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DECAY ESTIMATES FOR SOLUTIONS OF SOME SYSTEMS
FOR ELASTICITY WITH NONLINEAR BOUNDARY FEEDBACK

NAJI YEBARI

Abstract. We study the energy decay rate for the Euler-Bernoulli and Kirch-

hoff plate equations. Under suitable growth assumptions on the nonlinear
dissipative boundary feedback functions, we obtain some new results.

1. Introduction and main results

We consider the following Euler-Bernoulli beam equation with nonlinear bound-
ary feedback controls:

ytt + yxxxx = 0 in (0, 1), t > 0,

y(0, t) = yx(0, t) = 0 (clamped at x = 0), t > 0,

−yxx(1, t) = h(yxt(1, t)) (moment), t > 0,

yxxx(1, t) = g(yt(1, t)) (force), t > 0,

y(., 0) = y0 ∈ H2
E , yt(., 0) = y1 ∈ L2(0, 1),

(1.1)

where H2
E = {u ∈ H2(0, 1); u(0) = u′(0) = 0}, x stands for the position and t the

time. The flexural rigidity of the beam and the mass density are assumed to be
equal to one. One end is controlled by a point force and point bending moment
which are assumed to be nonlinear functions of the observation. By observation we
mean velocity and angular velocity of the transversal deflexion at the end.

Throughout this paper, g and h are assumed to satisfy the following hypothesis

g ∈ C0(R), nondecreasing, g(0) = 0, g(s)s > 0 ∀s 6= 0 , (1.2)

h ∈ C0(R), nondecreasing, h(0) = 0, h(s)s > 0 ∀s 6= 0 . (1.3)

The total energy of system (1.1) is

Ẽ(t) =
1
2

∫ 1

0

(y2
t (x, t) + y2

xx(x, t))dx. (1.4)

Formally,
d

dt
Ẽ(t) = −yt(1, t) g(yt(1, t))− yxt(1, t) h(yxt(1, t)) (1.5)
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Assumptions (1.2) and (1.3) imply that the energy Ẽ(t) is non-increasing and is a
Lyapounov function. It is well-known that for any initial data (y0, y1) ∈ H = H2

E×
L2(0, 1), Problem (1.1) admits a unique weak solution y such that (y(t), yt(t)) ∈ H
and y ∈ C0(R+;H4(0, 1))∩C1(R+;L2(0, 1)) (see Conrad and Pierre [2]). The study
of the strong asymptotic stability of the solution of (1.1) in H, using the invariance
principle of Lasalle has been proved by Conrad and Pierre [2] in the case where
g and h are multivalued maximal monotone graphs. Our aim in this study is to
estimate the rate of decay of the energy Ẽ(t) when the nonlinear feedback functions
g and h satisfy suitable growth conditions. However, the extension of this method
to the case where g and h are maximal monotone graphs seems difficult. Our two
main results are as follows.

Theorem 1.1. Assume (1.2) and (1.3) hold. Then for every solution y of system
(1.1), we have
(i) If there exist positive constants C1, C2, C3, C4 such that for all x ∈ R,

C1|x| ≤ |g(x)| ≤ C2|x|,
C3|x| ≤ |h(x)| ≤ C4|x|,

(1.6)

then given any M > 1, there exists a constant ω > 0 such that

Ẽ(t) ≤ MẼ(0)e−ωt ∀t > 0.

(ii) If there exist positive constants C1, C2, C3, C4, and p, q in [1,+∞[ such that
max(p, q) = p ∨ q > 1 such that for all x ∈ R,

C1 min(|x|, |x|p) ≤ |g(x)| ≤ C2|x|,
C3 min(|x|, |x|q) ≤ |h(x)| ≤ C4|x|,

(1.7)

then, given any M > 1, there exists a constant ω > 0 depending continuously on
Ẽ(0) such that

Ẽ(t) ≤ MẼ(0)(1 + ωt)−
2

(p∨q)−1 ∀t ≥ 0.

