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ON THE ISOSPECTRAL BEAMS

KAZEM GHANBARI

Abstract. The free undamped infinitesimal transverse vibrations of a thin

straight beam are modelled by a forth-order differential equation. This paper
investigates the families of fourth-order systems which have one spectrum in
common, and correspond to four different sets of end-conditions. The analysis
is based on the transformation of the beam operator into a fourth-order self-
adjoint linear differential operator. This operator is factorized as a product
L = H∗H, where H is a second-order differential operator of the form H =
D2 + rD + s, and H∗ is its adjoint operator.

1. Beam Equation

The free undamped infinitesimal transverse vibrations, of frequency ω, of a thin
straight beam of length ` are governed by the Euler-Bernoulli equation

(EI(x)u′′(x))′′ = ω2ρA(x)u(x), 0 ≤ x ≤ `. (1.1)

Here E is the Young’s modulus, ρ is the density, both assumed constant, A(x) is
the cross-sectional area at x, I(x) is the second moment of this area about the axis
through the centroid at right angle to the plane of vibration (the natural axis).
Euler-Bernoulli equation (1.1) can be written even in simpler form by the following
substitutions. Put

x = `s, y(s) = u(x), r(s) =
I(x)
I(x0)

,

a(s) =
A(x)
A(x0)

, λ =
ρ`4ω2A(x0)

EI(x0)
,

where x0 is a fixed point in [0, 1]. Then (1.1) becomes

(r(s)y′′(s))′′ = λa(s)y(s), 0 ≤ s ≤ 1, (1.2)

where r(s), a(s) > 0 for all s ∈ [0, 1]. For the beam equation (1.2) the most
commonly used end-conditions are

(F) y′′ = 0 = (ry′′)′ (Free)
(C) y = 0 = y′ (Clamped)
(P) y = 0 = y′′ (Pinned)
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(S) y′ = 0 = (ry′′)′ (Sliding).

By using a transformation, we can obtain another form of equation (1.2) which is
useful in practice. This transformation is as follows:

z =
∫ 1

s

[a(t)
r(t)

]1/4
dt, b(z) =

[a(s)
r(s)

]1/4
, c2(z) = [r3(s)a(s)]1/4. (1.3)

We have
d

ds
=

d

dz

dz

ds
= −

[a(s)
r(s)

]1/4 d

dz
= −b(z)

d

dz
,

and

r(s)
d2

ds2
= r(s)b(z)

d

dz

[
b(z)

d

dz

]
= c2(z)

d

dz

[
b(z)

d

dz

]
.

Therefore, the (1.2) becomes

b
d

dz

{
b

d

dz

[
c2 d

dz

(
b
dy

dz

)]}
= λb3c2y,

which can be written as(
b
(
c2(by′(z))′

)′)′ = λb2c2y(z), 0 ≤ z ≤ L, (1.4)

where L =
∫ 1

0
[a(t)
r(t) ]

1/4dt. For more details see [1] or [3]. Equation (1.2) can be
written in the form v(4) + (Av′)′ + Bv = λv as follows. Put y = v

bc , then

by′ = b
[ v′

bc
− v

b2c2
(bc′ + b′c)

]
.

If we put b′

b = β and c′

c = γ, then after some algebraic calculations we find

by′ =
1
c
[v′ − (β + γ)v]

(by′)′ =
1
c
[v′′ − (β + γ)v′ − (β′ + γ′)v − γv′ + γ(β + γ)v]

(c2(by′)′)′ = c{v′′′ − (β + γ)v′′ − [2β′ + 3γ′ + γ2]v′ − (β′′ + γ′′)v

+ [γ(β + γ)′ + γ′(β + γ)− γ(β + γ)′ + γ2(β + γ)]v}(
b
(
c2(by′)′

)′)′ = bc{v(4) − [(β + γ)′ + 2β′ + 3γ′ + γ2 + (β + γ)2]v′′

− [2γγ′ + β′′ + γ′′ − γ′(β + γ)− γ2(β + γ)]v′

− [2β′′ + 3γ′′ + 2β′(β + γ) + 3γ′(β + γ) + γ2(β + γ)]v′

+ [γ′(β + γ)′ + γ′′(β + γ) + [γ2(β + γ)]′]v

− [β′′′ + γ′′′ + (β + γ)(β′′ + γ′′)]v

+ [γ′(β + γ)2 + γ2(β + γ)2]v}.

