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ASYMPTOTIC BEHAVIOR OF A NON-NEWTONIAN FLOW
WITH STICK-SLIP CONDITION

FOUAD BOUGHANIM, MAHDI BOUKROUCHE, HASSAN SMAOUI

ABSTRACT. This paper concerns the asymptotic behavior of solutions of the
3D non-newtonian fluid flow with slip condition (Tresca’s type) imposed in
a part of the boundary domain. Existence of at least one weak solution is
proved. We study the limit when the thickness tends to zero and we prove a
convergence theorem for velocity and pressure in appropriate functional spaces.
The limit of slip condition is obtained. Besides, the uniqueness of the velocity
and the pressure limits are also proved.

1. INTRODUCTION

In the case of polymer fluids the no slip condition on the fluid-solid interface
is not always satisfied. This boundary condition is sometimes overpassed and we
must deal with slip at the wall. This phenomenon has been studied in a lot of
mechanical papers related to non newtonian fluids (see [7, [12]). For polymer fluids,
slip at the wall is not surprising : entangled polymer have a mixed fluid and solid
dynamic behavior.

We consider the incompressible isothermal viscous flow of a non newtonian fluid
through a thin slab. The viscosity of fluid follows the power law (see [4]). On the
part of the boundary we consider the stick-slip condition given by Tresca law. We
suppose that the flow is steady and the Reynolds number is proportional to 7.
The inertia effects are neglected, this condition is proved in [2] for different cases
corresponding to various values of v and of the power r of the Carreau law. It is
know that for polymer (non newtonian) flow through a thin slab the Hele-Shaw
equation is used. Our goal is to give mathematical foundation for the nonlinear
averaged momentum equation with stick-slip condition.

Let w be a bounded open set of R? with sufficiently smooth boundary. The
domain is thin slab defined by:

Q. = {(z1,29,23) € R3, (z1,22) Ew, and 0 < x3 < eh(z1,22)}
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Where h : w — R, is a C'. The incompressibility equation is

dive® =v;; =0 in Q.. (1.1)
For simplicity we take the constant density p = 1. Then the equation of motion is
—o5;=fi inQ. (4,5=1,2,3). (1.2)

The constitutive law is
o =—p° I+ QnO(DII)%D(UE), (1.3)

where v = (v§) represents the velocity field, o¢ = o;; the stress tensor, f =

(f(z1,22), f3(x1,22)) the body forces, D = D;; the rate of strain tensor, given by
D;;(v°) = %(vfj +v5;), Drr = D;;(v?)D;j(v®), p° denotes the pressure, 7o the
viscosity and r > 1 the power of law which may represent a pseudo-plastic fluid if
1 <r <2, adilatant fluid if r > 2.

We consider the following conditions on 02, = w UT%:

e On w: v*.n =0 and
ITf] < g(z1,22) = vf(w1,22) =0
|75 = g(z1,22) = I A >0 such that vf = A7y
e OnTI%: v* =0

Here n = (n;) is the unit outward normal to dw., and

(1.4)

g __ £ £ g __ €.
vy =v° —upn, v, =U;in;

€

€ —_— 2 J— € . 2 —_— . .
Tei = O4jTj = OpMi,  ON = 04540

are, respectively, the tangential velocity, normal velocity the components of tangen-
tial stress tensor and the normal stress. g(x1,x2) is a positive function in L (w)
and f in L (Q). We use the re-scaling z = % and the notation v(e)(x1, 2, 2) =
ve (21, x2,€2), p(e)(x1, 22, 2) = p°(x1, 22,e2). Hence, v(e) is sequence of functions
defined on fixed domain {2, then the system (1.1])-(1.4]) can be written
—e7div(|De(v(e)["7?De(v(e))) + Veple) = f in Q (1.5)
div.(v(e)) =0 in Q ’
OnT,: v(e)=0
On w: v(e).n =0 and
ITe(e)] < g(@1,22) = wvi(e)(w1,22) =0
|Te(e)] = g(x1,22) = IA >0 such that vi(e) = —Are(e) .