Theorem 1.2. Assume (1.2) and (1.3) hold. Then for every solution y of system
(1.1) we have
(i)If there exist positive constants C1, C2, C3, C4 and p, q ∈]0, 1] with min(p, q) =
p ∧ q < 1 such that for all x ∈ R,

C1|x| ≤ |g(x)| ≤ C2 max(|x|, |x|p),
C3|x| ≤ |h(x)| ≤ C4 max(|x|, |x|q),

(1.8)

then, given any M > 1, there exists a constant ω > 0 depending continuously on
Ẽ(0) such that

Ẽ(t) ≤ MẼ(0)(1 + ωt)−
2(p∧q)

1−(p∧q) , ∀t ≥ 0.

(ii) If there exists positive constants C1, C2, C3, C4 and (p, q) ∈]0, 1]× [1,+∞[ with
1
p ∨ q > 1 such that for all x ∈ R,

C1|x| ≤ |g(x)| ≤ C2 max(|x|, |x|p),
C3 min(|x|, |x|q) ≤ |h(x)| ≤ C4|x|,

(1.9)

then given any M > 1, there exists a constant ω > 0 depending continuously on
Ẽ(0) such that

Ẽ(t) ≤ MẼ(0)(1 + ωt)
− 2

( 1
p
∨q)−1 ∀t ≥ 0.
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Theorems 1.1 and 1.2 will also be valid for the following model of a Kirchhoff
plate equation (see Ciarlet [1] and Lagnese [5]), in star-shaped domain by nonlinear
boundary feedback:

ytt + ∆2y = 0 in Ω×]0,+∞[,

∆y + (1− µ)B1y = v1 on Γ×]0,+∞[,
∂

∂ν
∆y + (1− µ)

∂

∂τ
B2y = v2 on Γ×]0,+∞[,

y(0) = y0 ∈ H2(Ω), yt(0) = y1 ∈ L2(Ω).

(1.10)

We assume that Ω is a bounded strongly star-shaped domain of R2 with respect to
x0 ∈ Ω and having smooth boundary Γ = ∂Ω of class C2, which means there exists
a positive constant δ such that

m(x).ν(x) ≥ δ−1 ∀x ∈ Γ, (1.11)

where ν(x) = (ν1(x), ν2(x)) is the unit outer normal vector to Γ, m(x) = x − x0,
and the dot “.” denotes the scalar product in R2. τ(x) = (−ν2(x), ν1(x)) is a unit
tangent vector. We denote by ∂

∂ν (resp. ∂
∂τ , ) the normal derivative (resp. tangent

derivative). The constant 0 < µ < 1/2 is the Poisson coefficient and the boundary
operators B1, B2 are defined by

B1y = 2ν1ν2
∂2y

∂x1∂x2
−ν2

1

∂2y

∂x2
2

−ν2
2

∂2y

∂x2
1

, B2y = (ν2
1−ν2

2)
∂2y

∂x1∂x2
+ν1ν2(

∂2y

∂x2
1

−∂2y

∂x2
2

),

where y = y(x1, x2, t) is the vertical displacement of the point x = (x1,x2) ∈ Ω at
the time t of the plate.

The aim of this paper is to study the uniform energy decay rate of the system
(1.10) by the nonlinear feedback laws v1 and v2 given as follows

v1(t) = −β
∂y

∂ν
− h(

∂yt

∂ν
), v2(t) = αy + g(yt) on Γ×]0,+∞[, (1.12)

(α, β) ∈ (L∞(Γ))2, 0 < α0 ≤ α(x) ≤ α1, 0 < β0 ≤ β(x) ≤ β1 ∀x ∈ Γ. (1.13)

It is well-known that for any initial data (y0, y1) ∈ V = H2(Ω) × L2(Ω), the
system (1.10) has a unique weak solution y such that (y(t), yt(t)) ∈ V and y ∈
C0(R+,H2(Ω)) ∩ C1(R+, L2(Ω)) (see Rao [7]).