(1.5)

It is clear that clamped is the only end-condition that remains invariant under the
transformation (3), i.e., v = 0 = v′. By using (5) we can write the equation (4) in
v as follows:

v(4) + (Av′)′ + Bv = λv, (1.6)
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where

A = −[3β′ + 4γ′ + γ2 + (β + γ)2], (1.7)

B = −(β + γ)′′′ − β′′(β + γ) + γ′(β + γ)′ + γ′(β + γ)2

+ [γ2(β + γ)]′ + γ2(β + γ)2.
(1.8)

Put θ = β + γ and φ = γ′ + γ2, then A and B can be written as follows

A = −3θ′ − θ2 − φ

B = −θ′′′ − (θ′′ − γ′′)θ + γ′θ′ + γ′θ2 + (γ2θ)′ + γ2θ2

= −θ′′′ − θ′′θ + (γ′θ)′ + γ′θ2 + (γ2θ)′ + γ2θ2

= −θ′′′ − θ′′θ + [(γ′ + γ2)θ]′ + (γ′ + γ2)θ2

= −θ′′′ − θ′′θ + (θφ)′ + θ2φ

= (−θ′′ + θφ)′ + (−θ′′ + θφ)θ.

(1.9)

If we substitute β = b′

b and γ = c′

c back in (1.7) and (1.8) then A and B can be
written in terms of b, c and their derivatives as follows:

A = 2c′2/c2 − 4c′′/c− 3b′′/b + 2b′
2
/b2 − 2b′c′/bc (1.10)

B = 4b′
4
/b4 − c(4)/c + 4c′

4
/c4 + 4c′′

2
/c2 − b(4)/b

+ 3b′′
2
/b2 − 10c′

2
c′′/c3 + 4c′c′′′/c2 + 3b′b′′′/b2

− 9b′′b′
2
/b3 − 2b′c′

3
/bc3 + 3b′′b′c′/b2c− c′b′′′/bc

− 2b′
3
c′/b3c + 4b′c′c′′/bc2 + b′′c′′/bc.

(1.11)

2. Isospectral rods

The linear, free, undamped longitudinal vibrations of a thin elastic rod with
variable cross section A = A(x) are governed by the equation

(Au′)′ + λAu = 0. (2.1)

Gladwell and Morassi [2] found isospectral rods, rods with identical spectrum, by
using the Darboux lemma. In this section we apply a different method, namely
factorizing the rod operator, to find the the isospectral rods. Then we develop
this method to find isospectral beams in the following section. This method first
was proposed by Pöchel J and Trubowitz E [7] to Sturm-Liouville operator. The
rod equation (2.1) can be written in the Sturm-Liouville form. The cross section
function A is positive; write A = a2, y = au. Then

Au′ = a2u′ = ay′ − a′y

so that (2.1) reduces to the Sturm-Liouville form

−y′′ + qy = λy, where q =
a′′

a
. (2.2)

Define the rod operator
L = −D2 + q. (2.3)
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We want to write the rod operator L as a product of two first order differential
operators. Every linear differential operator of the form

H(v) =
n∑

k=0

pk(x)Dk(v) (2.4)

has the adjoint operator H∗ of the form

H∗(u) =
n∑

k=0

Dk
[
(−1)kpk(x)u

]
. (2.5)

See for example Lanczos [6]. Therefore the adjoint operator of H = D + α is
H∗ = −D + α, where α is a real function. Now consider the rod operator L given
by (2.3). We want to write L as a product of the form L = H∗H, where H = D+α.
Let

L = −D2 + q = −D2 +
a′′

a
= H∗H = (−D + α)(D + α).

