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STABILITY AND HOPF BIFURCATION IN
A HAEMATOPOIETIC STEM CELLS MODEL

HAMAD TALIBI ALAOUI, RADOUANE YAFIA

Abstract. We consider the Haematopoietic Stem Cells (HSC) Model with

one delay, studied by Mackey [4, 5] and Andersen and Mackey [1]. There are
two possible stationary states in the model. One of them is trivial, the second
E∗(τ), depending on the delay, may be non-trivial . This paper investigates

the stability of the non trivial state as well as the occurrence of the Hopf
bifurcation depending on time delay. We prove the existence and uniqueness
of a critical values τ0 and τ of the delay such that E∗(τ) is asymptotically

stable for τ < τ0 and unstable for τ0 < τ < τ . We show that E∗(τ0) is a Hopf

bifurcation critical point for an approachable model.

1. Introduction

The population of haematopoietic stem cells (HSC) give rise to all of the different
elements of the blood: the white blood cells, red blood cells, and platelets, which
may be either actively proliferating or in a resting phase. After entering the prolif-
erating phase, a cell is committed to undergo cell division at a fixed time τ later.
The generation time τ is assumed to consist of four phases, G1 the pre-synthesis
phase, S the DNA synthesis phase, G2 the post-synthesis phase and M the mitotic
phase. Just after the division, both daughter cells go into the resting phase called
G0-phase. Once in this phase, they can either return to the proliferating phase and
complete the cycle or die before ending the cycle.

The dynamics of the (HSC) are governed by the coupled differential delay equa-
tion (see [1, 4, 5, 6]):

dN

dt
= −δN − β(N)N + 2e−γτβ(Nτ )Nτ

dP

dt
= −γP + β(N)N − e−γτβ(Nτ )Nτ

(1.1)

where β is a monotone decreasing function of N which has the explicit form of a
Hill function,

β(N) = β0
θn

θn + Nn
. (1.2)
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The symbols in equation (1.1) have the following interpretation. N is the num-
ber of cells in non-proliferative phase, Nτ = N(t − τ), P the number of cycling
proliferating cells, γ the rate of cells loss from proliferative phase, δ the rate of
cells loss from non-proliferative phase, τ the time spent in the proliferative phase,
β the feedback function, rate of recruitment from non-proliferative phase, β0 the
maximum recruitment rate, and θ and n the control shape of the feedback function.

2. Stability without delay τ = 0

For τ = 0 the equation (1.1) reads to

dN

dt
= −δN + β(N)N

dP

dt
= −γP

(2.1)

Theorem 2.1. Assume δ ∈ (0, β0]. The system (2.1) has a positive equilibrium
(N∗, 0) = (β−1(δ), 0) which is asymptotically stable. The trivial one (0, 0) is unsta-
ble.

Proof. The characteristic equation of the linearized equation of (2.1) around E∗ =
(N∗, 0), has two roots given by λ1 = −δ + α′(N∗) and λ2 = −γ, where

α(N) = β(N)N (2.2)

and α′(N) its derivative. Since β is a decreasing function, E∗ is asymptotically
stable. For the trivial equilibrium, the roots of the characteristic equation of the
linearized equation of (2.1) around (0, 0) are λ1 = −δ + α′(0) and λ2 = −γ. Since
α′(0) = β0 > δ, (0, 0) is unstable. �

3. Stability for positive delay

Normalizing the delay τ by the time scaling t → t
τ , effecting the change of

variables u(t) = N(tτ) and v(t) = P (tτ), the system (1.1) is transformed into

u̇(t) = τ [−δu(t)− α(u(t)) + 2e−γτα(u(t− 1))]

v̇(t) = τ [−γv(t) + α(u(t))− e−γτα(u(t− 1))]
(3.1)

where α is given by equation (2.2). Let

(H0) δ < β0
2 and denote by τ = 1

γ ln
(

2
1+ 2δ

β0

)
.