We introduce the energy associated with the system (1.10) as follows

E(t) =
1
2
(
∫

Ω

|yt|2dx + a(y, y) +
∫

Γ

(α|y|2 + β|∂y

∂ν
|2)dΓ), (1.14)

where

a(y, y) =
∫

Ω

((
∂2y

∂x2
1

)2 + (
∂2y

∂x2
2

)2 + 2µ
∂2y

∂x2
1

∂2y

∂x2
2

+ 2(1− µ)(
∂2y

∂x1∂x2
)2)dx.

Using Green’s formula, the derivative of the energy E(t) is
dE

dt
= −

∫
Γ

(g(yt)yt + h(
∂yt

∂ν
)
∂yt

∂ν
)dΓ. (1.15)

Assumptions (1.2) and (1.3) imply that the energy is non-increasing and is a Lya-
pounov function. It is easy to prove the strong stabilization by applying Holmgren’s
theorem (see Lions [6]) and Lasalle’s invariance principle (see [8]). The problem
of estimating the rate of decay of the energy E(t) has been studied extensively by
many authors, among which we can mention Lagnese [5], Komornik - Zuazua [4]
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and Zuazua [9]. In the nonlinear cases, under suitable growth conditions on the
functions g and h, Rao [7] has established exponential or rational rates of decay
of the energy for any positive functions α, β given by (1.13). We obtain here an
improvement of these results in the sense that we prove the estimates when the
nonlinear feedback functions g and h satisfy more general growth conditions. Now,
we state our main results.

Theorem 1.3. Assume (1.2), (1.3), (1.11), (1.13). Then for every solution y of
system (1.10) with feedback laws (1.12), we have
(i) In addition, if we assume that g and h such that (1.7) holds. Then, given any
M > 1, there exists a constant ω > 0 depending continuously on E(0) such that

E(t) ≤ ME(0)(1 + ωt)−
2

(p∨q)−1 , ∀t ≥ 0.

(ii) In addition, if we assume that g and h such that (1.8) holds. Then, given any
M > 1, there exists a constant ω > 0 depending continuously on E(0) such that

E(t) ≤ ME(0)(1 + ωt)−
2(p∧q)

1−(p∧q) , ∀t ≥ 0.

(iii) In addition, if we assume that g and h such that (1.9) holds. Then, given any
M > 1, there exists a constant ω > 0 depending continuously on E(0) such that

E(t) ≤ ME(0)(1 + ωt)
− 2

( 1
p
∨q)−1 ∀t ≥ 0.

2. Proof of Theorem 1.1

Let y be a smooth solution of (1.1). We define the functional

ρ(t) = ρ1(t) + ρ2(t) + ρ3(t),

where

ρ1 = 4
∫ 1

0

xytyxdx, ρ2 =
1
4
y(1, t)

∫ 1

0

x2(3− 2x)ytdx,

ρ3 =
1
4
yx(1, t)

∫ 1

0

x2(x− 1)ytdx.

We can show that there exist positive constants K0,K1 and K2 such that for any
t ≥ 0, the following estimates hold

|ρ(t)| ≤ K0Ẽ(t), (2.1)
dρ

dt
(t) ≤ −Ẽ(t) + K1(y2

xt(1, t) + y2
t (1, t)) + K2(g2(yt(1, t)) + h2(yxt(1, t))). (2.2)

Given ε > 0, we introduce the perturbed energy by

Ẽε(t) = Ẽ(t) + ερ(t)
[
Ẽ(t)

] (p∨q)−1
2 . (2.3)

This together with the non-increasing of the energy Ẽ(t) implies that for any M > 1

M− 1
2
[
Ẽε(t)

] (p∨q)+1
2 ≤

[
Ẽ(t)

] (p∨q)+1
2 ≤ M1/2

[
Ẽε(t)

] (p∨q)+1
2 (2.4)

with

ε ≤ K−1
0

[
Ẽ(0)

] 1−(p∨q)
2 (1−M

−1
(p∨q)+1 ). (2.5)
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Now, we calculate the derivative of the perturbed energy Ẽε(t)