Thus

q = α2 − α′ =
a′′

a
. (2.6)

The operator L = H∗H and L̂ = HH∗ are isospectral. Now let

L̂ = HH∗ = (D + α)(−D + α) = −D2 + q̂ = −D2 +
â′′

â
.

Hence
q̂ = α2 + α′. (2.7)

Substituting the solution α = −a′

a in (2.7) yields

q̂ = 2
a′

2

a2
− a′′

a
. (2.8)

On the other hand

q̂ =
â′′

â
.

In order to determine the isospectral rods we need the general solution of the
following differential equation

â′′

â
= 2

a′
2

a2
− a′′

a
. (2.9)

The general solution of the equation (2.9) is

â =
1
a
{1 + K

∫ x

0

a2(s)ds}, where K ∈ R.

This family of isospectral rods coincide with those obtained by Gladwell and Morassi
[2].

Remark 2.1. In general if we consider the Sturm-Liouville operator L given by
(2.3), using a similar argument we can factor L− µ as follows

L− µ = H∗H = (−D − g′

g
)(D − g′

g
), (2.10)

where g is a nonzero solution of the Sturm-Liouville equation, i.e.,

−g′′ + (q − µ)g = 0.
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If we reverse the factors in (2.10) then we obtain the isospectral Sturm-Liouville
operator

L̂− µ = HH∗ = −D2 + (q̂ − µ), (2.11)

where q̂ = q − 2 d2

dx2 (ln g). For more details see [7].

3. Isospectral beams

According to the beam equation (1.6) we define the beam operator as follows

L = H∗H = D4 + D(AD) + B, (3.1)

where A and B are given by (1.7) and (1.8). Using (2.4) and (2.5) it can be easily
checked that the adjoint operator of a general operator of the form H = aD2+bD+c
is H∗ = aD2+(2a′−b)D+(a′′−b′+c). The idea is to find the isospectral beams by
factorizing the beam operator L and then reversing the factors to find the isospectral
beams. We therefore suppose that L can be factorized as follows

L = H∗H = [D2 − rD + (s− r′)][D2 + rD + s]

that is equivalent to the nonlinear system:

{2s + r′ − r2 = A, s2 + s′′ − (rs)′ = B}.

Define L̂ = HH∗. Then L and L̂ are isospectral and we have

L = H∗H = D4 + D(AD) + B, L̂ = HH∗ = D4 + D(ÂD) + B̂, (3.2)

where
A = 2s + r′ − r2

B = s2 + s′′ − (rs)′ ,
(3.3)

and
Â = 2s− 3r′ − r2

B̂ = s2 + s′′ − r′′′ − rr′′ + rs′ − sr′.
(3.4)

Let us call the system (3.3) the principal system because the solutions of (3.3)
will produce isospectral beams. It is easy to verify that r = −β − 2γ, and s =
γ2 + βγ − β′ − γ′ is a solution to the nonlinear system (3.3). Comparing (3.3) and
(3.4) we obtain

A− Â = 4r′, B − B̂ = r′′′ + rr′′ − 2rs′. (3.5)

Substituting r = −β − 2γ, and s = γ2 + βγ − β′ − γ′ in (3.5) we find

Â = β′ + 4γ′ − β2 − 2γ2 − 2βγ, (3.6)

and
B̂ = γ′′′ + β′′γ + γ′(β + γ)′ − 4βγγ′ − β2γ′ − 4γ′γ2

− 3β′γ2 − 2ββ′γ + γ2(β + γ)2.
(3.7)

It is clear that

Â(β, γ) = A(β,−β − γ),

B̂(β, γ) = B(β,−β − γ).

