all m, and Tm ∈W−1,p′(Ω). Then we cannot

necessarily expect an L∞ solution.This is due to results in [1], [2] and [11].

For the remaining of this article, we set n0 = n(d, p) and C1 = C
(
‖u0‖αn0

2 + 1
)
.

Lemma 5.4. Let k be such that 1 < k < q − 1 and k ≤ 1 + 1
n0

. Then, there
exist γ > 0, δ > 0 depending on the data of (H1)–(H3) and µ > 0 depending on
n0, q, γ, δ, k such that, for all n ≥ n0, we have

‖β(Un)‖∞ ≤
( δ
γ

) 1
q−1

+
C1 + µ(

τβ(n− n0 + 1)
) 1

k−1
,

where β =

{
1 if α ≤ 1,
αn0 if α ≥ 1.

Proof. From lemma 5.1, for n ≥ n0 we have

Un ∈ L∞(Ω) and ‖Un0‖∞ ≤ C1

τα+α2+···+αn0
.

Next, multiplying the first equation of (1.2) by |β(Un)|mβ(Un) for some positive
integer m, we derive from (H1) and (H2), after dropping some positive terms, that

‖β(Un)‖m+2
m+2 ≤

∫
Ω

|β(Un)|m+1β(Un−1)dx+ Cτ |β(Un)‖m+1
m+1 − Cτ‖β(Un)‖m+q

m+q.

By setting
yn

m = ‖β(Un)‖m+2 and zn = ‖β(Un)‖∞,
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and using Hölder’s inequality, we deduce the existence of two constants γ > 0, δ > 0
(not depending on m nor on Un) such that

yn
m + γτ(yn

m)q−1 ≤ δτ + yn−1
m .

As m approaches infinity, we then obtain

zn + γτzq−1
n ≤ δτ + zn−1,

with

zn0 ≤
C1

τα+α2+···+αn0
.

(i) If α ≤ 1, then α+ α2 + · · ·+ αn0 ≤ n0. So, we have

zn0 ≤ C1/τ
n0 ,

zn + γτzq−1
n ≤ δτ + zn−1.

Then we can apply lemma 7.1 in [4] to get

zn ≤
( δ
γ

) 1
q−1

+
C1 + µ(

τ(n− n0 + 1)
) 1

k−1
≡ cα(n).

(ii) If α ≥ 1, then α+ α2 + · · ·+ αn0 ≤ n0α
n0 . By setting τ1 = ταn0 , we have

zn0 ≤ C1/τ
n0
1 ,

zn + γ′τ1z
q−1
n ≤ δ′τ1 + zn−1,

where γ′ = τ1−αn0
γ and δ′ = τ1−αn0

δ. Then, once again, we can apply lemma 7.1
in [4] to get

zn ≤
( δ
γ

) 1
q−1

+
C1 + µ(

τ1(n− n0 + 1)
) 1

k−1
≡ cα(n).

�

Remark 5.5. In the case α ≥ 1, a slight modification has to be introduced in the
proof of lemma 7.1 in [4], since µ is depending on δ′ and γ′ and hence on τ . In fact,
it suffices to choose in that proof, with the same notation, µ such that

γ
( δ
γ

)1− k
q−1µk−1 ≥ 2

1
k−1 /(k − 1).

and to remark that γ′ ≥ γ.

Consequently, lemma 5.4 implies that there exist absorbing sets in Lq(Ω) for all
q ∈ [1,∞]. Indeed, this is due to the fact that

‖Un‖∞ ≤ max
(
β−1(cα(n)), |β−1(−cα(n))|

)
,

for all n ≥ n0, with cα(n) →
(

δ
γ

) 1
q−1 as n→∞.
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Absorbing sets in W 1,p
0 (Ω), existence of the the global attractor. Multi-

plying the equation in (1.2) by δn = Un − Un−1, we get

〈β(Un)− β(Un−1)
τ

, δn〉+
∫

Ω

|∇Un|p−2∇Un.(∇Un −∇Un−1)dx

+ 〈f(x, nτ, Un), δn〉 = 0.
(5.5)

By setting

Fβ(u) =
∫ u

0

(
f(x, nτ, w) + C6β(w)

)
dw,

we deduce from (H3) that

F ′β(u)(u− v) ≥ Fβ(u)− Fβ(v),

and then

〈f(x, nτ, Un), δn〉 = 〈f(x, nτ, Un) + C6β(Un), δn〉 − C6〈β(Un), δn〉

≥
∫

Ω

(
Fβ(Un)− Fβ(Un−1)

)
dx− C6〈β(Un), δn〉.