Ẽ′
ε(t) = Ẽ′(t) + ε

(p ∨ q)− 1
2

ρ(t)Ẽ′(t)[Ẽ(t)]
(p∨q)−3

2 + ερ′(t)[Ẽ(t)]
(p∨q)−1

2 , (2.6)

on the other hand, from (1.6), (1.7) and (2.2) one obtains

ρ′(t) ≤ −Ẽ(t) + K3y
2
t (1, t) + K4y

2
xt(1, t) (2.7)

where K3 = K1 + K2C
2
2 and K4 = K1 + K2C

2
4 . Plugging (2.1) and (2.7) into

equation (2.6), one obtains

Ẽ′
ε(t) ≤ (−1+ε

(p ∨ q)− 1
2

K0[Ẽ(0)]
(p∨q)−1

2 )(−Ẽ′(t))+F1+F2−ε[Ẽ(t)]
(p∨q)+1

2 (2.8)

where F1 = εK3[Ẽ(t)]
(p∨q)−1

2 y2
t (1, t) and F2 = εK4[Ẽ(t)]

(p∨q)−1
2 y2

xt(1, t)). Now we
distinguish the case p ∨ q = 1 and p ∨ q > 1.
(i) Case p ∨ q = 1. In this case (2.8) yields

Ẽ′
ε(t) ≤ (−1+εK3/C1)yt(1, t)g(yt(1, t)+(−1+εK4/C3)yxt(1, t)h(yxt(1, t))−εẼ(t).

If we choose ε ≤ min(C1/K3, C3/K4,K
−1
0 [Ẽ(0)]

1−(p∨q)
2 (1−M

−1
(p∨q)+1 )), this implies

Ẽ′
ε(t) ≤ −εẼ(t) ≤ −εM

−1
2 Ẽε(t),

so we obtain

Ẽ(t) ≤ MẼ(0)e−εM
−1
2 t, ∀t > 0.

(ii) Case p∨ q > 1. If y2
xt(1, t) > 1, it follows from hypothesis (1.2), (1.3) and (1.7)

that
F2 ≤ ε(K4/C3)[Ẽ(0)]

(p∨q)−1
2 yxt(1, t)h(yxt(1, t)). (2.9)

However, while y2
xt(1, t) ≤ 1, we have min (|yxt(1, t)|, |yxt(1, t)|q) = |yxt(1, t)|q and

|yxt(1, t)|(p∨q)+1 ≤ |yxt(1, t)|q+1 ≤ (1/C3)yxt(1, t)h(yxt(1, t)),

by Young’s inequality, we have for any δ > 0,

F2 ≤ ε
(p ∨ q)− 1
(p ∨ q) + 1

δ−
(p∨q)+1
(p∨q)−1 [Ẽ(t)]

(p∨q)+1
2

+ ε
2

C3(p ∨ q + 1)
(K4δ)

(p∨q)+1
2 yxt(1, t)h(yxt(1, t)).

(2.10)

Combining (2.9) and (2.10), one has

F2 ≤ ε
(p ∨ q)− 1
(p ∨ q) + 1

δ−
(p∨q)+1
(p∨q)−1 [Ẽ(t)]

(p∨q)+1
2 + εK5yxt(1, t)h(yxt(1, t)), (2.11)

where

K5 =
2

C3(p ∨ q + 1)
(K4δ)

(p∨q)+1
2 + (K4/C3)[Ẽ(0)]

(p∨q)−1
2 .

Similarly, we can show that

F1 ≤ ε
(p ∨ q)− 1
(p ∨ q) + 1

δ−
(p∨q)+1
(p∨q)−1 [Ẽ(t)]

(p∨q)+1
2 + εK6yt(1, t)g(yt(1, t)), (2.12)

with

K6 =
2

C1(p ∨ q + 1)
(K4δ)

(p∨q)+1
2 + (K3/C1)[Ẽ(0)]

(p∨q)−1
2 .
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Inserting (1.5),(2.11) and (2.12) into (2.8), we obtain

Ẽ′
ε(t) ≤ ε(−1 + 2

(p ∨ q)− 1
(p ∨ q) + 1

δ−
(p∨q)+1
(p∨q)−1 )[Ẽ(t)]

(p∨q)+1
2 + (−1 + ελ0)yt(1, t)g(yt(1, t))