Here V., D., div. are the corresponding rescaled differential operators defined by

a'l}i . .
(Vev)ij = oz, fori=1,2,3; j=1,2;
1(9’01‘ .
(Vev)isz = -5 fori=1,2,3;

D.(v) = %((Vev) +(Voo)), dive = V..

Our main aim in this paper is to prove the existence of weak solution (v(g),p(g))
of problem (L.5) and to study the limit when the small thickness of the slab tends

to zero.



EJDE/CONF/11 ASYMPTOTIC BEHAVIOR OF A NON-NEWTONIAN FLOW 73

2. FUNCTIONAL FRAMEWORK AND EXISTENCE

To formulate the notion of weak solution of the problem (L.5)), we recall some
Sobolev spaces

v

ox;

Vi={ve (WH Q)3 v=0onT,, v.n=0on w},
Viiw = {v € V", div(v) = 0 in Q}.

W (Q) = {v € L"(Q) and e L"(Q), i=1,2,3},

On V", we define the functional j : V" — R, v+ [ g(s)lv/(s)|ds. Note that j
is continuous convex, but non differentiable. The problem has a variational
formulation (see [5]) written as follos:

Find (v(e),p(e)) € VI, x Ly () such that

e / | D (v(e))"?De(v(€)) De (w — v(e))dz + / p(e)dive(w)dx + j(w) — j(v(e))
Q Q

Z/Qf(w—v(e))dm, Yw e VT

(2.1)
For v € WHT(Q), we define the functional

Fi(v) = ?/Q|D(v)|Td;E—/vadx. (2.2)

Note that F; is Gateaux-differentiable and strictly convex, and that for every v, w
in Whr(Q),

(DFY (v),w) :E"’/Q|D(v)|r_2D(v)D(w)dx—/wadx, (2.3)

where (-,-) denotes duality of pairing W=7 (Q) x W17 (€2), and 7/ is the conjugate
number of r,(2 + L =1).

The operators DF is strictly monotone bounded coercive and hemicontinuous
(see [14]). Now, we introduce an auxiliary problem.
Find v(e) € V;, such that

(DE;(v(e)),w —v(e)) + j(w) = j(v(e)) 2 / flw—wv(e))de, Vwe Vi,. (24)
Q
Then we define the associated minimization problem: Find u € Vj, such that

o) = inf [o(w)) (25)

div
where ¢(w) = Ff(w) + j(w).
Lemma 2.1. Problems (2.4) and (2.5) are equivalent.

Proof. The proof use the monotonicity of the operators DF? and the convexity of
J (see [14]). O

Theorem 2.2. For r > 1 and fized e, (1.5)) has a unique solution (v(g),p(e)) in
Vi, x LE ().
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Proof. From nonlinear operator theory we deduce that has a unique solution
v(e) € Vi, (see [0, [14]). Using Lemma 2.1 we have that v(e) is also a unique
solution of the problem .

Let Y = L"(w) x L™(92), we introduce the following indicator functionals

0 fw=0
e L"(Q); =
v (@) ¥w) {+oo otherwise

veV” G) = (v/w,div(v)) €Y,
q=(q,q) €Y; »lg=jla) + ¥(g).
The unique solution v(e) of (2.4), satisfies
v(e) = [F (w) + ¢(G(w))] (2.6)

The existence of pressure p is assured by using the dual problem. The problem
dual to (2.6) can be written as

pi=iph) €Y pri= sup [<F(G7(q") = @7 (=q) (2.7)
ey
v(e) and p* are solutions of (2.6) and (2.7)) verify the following extremality relation
(see [6]):

inf
wevr

F7(v(e) + 9(G(0(e)) + E(G* () + ¢* (—=p") = 0 (2.8)

where Ff*, ™ denote the conjugates functionals of 7 and ¢ defined by

FE(G°0) = sup (< §°().u > ~F(w) (2.9)
o (—q") = zggﬂ—q*, q) — (@)}
= s {(~gha)—ja)}+ s {(pha)— (@)} 0
g EL™(w) 2€L"(Q)

