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NUMERICAL STABILITY ANALYSIS IN RESPIRATORY
CONTROL SYSTEM MODELS

LÁSZLÓ E. KOLLÁR, JÁNOS TURI

Abstract. Stability of the unique equilibrium in two mathematical models

(based on chemical balance dynamics) of human respiration is examined using
numerical methods. Due to the transport delays in the respiratory control
system these models are governed by delay differential equations. First, a

simplified two-state model with one delay is considered, then a five-state model
with four delays (where the application of numerical methods is essential) is
investigated. In particular, software is developed to perform linearized stability

analysis and simulations of the model equations. Furthermore, the Matlab
package dde-biftool v. 2.00 is employed to carry out numerical bifurcation
analysis. Our main goal is to study the effects of transport delays on the

stability of the model equations. Critical values of the transport delays (i.e.,
where Hopf bifurcations occur) are determined, and stable periodic solutions
are found as the delays pass their critical values. The numerical findings are in

good agreement with analytic results obtained earlier for the two-state model.

1. Introduction

In the present work we examine stability/instability of breathing patterns in
two models of the human respiratory system described by nonlinear parameter
dependent delay differential equations with discrete circulatory transport delays.
Due to the complexity of the delay systems involved, the only feasible way to carry
out such study is by computational means. The main goal of this work is to develop
numerical tools in order to study the stability of the human respiratory system with
the additional benefit that these tools may also be applied to examine other delay
differential equations of the same type.

In Section 2 these numerical tools are described briefly. We developed a Matlab
code based on [10] to compute the roots of characteristic functions associated with
linear differential-difference equations. This code is also applicable to find the crit-
ical value of the delay where stability changes. An approximation technique for the
simulation of nonlinear delay equations is also described which is widely applica-
ble to simulate systems even with time- and state-dependent delays [5]. Moreover,
the bases of a Matlab toolbox for numerical bifurcation analysis are sketched [4].
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This toolbox is appropriate to compute, continue and analyze stability of steady
state and periodic solutions of nonlinear systems even with state-dependent delays,
to compute and continue steady state fold and Hopf bifurcations and to switch,
from the latter, to an emanating branch of periodic solutions. We use these tools
to study nonlinear retarded differential-difference equations with constant delays,
but some of them are applicable even for more general classes of delay equations,
therefore some of the results also cover more general cases.

The purpose of the human respiratory system is to exchange the unwanted gas
byproducts of metabolism, such as CO2 for O2 which is necessary for metabolism.
The CO2 is exchanged for O2 by passive diffusion. The primary determiners of
diffusion are the partial pressure gradients across the blood/gas barrier between
capillaries and alveoli, where gas transfer occurs. The respiratory control system
varies the ventilation rate in response to the levels of CO2 and O2 in the body.
Delay is introduced into the control system due to the physical distance which
CO2 and O2 levels must be transported to the sensory sites before the ventilatory
response can be adjusted. Detailed discussion of the human respiratory system and
its control mechanism can be found in [8] and [13].

Models of the respiratory control system date back to the early 1900’s to study
a wide range of features of this complex system. The phenomena collectively re-
ferred to as periodic breathing have important medical implications. Physiological
studies led to the hypothesis that periodic breathing is the result of delays in the
feedback signals to the respiratory control system. A number of dynamic models
of CO2 regulation have been proposed since the 1950’s and transport delays have
been introduced. A five-state model involving three compartments and two control
loops with multiple delays is studied in [8] and a two-state system with one delay
modeling partial pressures of CO2 and O2 in the lung and the peripheral controller
is considered in [3]. In [3], system parameters are kept constant except the delay
and analysis is done to illuminate the effect of the delay on the stability of the
unique steady state. In Section 3 we study the two-state model presented in [3]
and the five-state model of [8] numerically by the tools described in Section 2. We
linearize the systems, then find the characteristic roots with largest real parts to
determine stability/instability of the equilibria. Critical values of transport delays
(where Hopf bifurcations occur) can also be obtained numerically by using our Mat-
lab code. In case of the two-state system, the critical delay can also be determined
analytically according to the computation proposed in [3]. Simulations predict that
after the Hopf bifurcation point the equilibrium is unstable but a stable periodic
solution appears. Numerical bifurcation analysis gives the branch of the periodic
solution including the amplitude and the frequency of oscillations which show good
agreement with the simulation results. The obtained periodic solution represents
a medically important phenomenon referred to as periodic breathing. Simulations
of the five-state system are carried out for three different cases: (i) all the param-
eters are fixed and delays take the same value, (ii) some of the system parameters
are state dependent and delays take the same value, and (iii) some of the system
parameters are state dependent and delays may take different values. The results
obtained make it possible to find approximately the critical values of the delays.
As a particular consequence, our tools are appropriate to determine existence and
stability of steady state and periodic solutions of the respiratory system and to find
the critical value of the transport delay which has medical importance.
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2. Numerical Stability Analysis of Delay Differential Equations