+ (−1 + ελ1)yxt(1, t)h(yxt(1, t)),

where λi = K6−i + K0
(p∨q)−1

2 [Ẽ(0)]
(p∨q)−1

2 for i = 0, 1. This implies that

Ẽ′
ε(t) ≤ −µε[Ẽ(t)]

(p∨q)+1
2 , (2.13)

provided δ is chosen such that for some µ > 0, 2 (p∨q)−1
(p∨q)+1δ−

(p∨q)+1
(p∨q)−1 ≤ 1− µ and ε is

chosen as follows −1+ε(K6−i+K0
(p∨q)−1

2 [Ẽ(0)]
(p∨q)−1

2 ) ≤ 0 for i = 0, 1. Combining
(2.4) and (2.13), we get

Ẽ′
ε(t) ≤ −µεM

−1
2 [Ẽε(t)]

(p∨q)+1
2 . (2.14)

Finally, solving the differential inequality (2.14) and using (2.4) we obtain

Ẽ(t) ≤ MẼ(0)(1 + ωt)−
2

(p∨q)−1 ,

with ω = (p∨q)−1
2 µεM

−(p∨q)
(p∨q)+1 [Ẽ(0)]

(p∨q)−1
2 . This completes the proof of theorem

1.1.

3. Proof of Theorem 1.2

(i) First, by the conditions (1.8) and (2.2), we can deduce the following estimate

ρ′(t) ≤ −Ẽ(t) + K(g2(yt(1, t)) + h2(yxt(1, t))), (3.1)
with K = K2 + K1(1/C2

1 + 1/C2
2 ). Next, given ε > 0, we introduce the perturbed

energy by

Ẽε(t) = Ẽ(t) + ερ(t)[Ẽ(t)]
1−(p∧q)
2(p∧q) . (3.2)

Then, for any M > 1, we have (2.4) and (2.5) with 1/p instead of p. We have also
(2.6) with 1/p instead of p. Plugging (1.5), (2.1) and (3.1) into equation (2.6) one
obtains

Ẽ′
ε(t) ≤ (−1 + εK0

1− (p ∧ q)
2(p ∧ q)

[Ẽ(0)]
1−(p∧q)
2(p∧q) )(−Ẽ′(t)) + D1 + D2 − ε[Ẽ(t)]

1+(p∧q)
2(p∧q) .

(3.3)

where D1 = εK(Ẽ(t))
1+(p∧q)
2(p∧q) g2(yt(1, t) and D2 = εK(Ẽ(t))

1+(p∧q)
2(p∧q) h2(yxt(1, t).

If y2
xt(1, t) ≥ 1, it follows from hypothesis (1.2), (1.3) and (1.8), we have

D2 ≤ εC4K[Ẽ(0)]
1−(p∧q)
2(p∧q) h(yxt(1, t))yxt(1, t). (3.4)

However, while y2
xt(1, t) < 1, we have max(|yxt(1, t)|, |yxt(1, t)|q) = |yxt(1, t)|q, so

|h(yxt(1, t))|
1+(p∧q)
(p∧q) ≤ C4yxt(1, t)h(yxt(1, t),

by Young’s inequality we obtain

D2 ≤ (ε/4)[Ẽ(t)]
1+(p∧q)
2(p∧q) + εC4(4K)

1+(p∧q)
2(p∧q) yxt(1, t)h(yxt(1, t)). (3.5)

Setting θi = C4−i((4K)
1+(p∧q)
2(p∧q) +K (Ẽ(0))

1−(p∧q)
2(p∧q) ) for i = 0 and i = 2 and combining

(3.4) and (3.5), one obtains

D2 ≤ (ε/4)[Ẽ(t)]
1+(p∧q)
2(p∧q) + εθ0yxt(1, t)h(yxt(1, t)). (3.6)
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Similarly we can show that

D1 ≤ (ε/4)[Ẽ(t)]
1+(p∧q)
2(p∧q) + εθ2yt(1, t)g(yt(1, t)) (3.7)