Observing that supy, ¢ - (o) {{=p3, g2) —¥(g2)} = 0 and replacing in (2.8) g by G(u),
we obtain that v(e) satisfies

Fr(v(e) = F7 (u)+5(G1(v(€))) —5(G1(w) +4(G2(v(e))) — (p3, div(u)) <0, Vue V"
Finally, we get the result by using lemma 2.1. O

3. CONVERGENCE RESULTS

The limit model is obtained thanks to an asymptotic analysis. The used tech-
niques emanate from the ones used in homogenization. In this section we adopt the
following notation:

v(e) = (0(e),vs(e)),  0(e) = (vi(e), va(e)),

r—y
r—1"

€T = (13/,2), a' = (131,582), =
Also, we use the functional space

X" ={veL"(Q) and % e L"(Q)}.
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and we will need the following results given by lemmas 3.1 and 3.2. For v® €
(L"(Q:))3, 1 < r < +oo, we have for every v € (L"(Q%))% [v¥]|(1rye =
E%H’U(E)H(LT(Q))S.

Lemma 3.1 (Poincaré inequality). For v e (W ()%, 1 < r < 400,
8 €
1ol @ < ell gl @, (3.1)
Lemma 3.2 (Korn inequality). Forv e (W, (Q:))3, 1 <r < +o0,
IV llzr@ayye < CHID@) |z @e- (3-2)
where C' is a positive constant independent of € and v°.

The proof of the above lemma can be found in [8] and [10].

Proposition 3.3. Let (v(e), p(€)), be a sequence solution to problem (2.1]), we have

a(e) =e%0(e) =~ a in (x")? (3.3)
us(e) = e %3(e) = 0 in \", (3.4)
ple) = p(a’) in L (). (3.5)

Proof. Estimates for velocity and pressure are obtained from (2.1)), by using the
Poincaré and Korn inequalities. Taking w = —v(¢) in (2.1]) we obtain with Schwartz
inequality

& [ D) do < clo(e) 1o (3.6)

Q
Using 1) and 1) we deduce [[v(e)|l (L) < | 8'5(:)
lo(E)ll L@z < CellDe(v(e)ll(rq)ysxe

which with (3.6) give
vz @)z < C.e% IVarv(@)llzr@): < Cce

||(LT(Q))3 and

Ov(e)
HWH(LT(Q))Q" <Ce

We have, with incompressibility condition, for any ¢ € VVO1 ’T'(Q),
1
/ dive(v(e))pda'dz = / divgv(e)Vypde'dz + - / 9vs () pdr =0
Q Q € Ja 0z
using Green’s formula, we obtain

dvs(e)
|| 2ol < elote)ler @l o

z
which with (3.7)) give

81}3 (E)
1=,
Let p € (W&7T(Q)3, multiplying, the first equation of , by ¢ and integrating
over {2, we obtain with Green’s formula and Schwartz inequality

(Veple), o) < €7 / D (N Dl + Cllel

w1y < Ot (3.8)

Lr(Q)-
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Using the inequality ||D5((p)||(Lr(Q))3><3 < C%.HV(,OH(LT(Q))BM and 1' we deduce

(Vep(e)s) < CE DN el @y + Cllellwpray

which gives

dp(e)
5 ||W_1,T,(Q) < Ce. (3.9)

Finally (3.3)), (3.4) and (3.5) are direct consequence of the a priori estimates (3.7]),
B3) and B.9)- 0

||p(€)HL6/(Q) <C; and ||

Proposition 3.4. The function u(z’) defined by u(x’) = foh(z/) (', z)dz satisfies

divy (u(z)) =0 inw,
o (3.10)
va(z') =0 on odw.

where v is the unit outward normal to Ow.