Note that (H0) implies that for each 0 < τ < τ , α′(u∗) < 0 and β0(2e−γτ − 1) > δ
and system (3.1) has a unique positive equilibrium E∗(τ) = (u∗(τ), v∗(τ)) with

u∗(τ) = θ
(β0(2e−γτ − 1)− δ

δ

)1/n
, v∗(τ) =

δu∗

γ

( 1− e−γτ

2e−γτ − 1
)

and the characteristic equation of the linearized equation associated with (3.1)
around E∗(τ) is

W (λ, τ) = (λ + τγ)(λ− τa(τ)− τb(τ)e−λ) = 0, (3.2)

with a(τ) = −(δ + α′(u∗)) and b(τ) = 2e−γτα′(u∗) and

α′(u∗) =
δ

β0(2e−γτ − 1)2
[
β0(1− n)(2e−γτ − 1) + nδ

]
.
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Since τγ > 0, the stability of the positive equilibrium E∗(τ) follows from the study
of roots of the equation

∆(λ, τ) = λ− τa(τ)− τb(τ)e−λ = 0 (3.3)

corresponding to the characteristic equation associated to the first equation in (3.1).
To obtain the switch of stability of E∗(τ), one needs to find the imaginary root of
equation (3.3). Let λ = iζ, then ∆(iζ, τ) = 0 if and only if

ζ = arccos
(
− a(τ)

b(τ)
)
∈ (0, π) for 0 ≤ |a(τ)

b(τ)
| ≤ 1 and

τ
√

b2(τ)− a2(τ) = arccos(−a(τ)
b(τ)

) for 0 ≤ |a(τ)
b(τ)

| < 1.

(3.4)

Let

(H1) a(τ) < 0 and |b(τ)| < −a(τ) for all τ > 0.
(H2) τa(τ) < 1, and |a(τ)| < |b(τ)| for all τ > 0.

Theorem 3.1. Under assumption (H0), we have:
(1) The trivial equilibrium (0, 0) is unstable for 0 < τ < τ .
(2)

(i) If a and b satisfy (H1), then E∗(τ) is asymptotically stable for 0 < τ < τ .

(ii) If a and b satisfy (H2), n is sufficiently large and γ is close enough to 0,
there exists a unique τ0 in ]0, τ [ such that E∗(τ) is asymptotically stable for
τ ∈]0, τ0[ and unstable for τ ∈ (τ0, τ).

Proof. (1) The characteristic equation of the linearized equation associated to (3.1)
around (0, 0) is

λ + τ(δ + β0)− 2τe−γτβ0e
−λ = 0 (3.5)

From (H0), we have β0(2e−γτ − 1) > δ, thus (3.5) has a real root which is positive.
Then (0, 0) is unstable.

(2) part (i): Let λ = µ + iν be a root of equation ∆(λ, τ) = 0 for 0 < τ < τ . We
have

µ− τa(τ)− τb(τ)e−µ cos(ν) = 0

ν + τb(τ)e−µ sin(ν) = 0
(3.6)

If there exists a root µ0 ≥ 0 of (3.6), then −a(τ) ≤ b(τ)e−µ0 cos(ν). Since −1 ≤
cos(ν) ≤ 1 and 0 < e−µ0 < 1 and b(τ) < 0 for 0 < τ < τ , we have b(τ) ≤ a(τ), which
contradicts the assumption (H1). So for all 0 < τ < τ , the roots of the equation
(3.3) have negative real parts, and therefore E∗(τ) is asymptotically stable. �

For the proof of the stability in (2) part (ii), we need the following lemmas.

Lemma 3.2 (Hale 1993 [2]). All roots of the equation (z + c)ez + d = 0, where c
and d are real, have negative real parts if and only if: (i) c > −1, (ii) c + d > 0,
and (iii)

√
d2 − c2 < ζ, where ζ is the root of ζ = −c tan ζ, 0 < ζ < π, if c 6= 0 and

ζ = π
2 if c = 0.