Now, using (H1), we get ψ′(v)(u− v) ≤ ψ(u)− ψ(v). Therefore, we have∫
Ω

β(Un)(Un − Un−1)dx

=
∫

Ω

(
β(Un)− β(Un−1)

)
(Un − Un−1)dx+

∫
Ω

β(Un−1)(Un − Un−1)dx

≤
∫

Ω

(
β(Un)− β(Un−1)

)
(Un − Un−1)dx+

∫
Ω

(
ψ(Un)− ψ(Un−1)

)
dx.

With the aid of the elementary identity

|a|p−2a.(a− b) ≥ 1
p
|a|p − 1

p
|b|p, (5.6)

we obtain∫
Ω

|∇Un|p−2∇Un.(∇Un −∇Un−1)dx ≥ 1
p
‖Un‖p

1,p −
1
p
‖Un−1‖p

1,p. (5.7)

Since τ < 1
C6

, from (5.5) we obtain

1
p
‖Un‖p

1,p +
∫

Ω

Fβ(Un)dx ≤ C6

∫
Ω

(
ψ(Un)− ψ(Un−1)

)
dx+

∫
Ω

Fβ(Un−1)dx. (5.8)

Now, setting

F (u) =
∫ u

0

f(x, nτ, w)dw,

yields ∫
Ω

Fβ(u)dx =
∫

Ω

F (u)dx+ C6

∫
Ω

ψ(u)dx.

Hence, from (5.8), we get
1
p
‖Un‖p

1,p +
∫

Ω

F (Un)dx ≤ 1
p
‖Un−1‖p

1,p +
∫

Ω

F (Un−1)dx.

By setting

yn =
1
p
‖Un‖p

1,p +
∫

Ω

F (Un)dx,
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we get yn ≤ yn−1. And by choosing Nτ = 1, using the boundedness of Un and the
stability analysis, there exists nτ > 0 such that

τ

n0+N∑
n=n0

yn ≤ a1, for all n ≥ nτ .

Hence we can apply the discrete version of the uniform Gronwall lemma (cf. [4,
Lemma 7.5]) with hn = 0 to obtain

1
p
‖Un‖p

1,p +
∫

Ω

F (Un)dx ≤ C for all n ≥ nτ .

On the other hand, since Un is bounded, we deduce that

‖Un‖1,p ≤ C.

We have then proved the following result.

Proposition 5.6. If τ < 1
C6

, there exist absorbing sets in L∞(Ω) ∩ W−1,p(Ω).
More precisely, for any u0 ∈ L2(Ω), there exists a positive integer nτ such that

‖Un‖∞ + ‖Un‖1,p ≤ C, ∀n ≥ nτ , (5.9)

where C does not depend on τ .

In order for the nonlinear map Sτ to satisfy the properties of a semi-group,
namely Sn+p

τ = Sn
τ oS

p
τ , we need (1.2) to be autonomous. So, we assume that

f(x, t, ξ) ≡ f(x, ξ). Thus, Sτ defines a semi-group from L2(Ω) into itself and
possesses an absorbing ball B in L∞(Ω) ∩W−1,p(Ω). Setting

Aτ =
⋂
n∈N

⋃
m≥n

Sm
τ (B),

we have a compact subset of L2(Ω) which attracts all solutions. That implies that
for all u0 ∈ L2(Ω),

dist
(
Aτ , S

n
τ u0

)
7→ 0 as n 7→ ∞.

Therefore, we have proved the following result.