Proof. Let ¢ € C§°(w), using the incompressibility condition and Green’s formula,
we obtain

/ Veau(e) (', 2)o(z")dz' dz
Q

_—/ u(s)(m’,z)vggw(x’)dx’dz—l—/ u(e) (@', z).m o(x')dy,
Q 89

as u(e).n = 0 on 99, we deduce

h(z")
Voo / a(e)(, 2)dz) = 0. (3.11)
0
h(z") X , h(z") . . ,
1] @ Dl = [ 1 e s
e / (o) (2, )| dadz).
Q
This implies
h(z") . ,
I /0 a(e)(x ,,2')dz'||(y,(w))2 <C. (3.12)

Let ¢ € WL (w), multiplying (3.11)) by ¢ and integrating over w, we obtain with
Green’s formula

h(z")
[ [ e ot < Cllelnr

h(z")
: l ! 1 <C.
o[ Dy, < C

Finally, we prove (3.10) passing to the limit in (3.11)) O
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4. LIMIT PROBLEM

Theorem 4.1. The cluster point (u(x’,2),p(x’)) defined by (3.3) and (3.5) verify
the following limit problem

-1 0 ,,0t ,r—20u

27«/2 3z(| %) +vx/p:f m V[/il’,,‘l(s))7
@! < (g(a")™T = a(',0) =0, (4.1)
‘%| = (g(x'))%l = I\ >0 such that a(z',0) = M\7(2).

where 7(x') = gz («',0)|"~ 22;‘ (', 0).

Proof. To linearize the problem we use the Minty’s lemma (see[6]), we obtain that

is equivalent to
g7 | |De(w)|" 72D (w) De(w — v(e))dz + /Qp(s) div o (w)dz + j(w) — j(v(e))

> | flw—o(e))dx, Ywe V"
? (4.2)

as U(E) = e %(¢), we take in (4.2), w = (1, w3) = 2w and we divide the inequality
by £°, we obtain that u(e) satisfies

/ | D= (w)|""2D (w) De(w - u(e))da + /Qp<a> div(w)de + j(w) = j(u(e))

> /Qf(w —u(e))dz, YweV"

(4.3)
Using proposition 3.1, we pass to the limit in the first term of (4.3]), and we obtain
that

e /Q |D.(w)|"?D.(w)D.(w — u(e))da

converges to
2 ~—2 2
1 3wz 2 6w3 2 7T 1 8’(111 a(wl — ul) 8’([)3 8(w3 — U3)
/Q(zg(az)“az)) (2i_1 PR s L

With (2.9) we have that us = 0, then we can choose ws = 0, using (3.3)), (3.5 and
the fact j is convex and continuous, when passing to limit in (4.3]), we get to @ and
p are the solution of the following inequality

1[0, 00 00 — ) N
37 | G G e+ (Vo — )+ () — ()

(4.4)
> / f(w—a)dz, YoeV"
Q
Using again Minty’s lemma, the last inequality is equivalent to
_ 8u8 S s .
sm [ 52D 4 (Tupio— ) +50) - s(a)
(4.5)

> / Fb — a)de, Vi eVT
Q
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Now, we use the density result shown in ([3]): there exists a sequence of functions
in V" which has @ as a limit in x”, then we can take in W = U *+ ¢, where
@ € (Wy" (€))%, and we get the first equation of .

From , the first equation of and by using Green’s formula, we show
that @ satisfies

/(g|ﬁ)| — 7)dl — /(gm\ —#0)dT >0, Vi€ (Wh(Q))>2 (4.6)

w

Choosing w in (4.6) such that @ = +A, where A > 0, we obtain that for all
W e (W ()2

/(glw\ + Faw)dl’ > 0, (4.7)

/(g|a| — @)l <0. (4.8)
Now, we introduce the functional space
I={ye (VVI_%’T((?Q))7 whith a compact support on w}.