Lemma 3.3. Under hypotheses (H0) and (H2), for n sufficiently large and γ close
enough to 0, there exists a unique solution τ0 of the second equation of (3.4) in ]0, τ [,
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such that iζ0 is a purely imaginary root of equation (3.3), with ζ0 = arccos(−a(τ0)
b(τ0)

).
Furthermore, the following inequalities hold

τ
√

b2(τ)− a2(τ) < arccos(−a(τ)
b(τ)

) for τ ∈ (0, τ0)

τ
√

b2(τ)− a2(τ) > arccos(−a(τ)
b(τ)

) for τ ∈ (τ0, τ)
(3.7)

Lemma 3.4. Let f : (0, π) → R be defined by f(x) = α tanx, α < 1 and α 6= 0.
Then, f has a unique fixed point ζ ∈ (0, π), such that:
For 0 < α < 1, f(x) < x if x ∈ (0, ζ) ∪ (π

2 , π) and f(x) > x if x ∈ (ζ, π
2 );

and for α < 0, f(x) < x if x ∈ (0, π
2 ) ∪ (ζ, π) and f(x) > x if x ∈ (π

2 , ζ).

Proof of (2) part (ii) of theorem 3.1. We only have to verify the three conditions
(i), (ii) and (iii) of lemma 3.2. The assertions (i) and (ii) follow from (H2) with
c = −τa(τ) and d = −τb(τ).

For condition (iii), let τ ∈ (0, τ0) and f(ζ) = τa(τ) tan ζ. From the first equation
of (3.7) we have: If a(τ) = 0, the first inequality of (3.7) becomes −τb(τ) < π

2 , and
(iii) is satisfied. If 0 < τa(τ) < 1 or a(τ) < 0, since

f
(
arccos(− a(τ)

b(τ)
)
)

= τ
√

b(τ)2 − a(τ)2,

the first equation of (3.7) implies that

f
(
arccos(− a(τ)

b(τ)
)
)

< arccos(− a(τ)
b(τ)

),

with arccos(−a(τ)
b(τ) ) ∈ (0, π). From lemma 3.4 and the graph of f , if ζ is the fixed

point of f in (0, π), we have,

f
(
arccos(− a(τ)

b(τ)
)
)

< ζ, (3.8)

that is
√

(τb(τ))2 − (τa(τ))2 < ζ, which leads to the desired assertion. This
complete the stability of E∗(τ) for 0 < τ < τ0.

To prove the unstability of E∗(τ) in (2) part (ii), for τ0 < τ < τ , we will show
that the characteristic equation (3.3) has at least one root with positive real part.
Let τ0 < τ < τ . If all the roots of the characteristic equation (3.3) have negative
real parts, the properties (i), (ii) and (iii) of lemma 3.2 are satisfied. From the
second equation of (3.7) and from (3.8) we have

f
(
arccos(− a(τ)

b(τ)
)
)

> arccos(−a(τ)
b(τ)

)

f
(
arccos(− a(τ)

b(τ)
)
)

< ζ

Henceforth, from lemma 3.4 and the graph of f , we have

arccos(− a(τ)
b(τ)

) < ζ, and arccos(− a(τ)
b(τ)

) > ζ

which is impossible.
Now, suppose that there is one root with zero real part with all the remaining

roots having negative real parts. From (3.4) and lemma 3.3 we deduce that τ = τ0,
which contradicts the assumption τ > τ0. Then E∗(τ) is unstable for τ0 < τ < τ
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Proof of Lemma 3.3. In view of (H0) and (H2), to find a root of second equation
of (3.4) is equivalent to find a root of the equation

τ = −
arccos(−a(τ)

b(τ) )

b(τ) sin(arccos(−a(τ)
b(τ) ))

. (3.9)

Let y(τ) = arccos(−a(τ)
b(τ) ), and F (τ) = − y(τ)

b(τ) sin(y(τ)) . Besides, in the hypotheses
(H0) and (H2), F is continously differentiable on τ0 ∈ [0, τ ]. As F (0) > 0, for
sufficiently large n and F (τ) < τ for γ close enough to 0, then there exits at
least one solution τ0 of equation (3.9) in ]0, τ [. Now, for the uniqueness of τ0, let
g(τ) = τ − F (τ), then

g′(τ) = 1− y′(τ)b(τ) sin(y(τ))− y(τ)b′(τ) sin(y(τ))
(b(τ) sin(y(τ)))2

− y(τ)b(τ) cos((τ))y′(τ)
(b(τ) sin(y(τ)))2

where

y′(τ) = −

√
1−

(
a(τ)
b(τ)

)2
a′(τ)b(τ)− a(τ)b′(τ)

b2(τ)
.