Theorem 5.7. Assuming u0 ∈ L2(Ω) and (H1)–(H3), the discrete problem (1.2)
has an associated solution semi-group Sτ that maps L2(Ω) into L∞(Ω)∩W−1,p(Ω).
This semi-group has a compact attractor which is bounded in L∞(Ω) ∩W−1,p(Ω).

6. More regularity for the attractor

In this section, we shall show supplementary regularity estimates on the solutions
of problem (1.2) in the particular case where β(ξ) = ξ. We obtain therefore more
regularity for the attractor obtained in section 5. The assumptions are similar to
those used for the continuous problem in [7]; namely uo ∈ L2(Ω) and f verifying
the following assumption

(H4) f(x, t, ξ) = g(ξ) − h(x) where h ∈ L∞(Ω) and g satisfying the conditions
(H1)–(H3).

The problem (1.2) becomes

δn −∆pU
n + g(Un) = f, (6.1)

where δn = Un−Un−1

τ .
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First, we state the following lemma which we shall use to prove the principal
result of this section.

Lemma 6.1. There exists a positive real C such that for all n0 ≥ nτ , and all N in
N, we have

τ

n0+N∑
n=n0

‖δn‖2
2 ≤ C. (6.2)

Proof. Multiplying (6.1) by δn, using (5.7), (5.9), (H4) and Young’s inequality, we
get after some simple calculations

1
4
τ‖δn‖2

2 +
1
p
‖Un‖p

1,p −
1
p
‖Un−1‖p

1,p ≤ Cτ. (6.3)

Summing (6.3) from n = n0 to n = n0 +N , yields

1
4
τ

n0+N∑
n=n0

‖δn‖2
2 +

1
p
‖Un0+N‖p

1,p ≤
1
p
‖Un0‖p

1,p + CNτ. (6.4)

Now choosing n0 ≥ nτ shows that Un0 is in an W−1,p(Ω)–absorbing ball. As
τN = 1, we therefore obtain (6.2) from (6.4). �

Theorem 6.2. For all n ≥ nτ , we have ‖δn‖2 ≤ C, where C is a positive constant.

Proof. By subtracting equation (6.1), with n− 1 instead of n, from (6.1) and mul-
tiplying the difference by δn, we deduce from the monotonicity of the p-Laplacian
operator, Young’s inequality and (H3) that

1
2
‖δn‖2

2 ≤
1
2
‖δn−1‖2

2 + Cτ‖δn‖2
2.

Setting

yn =
1
2
‖δn‖2

2 and hn = C‖δn‖2
2.

and using [4, Lemma 7.5] and Lemma 6.1, we deduce that

yn+N ≤ C

Nτ
+ C.

If n ≥ nτ and Nτ = 1, then we get the desired estimate. �

Using this theorem, we have the following regularizing estimates.

Corollary 6.3. If p > 2d
d+2 and p 6= 2, then there exists some σ, 0 < σ < 1, such

that
‖Un‖B1+σ,p

∞ (Ω) ≤ C for all n ≥ nτ ,

where Bα,p
∞ (Ω) denotes a Besov space defined by real interpolation method.

If p = 2, then
‖Un‖W 2,2(Ω) ≤ C for all n ≥ nτ .

Proof. (i) If 2d
d+2 < p < 2 then there exists some σ′, 0 < σ′ < 1 such that

L2(Ω) ↪→W−σ′,p′(Ω) (6.5)

By (6)n, (6.5), (H4) and theorem 6.2 we get

‖ −∆pU
n‖

B−σ′,p′
∞ (Ω)

≤ C for all n ≥ nτ .
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Therefore, Simon’s regularity result in [12] yields

‖Un‖
B

1+(1−σ′)(p−1)2,p
∞ (Ω)

≤ C for all n ≥ nτ .

(ii) If p > 2, then, by (6.1), (H4) and theorem 6.2, we get

‖ −∆pU
n‖p′ ≤ C for all n ≥ nτ .

Therefore, Simon’s regularity result in [12] yields

‖Un‖
B

1+ 1
(p−1)2

,p

∞ (Ω)

≤ C for all n ≥ nτ .

(iii) For p = 2, see [4]. �
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