From 1) we deduce that the function w € Z, w — fw 7 dI is continuous for the
topology induced by (L"(w))?2. Since g is in L°(w) and strictly positive, with (4.7)
we have

[ Dtgnar < [ galar = jgal.
Since Z is dense in L'(w), we get
g 't € L®w) and |7| < gae. onw. (4.9)

Which with (4.9) and using inequality (4.8]) implies the boundary conditions on
w. (]

Theorem 4.2. The limit problem .1) has a unique solution (a(x',z),p(x")) in
(X")? % L (@).
Proof. The uniqueness will be proven by using proposition 3.2. As usual, we assume

that the problem (4.1]) has at least two solutions (i1,p1) and (42, p2). Integrating
the first equation with respect to z, we obtain

1 Qi 50

r—2 _ £
W' 2| e, (') = 2(f = Varp1) (4.10)

1 Oty 00z , .
e — — Vo 4.11
sl o220 (o) — 2(f ~ Vi) (@11
where 7;(2’) = \%(z’,O)V‘Q%(ﬂ,O), i = 1,2. We consider the function 7,

defined by & € R2, n,.(€) = |£]"~2¢, which satisfies (see [14], [13]),
Olig duy, Oy Oty
(777-(5) - UT-(E% 5 - E)

~1| 9 diiy | ;
>€w1£—£| itr>2

(r—1)(1%%] + 9% ()" 7%|% — 3L |” if1<r<2.

0z 0z 0z
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Let 8(z') = mo(2’) — 71 (2"), we have

9. .
(B(z") 4+ 2V (p2 — p1), &(W — 1))
(%)7‘ 1 auzz _ %711 }T if 7 > 2 (412)
T - D19+ 198 ) 9 - G 1<y <2
Using the boundary conditions on w, we get

/ (B(2'), ti2(2’,0) — 41 (2',0))dz’ > 0 (4.13)

Integrating (4.12)) over 2, from Green’s formula proposition 3.2 and (4.13)), we have

8’&2 8U1 r

— - = = if r>2 4.14
o P =0 ifr>2 and (4.14)

87.1/2 3U1 2 A2 a’&1 2 .
" —|" = f1 2. 4.15
R R R (1.15)
Finally, since ul(x 7h(ﬂc )) = ug(2’, h(z')) = 0, we deduce that is = @1 a.e. in Q
and py = p; a.e. on w. O

Theorem 4.3. Let § > 0 and 0 < § < h(2') < 1. Then p(2'), #(z'), and a(z') =
foh(m ) a(x', 2) dz satisfy p(z’) € W (w) and

div . (a(2) =0 inw,

va(x) =0 on dw.

/h(l /'T e[ 2 (F(2) = y(')€)de ) dz

h(z")
T+ ha') / I (@)E — 7" 2 (y(a)E — 7))

and y(2') = 27(f(a') = Varp(a')).
Proof. As a weak limit 4 € (x")?, and then
o o1 ’
— € (L™ ()
15,5, € ()

Taking the test function ¢(:1c z) = G(z")(2), for all G € (C§°(w))?, and for
fixed ¢ € C§°(0,0), v >0, fo z)dz = 1, we have by first equation of |i

where

§>|

|r2

1
32 w% dx'dz —/w p(z') div . G(x / fla (4.16)
Since f is regular, li shows that V,/p € L (©), and we have

-1 90 (’8u|r 200
2r/2 92 \1 9z 0z
Integrating this equation twice with respect to z, we obtain

(2, 2) / |7 (x ')€" ‘-2 (F(2') —v(2")€) dE + a(z’,0).

)+ Vep=f inL"(Q).
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Since u(2’, h(z")) = 0, we get

h(z") ,
i@, 0= [ e - P P O)E - Fla))de.
0
Finally, we obtain the result for proposition 3.2. (]
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