Since limγ→0
d
dτ α′(u∗) = 0, from (3.2), we have

lim
γ→0

b′(τ) = 0 and lim
γ→0

a′(τ) = 0.

Then limγ→0g
′(τ) = 1 > 0, for 0 ≤ τ ≤ τ . Since g′ > 0 and g is an increasing

function on the interval ]0, τ [ for γ close enough to 0, τ0 is unique in ]0, τ [. By
the continuity property of F , we have F (τ) > τ for τ ∈]0, τ0[ and F (τ) < τ for
τ ∈]τ0, τ [. �

4. Hopf Bifurcation Occurrence

Below, we will show that the following system has a Hopf bifurcation at τ = τ0,
dN

dt
= −δN − β(N)N + 2e−γτ0β(Nτ )Nτ

dP

dt
= −γP + β(N)N − e−γτ0β(Nτ )Nτ

(4.1)

This system is equivalent to

u̇(t) = τ [−δu(t)− α(u(t)) + 2e−γτ0α(u(t− 1))]

v̇(t) = τ [−γv(t) + α(u(t))− e−γτ0α(u(t− 1))]
(4.2)

with u(t) = N(tτ) and v(t) = P (tτ). System (4.2) has a unique positive equilibrium
E∗ = (u∗, v∗) = (u∗(τ0), v∗(τ0)), for all τ > 0.

By the translation z(t) = (u(t), v(t)) − (u∗, v∗), system (4.2) is written as a
functional differential equation (FDE) in C := C([−1, 0], R2):

ż(t) = L(τ)zt + f0(zt, τ) (4.3)

where L(τ) : C → R2 is a linear operator and f0 : C×R → R2 are given respectively
by

L(τ)ϕ = τ

(
−(δ + α′(u∗))ϕ1(0) + 2e−γτ0α′(u∗)ϕ1(−1)
−γϕ2(0) + α′(u∗)ϕ1(0)− e−γτ0α′(u∗)ϕ1(−1)

)
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f0(ϕ, τ) = τ


−α(ϕ1(0) + u∗) + α′(u∗)ϕ1(0)− 2e−γτ0α′(u∗)ϕ1(−1)

+2e−γτ0α(ϕ1(−1) + u∗)− δu∗

α(ϕ1(0) + u∗)− α′(u∗)ϕ1(0)− e−γτ0α(ϕ1(−1) + u∗)
+e−γτ0α′(u∗)ϕ1(−1)− γv∗.


for ϕ = (ϕ1, ϕ2) ∈ C.

Now, we apply the Hopf bifurcation theorem, see [2], to show the existence of
a non-trivial periodic solution to (4.2) bifurcating from the non trivial equilibrium
E∗. We use the delay as a parameter of bifurcation. Therefore, the periodicity is a
result of changing the type of stability, from stationary solution to limit cycle. Let

(H3) a(τ0) < 1
τ and |a(τ)| < |b(τ)| , for 0 < τ < τ .

Theorem 4.1. Under hypotheses (H0) and (H3) if n is sufficiently large and γ is
close enough to 0, then, for τ ∈]0, τ0[, E∗ is asymptotically stable; it is unstable for
τ ∈]τ0, τ [, where τ0 is stated in lemma 3.3.

The proof of the above theorem follows the same procedure as that the proof of
theorem 3.1 (2) (ii). Therefore, we omit it.