Inserting (1.5), (3.6) and (3.7) into (3.3), it follows

Ẽ′
ε(t) ≤ −ε

2
[Ẽ(t)]

1+(p∧q)
2(p∧q) + C(ε)(yt(1, t)g(yt(1, t)) + yxt(1, t)h(yxt(1, t))),

where C(ε) = ε(θ0 + θ2)− 1+ εK0
1−(p∧q)
2(p∧q) (Ẽ(0))

1−(p∧q)
2(p∧q) . Using (2.4)–(2.5) with 1/p

instead of p, we can show that

Ẽ(t) ≤ MẼ(0)(1 + ωt)−
2(p∧q)

1−(p∧q) , (3.8)

where ω = ε 1−(p∧q)
4(p∧q) M− 1

1+(p∧q) (Ẽ(0))
1−(p∧q)
2(p∧q) and ε is chosen such that

ε ≤ min
(
((θ0 + θ2) + K0

1− (p ∧ q)
2(p ∧ q)

(Ẽ(0))
1−(p∧q)
2(p∧q) )−1,

K−1
0 (Ẽ(0))

(p∧q)−1
2(p∧q) (1−M− (p∧q)

(p∧q+1) )
)
.

(ii) First, by the conditions (1.9) and (2.2), we have

ρ′(t) ≤ −Ẽ(t) + Ay2
xt(1, t) + Bg2(yt(1, t)), (3.9)

with A = K1 + K2C
2
4 and B = (K1/C2

1 ) + K2. Next, given ε > 0, we introduce the
perturbed energy by

Ẽε(t) = Ẽ(t) + ερ(t)[Ẽ(t)]
( 1

p
∨q)−1

2 . (3.10)

Then, for any M > 1, we have (2.4) and (2.5) with 1/p instead of p. We have also
(2.6) with 1/p instead of p. Plugging (2.1) and (3.9) into (2.4) one obtains

Ẽ′
ε(t) ≤ (−1 + εK0

( 1
p ∨ q)− 1

2
[Ẽ(0)]

( 1
p
∨q)−1

2 )(−Ẽ′(t)) + E1 + E2 − ε[Ẽ(t)]
( 1

p
∨q)+1

2

(3.11)
where

E1 = εA(Ẽ(t))
( 1

p
∨q)−1

2 y2
xt(1, t), E2 = εB(Ẽ(t))

( 1
p
∨q)−1

2 g2(yt(1, t))).

If y2
xt(1, t) > 1, it follows from hypothesis (1.2), (1.3) and (1.9), that

E1 ≤ (A/C3)ε[Ẽ(0)]
( 1

p
∨q)−1

2 yxt(1, t)h(yxt(1, t)) (3.12)

However, while y2
xt(1, t) ≤ 1, we have min(|yxt(1, t)|, |yxt(1, t)|q) = |yxt(1, t)|q,

|yxt(1, t)|1+( 1
p∨q) ≤ |yxt(1, t)|q+1 ≤ (1/C3)yxt(1, t)h(yxt(1, t)),

and by Young’s inequality, for any δ > 0, we have

E1 ≤ ε/β′C3)(Aδ)β′yxt(1, t)h(yxt(1, t)) + (ε/β)δ−β [Ẽ(t)]
( 1

p
∨q)+1

2 . (3.13)

Combining (3.11) and (3.12), one has

E1 ≤ (ε/β)δ−β [Ẽ(t)]
( 1

p
∨q)+1

2 + εA(δ) yxt(1, t)h(yxt(1, t)), (3.14)
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with A(δ) = (A/C3)[Ẽ(0)]
( 1

p
∨q)−1

2 + (1/β′C3)(Aδ)β′ . If y2
t (1, t) ≥ 1, it follows from

hypothesis (1.2), (1.3) and (1.9), that

E2 ≤ εBC2[Ẽ(0)]
( 1

p
∨q)−1

2 yt(1, t)g(yt(1, t)). (3.15)