This implies that β̂ = β and γ̂ = −β − γ. Therefore, b̂ = b and ĉ = 1
bc .
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Remark 3.1. We can verify this isospectral family as follows. Consider the original
beam equation (

b
(
c2(by′)′

)′)′ = λb2c2y.

Put H1 = 1
b2c2 (DbD) and H2 = c2(DbD). Then(

b
(
c2(by′)′

)′)′ = λb2c2y ⇐⇒ H1H2(y) = λy.

Therefore H2H1(H2y) = λ(H2y), which can be written as H2H1(v) = λv, where
v = H2y.

Remark 3.2. Similar to Remark 2.1, if we factorize the operator L−µ instead the
beam operator L given by (3.1) then the corresponding principal system will be

2s + r′ − r2 = A

s2 + s′′ − (rs)′ = B − µ = −g(4)

g
− (Ag′)′

g

(3.8)

where g is a nonzero solution of the beam equation, i.e.,

g(4) + (Ag′)′ + (B − µ)g = 0.

In contrast to the principal system (3.3), the system (3.8) does not seem to be
easy to solve. The operator L̂ coincide with the beam operator given by Gottlieb
[5]. There he finds seven classes of beams isospectral to the standard unit coefficient
beam equation

D4v = λv. (3.9)

Since L and L̂ are isospectral, by using the operator L we can find another seven
class of beams isospectral to the standard unit-coefficient beam. Referring to Got-
tlieb’s notations we define

b = η(δz + ε)µ, c = ζ(δz + ε)ν , (3.10)

where δ, ε, η, ζ are constants, and µ, ν are parameters to be determined from the
expressions of A,B in terms of b, c and their derivatives given by (1.10) and (1.11).
After some algebraic calculations we find

A = −δ2(δz + ε)−2[µ2 + 2µν + 2ν2 − 4ν − 3µ] (3.11)

B = δ4(δz + ε)−4[ν4 − 4ν3 + µ2ν2 + ν2]

×
[
2µν3 − 2µ2 − νµ2 − µν − 5µν2 + 6(µ + ν)

]
.

(3.12)

Using the transformation given by (1.3), we get

1− s =
∫ z

0

dz

b(z)

=
∫ z

0

1
η
(δz + ε)−µdz

=
1

η(1− µ)
(δz + ε)1−µ − 1

η(1− µ)
ε1−µ.

(3.13)

Now put
Z = δz + ε, and ξ(s) = ε1−µ + η(1− µ)(1− s). (3.14)

Then Z = [ξ(s)]χ, where χ = 1
1−µ , and hence

z(s) = δ−1 ([ξ(s)]χ − ε) . (3.15)
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Thus

b (z(s)) = η[ξ(s)]λ, with λ =
µ

1− µ
(3.16)

c (z(s)) = ζ[ξ(s)]κ, with κ =
ν

1− µ
. (3.17)

Therefore, the seven class of beams isospectral to the standard unit-coefficient beam
is corresponding to A = B = 0; so that we can determine these classes by solving
the algebraic equations

µ2 + 2µν + 2ν2 − 4ν − 3µ = 0

ν4 − 4ν3 + µ2ν2 + ν2 + 2µν3 − 2µ2 − νµ2 − µν − 5µν2 + 6(µ + ν) = 0
(3.18)

which gives the solutions cited in the following table:
class µ ν χ λ κ
(0) 0 0 1 0 0
(1) 0 2 1 0 2
(2) −1 2 1/2 −1/2 1
(3) −1 1 1/2 −1/2 1/2
(4) 2 1 −1 −2 −1
(5) 2 −1 −1 −2 1
(6) 3 −1 −1/2 −3/2 1/2
(7) 3 0 −1/2 −3/2 0

More isospectral beams. For this purpose, we put θ = β + γ and φ = γ′ + γ2.
Then (1.9) implies