Theorem 4.2. Assume (H0) and (H3) hold, n is sufficiently large and γ is suffi-
ciently small. There exists ε0 > 0 such that, for each 0 ≤ ε < ε0, equation (4.2) has
a family of periodic solutions p(ε) with period T = T (ε), for the parameter values
τ = τ(ε) such that p(0) = E∗, T (0) = 2π

ζ0
and τ(0) = τ0, where τ0 stated in lemma

3.3 and ζ0 = arccos
(
− a(τ0)

b(τ0)

)
.

Proof. We apply the Hopf bifurcation theorem introduced in [2]. From the expres-
sion of f0 in (4.3), we have

f0(0, τ) = 0 and
∂f0(0, τ)

∂ϕ
= 0, for all τ > 0

The linearized equation associated to (4.2) around E∗ has the following character-
istic equation:

∆0(λ, τ) = λ− τa(τ0)− τb(τ0)e−λ = 0, (4.4)
Firstly, let λ = iζ. From (3.4) and lemma 3.3, we have

∆0(iζ, τ) = 0 ⇐⇒ ζ0 = arccos
(
− a(τ0)

b(τ0)
)

and τ = τ0

where τ0 is unique in (0, τ). Thus, the characteristic equation (4.4) has a pair of
simple imaginary roots λ0 = iζ0 and λ0 = −iζ0 at τ = τ0.

Lastly, we need to verify the transversality condition. From (4.4), ∆0(λ0, τ0) = 0
and ∂

∂λ∆0(λ0, τ0) = 1 − τ0a(τ0) + λ0 6= 0. According to the implicit function
theorem, there exists a complex function λ = λ(τ) defined in a neighborhood of τ0,
such that λ(τ0) = λ0 and ∆0(λ(τ), τ) = 0 and

λ′(τ) = −∂∆0(λ, τ)/∂τ

∂∆0(λ, τ)/∂λ
, (4.5)

for τ in a neighborhood of τ0. Let λ(τ) = p(τ) + iq(τ). From (4.5) we have

p′(τ)/τ=τ0 =
τ0(b2(τ0)− a2(τ0))

(1 + τ0b(τ0) cos ζ0)
2 + (τ0b(τ0) sin ζ0)

2

From (H3), we conclude that p′(τ)/τ=τ0 > 0. �
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5. Discussions

It’s known (Mackey (1997) [5]) that when taking γ as a bifurcation parameter
and allowing γ to increase, a supercritical Hopf bifurcation of (1.1) is followed by
an inverse Hopf bifurcation. Considering the delay τ as a parameter of bifurcation
makes the study of bifurcation more complicated.
In [1] the following conditions of stability of the non-trivial steady state of (1.1)

were proposed (Hayes (1950) [3]) |a(τ)
b(τ) | > 1 or |a(τ)

b(τ) | ≤ 1 and τ <
arccos(− a(τ)

b(τ) )√
b(τ)2−a(τ)2

where 0 < τ < 1
γ ln( 2

1+ δ
β0

), δ < β0.

In sections 2 and 3 of this paper it’s shown that if the loss rate γ from proliferating
cells is smaller and the control shape n is large, then the steady state E∗(τ) may
be stable for τ = 0 and hence it’s stable for 0 < τ < τ0 and unstable for τ0 < τ < τ ,
where τ = 1

γ ln( 2
1+ 2δ

β0

), 2δ < β0. But at τ = τ0 we cannot give any result of stability

of E∗(τ0), because the dependance of E∗(τ) on the delay τ , which makes the study
of the Hopf bifurcation more difficult.

In the rest of the paper to study the Hopf bifurcation around the critical value
τ = τ0, we propose the approchable model (4.1) of (1.1). Then E∗(τ0) is the unique
non-trivial steady state of (4.1) for all 0 < τ < τ , which is stable for 0 < τ < τ0

and unstable for τ0 < τ < τ and the Hopf bifurcation occures at τ = τ0.
The results proposed in this paper should hopefully improve the understanding

of the qualitative properties of the description delivered by model (1.1). So far we
have now a description of stability properties and Hopf bifurcation with a detailed
analysis of the influence of delays terms.
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