However, while y2
t (1, t) < 1, we have max(|yt(1, t)|, |yt(1, t)|p) = |yt(1, t)|p,

|g(yt(1, t))|1+( 1
p∨q) ≤ (C2)(

1
p∨q)yt(1, t)g(yt(1, t))

and by Young’s inequality, we can deduce that

E2 ≤ ε(4B)
( 1

p
∨q)−1

2 (C2)
1
p∨qyt(1, t)g(yt(1, t)) + ε4−β [Ẽ(t)]

( 1
p
∨q)+1

2 . (3.16)

Combining (3.14) and (3.15), we obtain

E2 ≤ ε(C2B[Ẽ(0)]
( 1

p
∨q)−1

2 +(4B)
( 1

p
∨q)−1

2 (C2)
1
p∨q)yt(1, t)g(yt(1, t)))+

ε

4
[Ẽ(t)]

( 1
p
∨q)+1

2 .

(3.17)
Inserting (3.13) and (3.16) into (2.6), one obtains

Ẽ′
ε(t) ≤ −ε(1− 1

4
− (δ−β/β))[Ẽ(t)]

( 1
p
∨q)+1

2 + (−1 + εσ1)yt(1, t)g(yt(1, t))

+ (−1 + εσ2)yxt(1, t)h(yxt(1, t))
(3.18)

where

σ1 = (C2B + K0

( 1
p ∨ q)− 1

2
)[Ẽ(0)]

( 1
p
∨q)−1

2 + (4B)β′(C2)
1
p∨q)

and

σ2 = A(δ) + K0

( 1
p ∨ q)− 1

2
[Ẽ(0)]

( 1
p
∨q)−1

2 .

By choosing δ so that 1
4 + (δ−β/β) = 1

2 , and

ε ≤ min(σ−1
1 , σ−1

2 ,K−1
0 [Ẽ(0)]

1−( 1
p
∨q)

2 (1−M
−1

( 1
p
∨q)+1 )).

This with (3.17) and using (2.4) with 1/p instead of p, we obtain

Ẽ(t) ≤ MẼ(0)(1 + ωt)
− 2

( 1
p
∨q)−1 ,

with ω = ε
4 (( 1

p ∨ q)− 1)M
−

1
p
∨q

( 1
p
∨q)+1 [Ẽ(0)]

( 1
p
∨q)−1

2 . The proof of theorem 1.2 is thus
complete.

4. Proof of Theorem 1.3

(i) It follows from (1.7) that (1.7) is also true when p is replaced by p ∨ q and q
is replaced by p∨ q. So we get the desired estimate, by applying Rao’s theorem 1.1
(ii) (see [7]).
(ii) (1.8) implies that (1.8) is also true when p is replaced by p∧ q and q is replaced
by p ∧ q. This is exactly the condition (1.28)-(1.29) with exponent p ∧ q < 1 of
Rao’s theorem 1.2 (see [7]), consequently, the proof of this part is thus complete.
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(iii) We adopt the method used by Rao [7] but in our case we have two nonlinear
feedback functions g and h satisfying more general growth conditions. We introduce
the same functional defined in [7],

ρ(t) =
∫

Ω

yt(m.∇y)dx + C0

∫
Ω

ytϕdx, (4.1)

where C0 is a positive constant and ϕ is the solution of the problem

∆2ϕ = 0 in Ω,

ϕ = y,
∂ϕ

∂ν
=

∂y

∂ν
on Γ,

we verify that the following estimates hold∫
Ω

ϕ2dx ≤ γ2

∫
Γ

(
(y)2 + (

∂y

∂ν
)2

)
dΓ, a(ϕ, y) = a(ϕ, ϕ) ≥ 0,

where γ is a constant depending only on the domain Ω. We can show that there
exist positive constants K0,K1,K2 are such that for any t ≥ 0,

|ρ(t)| ≤ K0E(t), ∀t ≥ 0, (4.2)

ρ′(t) ≤ −E(t) + K1

∫
Γ

((yt)2 + (
∂yt

∂ν
)2)dΓ + K2

∫
Γ

(g2(yt) + h2(
∂yt

∂ν
))dΓ. (4.3)