A = A(θ, φ) = −3θ′ − θ2 + φ

B = B(θ, φ) = (−θ′′ + θφ)′ + (−θ′′ + θφ)θ.
(3.19)

Let Ã = A(θ̃, φ̃), and B̃ = B(θ̃, φ̃). If A = Ã and B = B̃ then L and L̃ are
isospectral, where L is given by (3.1) and

L̃ = D4 + D(ÃD) + B̃. (3.20)

Let θ = θ̃, φ = φ̃, then A = Ã and B = B̃. Thus we obtain isospectral class as
follows

θ = θ̃ ⇐⇒ bc = b̃c̃. (3.21)

Now the equation φ = φ̃ implies

c′′

c
=

c̃′′

c̃
⇐⇒ c′′c̃− c̃′′c = 0 ⇐⇒ c′c̃− c̃′c = const. (3.22)

This equation implies that for arbitrary real constants K1,K2 we find

c̃ = c

∫
K1

c2
ds + K2c.

Now with a similar way we can find another family isospectral to L̂ which is isospec-
tral to L. Put φ = θ2 − θ′. After some algebraic computation we can write Â and
B̂ as follows

Â = 3γ′ − γ2 − φ

B̂ = (γ′′ − γφ)′ − γ(γ′′ − γφ).
(3.23)
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If γ = γ̃ and φ = φ̃ then L̂ and ˜̂
L are isospectreal. The equation γ = γ̃ implies

c = c̃. Now we find b̃ by solving the equation φ = φ̃. We have

φ = φ̃ ⇐⇒ (θ̃ − θ)′ = θ̃2 − θ2 ⇐⇒ (θ̃ − θ)′

θ̃ − θ
= θ̃ + θ.

This equation implies that θ̃ − θ = bcb̃c̃ = bb̃c2, which is equivalent to

b̃′

b̃
− b′

b
= bb̃c2 ⇐⇒ b̃′b− b′b̃ = (bb̃)2c2 ⇐⇒

( b̃

b

)′
= b̃2c2.

This equation can be easily solved. In fact, putting u = b̃
b , the above equation

becomes
u′ = u2b2c2.

By solving this differential equation, we find

b̃ =
b

K1 −
∫

b2c2ds
, where K1 ∈ R.

Suppose

b = c2
( ∫

K1

c2
ds + K2

)
.

Then we can define another isospectral class as follows: Define b̃ = c2 and c̃ =
√

b.
Then bc2 = b̃c̃2. Hence r = r̃ where r = β + 2γ. It is clear that s = s̃, thus we have
A = Ã and B = B̃ according to the principal system (3.3).

Conclusion. Factoring the beam operator L = D4 +D(AD)+B into the product
of the form L = HH∗, where H is a second order differential operator of the
form H = D2 + rD + s and H∗ is the adjoint operator of H, and reversing the
order of this product we managed to find some 12 classes of isospectral beams.
However, determining all classes is linked to nonlinear system (3.3) for which we
found particular solution.

Acknowledgement. The author would like to thank anonymous referee for careful
reading of the manuscript an giving valuable comments and helpful references.

References

[1] V. Barcilon; Inverse Problem for a vibrating beam in the free-clamped configuration, Phil.

Trans. R. Soc. London A 304(1982), 211-251.
[2] G. M. Gladwell and A. Morassi; On the isospectral rods, horns and strings, Inverse Problems,

11 (1995) 533-554.
[3] G. M. L. Gladwell; Inverse Problems in Vibration, Kluwer, Dordrecht 1986.

[4] G. M. L. Gladwell; Isospectral vibrating beams, Proc. R. Soc. London A 458(2002), 2691-2703.
[5] H. P. W. Gottlieb; Isospectral Euler-Bernoulli beams with continous density and rigidity func-

tions, Proceeding of Royal Society of London A 423 (1987) 235-250.

[6] C. Lanczos, 1961 Linear Differential Operators, D. Van Nostrand Company, Ltd, London.
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