In this section, we describe three numerical tools used in our computations to
study the human respiratory system that is modelled by nonlinear delay differential
equations of retarded type. The stability of steady state solutions of such systems
can be determined by roots of the characteristic equation. The characteristic equa-
tions of such systems have infinitely many characteristic roots, but only finitely
many of them have real parts greater than any fixed real number. It follows that
the stability can be determined by finding finitely many roots numerically. An
algorithm to find characteristic roots is exhibited in Subsection 2.1. The linearized
model provides information about the stability of the steady state solution and it
is applicable to determine a critical value of the parameter of a parameter depen-
dent system where the equilibrium loses its stability. However, other methods are
needed to study the nonlinear system after the loss of stability. An approximation
scheme is presented in Subsection 2.2 which is the basis of simulations. Simulations
of our models predict that there is a Hopf bifurcation at the parameter value where
the equilibrium loses its stability and stable periodic solutions exist if the value of
parameter increases. Subsection 2.3 gives a brief review of numerical bifurcation
analysis techniques which provide suitable tools to find bifurcation points, branches
of periodic solutions, and determine stability, amplitude and frequency of periodic
solutions.

2.1. Computation of Eigenvalues Associated with Linear Delay Differ-
ential Equations. This section describes a method to compute the eigenvalues
associated with systems of linear retarded differential-difference equations. The
method proposed in [10] finds the roots of a given characteristic equation. The
eigenvalues contained in a bounded region around the origin are approximately
computed by a combinatorial algorithm suggested in [9] and referred to as Kuhn’s
method. The eigenvalues of large modulus are computed using asymptotic formulae
obtained directly from the coefficients of the characteristic equation [1]. The well
known Newton’s method is used for refinement of the approximations, and to verify
that all the eigenvalues have been found in a finite domain of the complex plane, a
procedure proposed by [2] is applied.

We have developed a Matlab implementation of the algorithm based on the
above discussion [7]. The user enters the characteristic equation together with its
derivative (because Newton’s method requires that), a rectangle region and specifies
the mesh size on it for Kuhn’s method, the matrix P for computing the roots of large
modulus, and the radius of the disc where the test on the number of eigenvalues is
desired. The program computes roots and also plots them. Our code is applicable
to find characteristic roots of linear systems as the delay changes and to determine
its critical value where the equilibrium loses its stability. We need further tools
to examine what happens in the nonlinear system after the loss of stability. Two
suitable numerical methods are discussed in the following two subsections.

2.2. Approximation Schemes for Delay Differential Equations. One way
to examine nonlinear delay differential equations numerically is to discretize the
initial function and the equations with respect to time and approximate the so-
lution by solving the discretized system. A numerical approximation technique
is presented in [5], while the convergence of this method is proved in [6]. The
computational scheme is based on approximation of delay differential equations by
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equations with piecewise constant arguments. The approximating equations, gen-
erated in the above process, lead naturally to discrete difference equations, well
suited for computational purposes, and thus provide an approximation framework
for simulation studies. This method is applicable for any delay differential equation
with several discrete delays even if delays are time- and state-dependent.

2.3. Numerical Methods for Bifurcation Analysis. An effective way to study
nonlinear delay differential equations is bifurcation analysis. We use dde-biftool
v. 2.00 which is a collection of Matlab routines for numerical bifurcation analysis of
systems of delay differential equations with several constant and state-dependent
delays [4]. Models of the respiratory system that we consider contain one con-
stant delay which is chosen to be the bifurcation parameter. This Matlab package
finds the equilibrium of our system, and determines its stability by linearization
and finding characteristic roots with greater real parts than a prescribed value.
Changing the bifurcation parameter, a critical value is obtained where a complex
conjugate characteristic root pair crosses the imaginary axis and the equilibrium
loses its stability. According to the Hopf bifurcation theorem [11] and [12], there
is a Hopf bifurcation at this value of the bifurcation parameter in the nonlinear
system. After the Hopf bifurcation point, the steady state solution is unstable but
a stable periodic solution appears. dde-biftool finds that periodic solution in the
nonlinear system by continuation. The amplitude and the frequency of the periodic
motion can be computed for every value of the bifurcation parameter. At last, the
stability of the periodic solution is determined by finding the Floquet multipliers.

In the dde-biftool, the user must provide the governing equations, parame-
ters (including delays), and system derivatives with respect to state variables and
parameters up to second order. Then using an execution file, the steady state so-
lutions with their stability, the Hopf bifurcation point and periodic solutions with
their stability, as well as amplitude and frequency can be obtained and the results
such as location of characteristic roots, bifurcation diagrams, a period of periodic
solutions and location of Floquet multipliers can be plotted.