This with (1.9) implies

ρ′(t) ≤ −E(t) + A

∫
Γ

|∂yt

∂ν
|2dΓ + B

∫
Γ

g2(yt)dΓ, (4.4)

where A = K1 + KC2
4 and B = (K1/C2

1 ) + K2.
Then, for any M > 1, Plugging (4.2) and (4.4) into (2.6) with p replaced by 1/p,

one obtains

E′
ε(t) ≤ (−1 + εK0

( 1
p ∨ q)− 1

2
[E(0)]

( 1
p
∨q)−1

2 )(−E′(t))− ε[E(t)]
( 1

p
∨q)+1

2 + L, (4.5)

where

L = ε[E(t)]
( 1

p
∨q)−1

2 (A
∫

Γ

|∂yt

∂ν
|2dΓ + B

∫
Γ

g2(yt)dΓ).

¿From (1.2), (1.3) and (1.9) we have

(g(s))2 ≤ C2g(s)s ∀|s| ≥ 1; |g(s)|(
1
p∨q)+1 ≤ (C2)

1
p∨qg(s)s ∀|s| ≤ 1; (4.6)

|s|2 ≤ (1/C3)h(s)s ∀|s| ≥ 1; |s|(
1
p∨q)+1 ≤ (1/C3)h(s)s ∀|s| ≤ 1. (4.7)

Using (4.6) and (4.7), we have

L ≤ Q + εC[E(0)]
( 1

p
∨q)−1

2

( ∫
{| ∂yt

∂ν |≥1}
h(

∂yt

∂ν
)
∂yt

∂ν
dΓ +

∫
{|yt|≥1}

g(yt)ytdΓ
)
, (4.8)

where

Q = ε[E(t)]
( 1

p
∨q)−1

2

(
A

∫
{| ∂yt

∂ν |≤1}
(
∂yt

∂ν
)2dΓ + B

∫
{|yt|≤1}

g2(yt)dΓ
)
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and C = (A + B)(C2 + 1/C3), With the exponents β =
( 1

p∨q)+1

( 1
p∨q)−1

, β′ =
( 1

p∨q)+1

2 ,

applying Young’s inequality to Q, it follows from Hôlder’s inequality and (4.6),
(4.7) that for any parameter δ > 0,

Q ≤ 2εδ−β/β[E(t)]
( 1

p
∨q)+1

2 + (ε/β′)|Γ|β
′/β

×
[
(Aδ)β′/C3

∫
{| ∂yt

∂ν |≤1}
h(

∂yt

∂ν
)
∂yt

∂ν
dΓ + (Bδ)β′C2

( 1
p∨q)

∫
{|yt|≤1}

g(yt)ytdΓ
]
.

(4.9)
Inserting (4.6) into (4.8) gives

L ≤ εη(−E′(t)) + 2εδ−β/β[E(t)]
( 1

p
∨q)+1

2 (4.10)

where η = C(E(0))
( 1

p
∨q)−1

2 +(1/β′)|Γ|β′/β((Aδ)β′/C3 +(Bδ)β′(C2)(
1
p∨q)). Inserting

(4.10) into (4.5), it follows

E′
ε(t) ≤

(
− 1 + ε(η + K0

( 1
p ∨ q)− 1

2
(E(0))

( 1
p
∨q)−1

2 )
)
(−E′(t))

− ε(1− 2δ−β/β)(E(t))
( 1

p
∨q)+1

2 .

(4.11)

By choosing δ so that δ = (4/β)(1/β), and ε as

ε ≤ min((η+K0

( 1
p ∨ q)− 1

2
(E(0))

( 1
p
∨q)−1

2 )−1,K−1
0 (E(0))

1−( 1
p
∨q)

2 (1−M
−1

(( 1
p
∨q)+1) ) ).

This with (4.11) and using (2.4) with p replaced by 1/p, we obtain

E(t) ≤ ME(0)(1 + ωt)
− 2

( 1
p
∨q)−1 ,

with

ω =
ε

4
((

1
p
∨ q)− 1)M

−
1
p
∨q

( 1
p
∨q)+1 (E(0))

( 1
p
∨q)−1

2 .

The proof of theorem 1.3 is thus complete.
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