3. Mathematical Models of the Respiratory System

We study a simplified two-state model and a more complete, five-state model
of the respiratory system. The five-state model is constructed in [8] where lung
compartment, brain compartment and general tissue compartment are described.
The equations for the model arise from straightforward development of mass balance
equations utilizing Fick’s law, Boyle’s law and variations of Henry’s law relating the
concentration of the gas in the solution to the partial pressure of the gas interfacing
with the solution. The symbol sets used in the model equations are provided in
Appendix 5.1.

In [8] the state equations for the system are described in terms of concentrations.
Here, we employ partial pressures instead using the relations:

CaCO2
= KCO2PaCO2

+ K1,

CVCO2
= KCO2PVCO2

+ K1,

CBCO2
= KBCO2

PBCO2
+ K1,

CaO2
= maPaO2

+ Ba,

CVO2
= mvPVO2

+ Bv.

(3.1)
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The dissociation curves for O2 are represented approximately by piecewise linear
functions. The dependence of parameters ma, Ba and mv, Bv on PaO2

and PVO2
,

respectively, are provided in Table 2 in Appendix 1. Straightforward manipulations
of the state equations yield:

dPaCO2
(t)

dt
=

863QKCO2(PVCO2
(t− τV )− PaCO2

(t))
MLCO2

+
EF VI(t)(PICO2

− PaCO2
(t))

MLCO2

,

dPaO2
(t)

dt
=

863Q(mvPVO2
(t− τV )−maPaO2

(t) + Bv −Ba)
MLO2

+
EF VI(t)(PIO2

− PaO2
(t))

MLO2

,

dPBCO2
(t)

dt
=

MRBCO2

MBCO2
KBCO2

+
QB(PaCO2

(t− τB)− PBCO2
(t))

MBCO2

,

dPVCO2
(t)

dt
=

MRTCO2

MTCO2
KCO2

+
QT (PaCO2

(t− τT )− PVCO2
(t))

MTCO2

,

dPVO2
(t)

dt
=

QT (maPaO2
(t− τT )−mvPVO2

(t) + Ba −Bv)−MRTO2

MTO2
mv

,

(3.2)

where VI is the ventilation rate or ventilation function which depends on the signals
sent from the peripheral sensors and includes transport delay to the peripheral
controller. The ventilation function is assumed in the form

VI(t) = GP e−0.05PaO2
(t−τa)(

PaCO2
(t− τa)− IP

)
+ GC

(
PBCO2

(t)−
MRBCO2

KCO2QB
− IC .

(3.3)

The two-state model considers lung compartment only, and contains two equa-
tions describing CO2 and O2 arterial partial pressures and a control equation re-
sponsive to these arterial partial pressures with one transport delay to the peripheral
controller. The state equations are the first two equations of system (3.2) without
delay, while the ventilation function VI is assumed in the form

VI(t) = GP e−0.05PaO2
(t−τ)(PaCO2

(t− τ)− IP ) , (3.4)

where notations are as before, and τ is the only delay. The following simplified
form is derived in [3]

dx̃(t)
dt

= p− αW (t)(x̃(t)− xI),

dỹ(t)
dt

= −σ + βW (t)(yI − ỹ(t)),
(3.5)

where the notation is provided in Appendix 5.1.
System (3.5) can be transformed to a more convenient form by introducing the

new state variables x(t) = a(x̃(t) − xI) and y(t) = b(yI − ỹ(t)). Setting a = 1/p
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and b = 1/σ, we obtain the equations

dx

dt
= 1− αV (t)x(t),

dy

dt
= 1− βV (t)y(t),

(3.6)

with the ventilation function V (t) = V (x(t− τ), y(t− τ)) = W (x̃(t− τ), ỹ(t− τ)).
Note that state variables are concentrations in system (3.6) and partial pressures

in (3.2). However, the relationship between concentration and partial pressure is
assumed to be linear, therefore system (3.6) can easily be transformed into a system
that contains partial pressures.

3.1. Numerical Results on the Two-State Model. In this subsection, we con-
sider system (3.6). First, we summarize theoretical results, then we examine this
system for a certain parameter setting. Parameters α and β are fixed, the ven-
tilation function is given and we let τ be a free parameter. The equilibrium is
determined which is the same for all values of the delay and we study its stabil-
ity as the delay changes. The linear stability analysis is carried out by using the
rootfinder discussed in Subsection 2.1. As a critical value of the delay is found where
the equilibrium loses its stability, following examination of the nonlinear system is
needed. We present simulation results and the results of numerical bifurcation
analysis.

The following assumptions are considered in our model. The arterial CO2 con-
centration is always larger than its inspired value and the arterial O2 concentration
never exceeds its inspired value. It means that x̃ > xI and ỹ < yI , i.e., x > 0
and y > 0. It also appears to be biologically realistic to assume that the ven-
tilation function has the following properties: (i) V (x, y) is increasing in both x
and y, (ii) V (x, y) ≥ 0 and V (0, 0) = 0, (iii) V (x, y) is differentiable, and (iv)
Vx = ∂V (x, y)/∂x > 0, Vy = ∂V (x, y)/∂y > 0.

It is proved in [3] that if the above assumptions are held then system (3.6)
has a unique positive equilibrium. First, we recall the conditions for asymptotic
stability of the equilibrium. Let (x̄, ȳ) denote the equilibrium then letting ξ(t) =
x(t)−x̄, η(t) = y(t)− ȳ in system (3.6) and removing the nonlinear terms, we obtain
the linear variational system

d
dt

(
ξ(t)
η(t)

)
+ A

(
ξ(t)
η(t)

)
+ B

(
ξ(t− τ)
η(t− τ)

)
=

(
0
0

)
, (3.7)

where

A =
(

αV̄ 0
0 βV̄

)
, B =

(
αx̄V̄x αx̄V̄y

βȳV̄x βȳV̄y

)
,

V̄ = V (x̄, ȳ), V̄x = Vx(x̄, ȳ) and V̄y = Vy(x̄, ȳ). The following statements are proved
in [3]

(1) If V̄ ≥ x̄V̄x + ȳV̄y, then the equilibrium (x̄, ȳ) is asymptotically stable for
all delay τ ≥ 0.

(2) If V̄ < x̄V̄x + ȳV̄y, then there exists τ0 > 0 such that the equilibrium (x̄, ȳ)
is asymptotically stable if 0 ≤ τ < τ0 and unstable if τ > τ0.

Obviously, the latter case is interesting and subject of further study. If τ is regarded
as a parameter, then as τ passes through its critical value τ0 the equilibrium (x̄, ȳ)
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Figure 1. (a) The real parts of the eigenvalue with largest real
part (b) Eigenvalues of smallest modulus for τ = 30.8 [s]

loses its stability. Then it can be shown that there is a Hopf bifurcation with
emergence of a periodic solution. The critical delay τ0 is also computed in [3].

In the following, we examine system (3.6) by setting α = 0.5, β = 0.8 and with
the ventilation function V (t) = 0.14e−0.05(100−y(t−τ))x(t−τ). The state variables of
this model are concentrations, while the five-state model considers partial pressures,
therefore the form of the ventilation function slightly differs from Equation (3.4),
and so do the values of the parameters from those given in Table 1 in Appendix 1 for
the five-state model. The equilibrium (x̄, ȳ) can be found by using the Matlab code
based on the discussion of Subsection 2.2. We can easily check that V < xVx + yVy

for any x > 0 and y > 0, so there exists a critical delay τ0 where the equilibrium
loses its stability and it can be computed by following the above discussion. For
the given α and β, the equilibrium is (x̄, ȳ) = (29.1842, 18.2401) and the critical
delay is τ0 = 30.8017 [s] (if time is given in seconds). The characteristic root with
largest real part can be obtained for any value of the parameter, i.e., the transport
delay, by using the rootfinder Matlab code discussed in Subsection 2.1. The real
part of the characteristic root with largest real part is computed for several values
of τ approaching τ0 in each step. Figure 1(a) shows the computed values and the
approximate τ0 is the arithmetic mean of the two delays when the computed real
parts are closest to zero. If the desired accuracy is 0.01 then the approximate critical
delay is τcr = 30.8076 [s]. This coincides with the analytically computed value, since
|τ0 − τcr| < 0.01. In Figure 1(b), the characteristic roots of smallest modulus are
given for τ = 30.8 [s]. It can be seen that a complex conjugate characteristic root
pair passes the imaginary axis which predicts that there is a Hopf bifurcation at the
critical value of the transport delay. It is concluded that the equilibrium is stable
if τ < τ0 and unstable if τ > τ0. The naturally arising question is what happens in
the nonlinear system if we pass the critical delay.

Simulation results are drawn in Figure 2. The CO2 and O2 concentration, i.e.,
x(t) and y(t) are given in time for τ = 15 [s] in Figures 2(a) and 2(c), respectively.
The equilibrium is stable, x and y approach x̄ = 29.1842 and ȳ = 18.2401, respec-
tively. The same relationships are shown in Figures 2(b) and 2(d) for τ = 40 [s].
According to the stability analysis, the equilibrium is unstable and these figures
also show that x and y do not converge to x̄ and ȳ, respectively. The solutions
appear periodic.
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Figure 2. Simulation results (a) x(t) for τ = 15 [s] (b) x(t) for
τ = 40 [s] (c) y(t) for τ = 15 [s] (d) y(t) for τ = 40 [s]

The Matlab package dde-biftool mentioned in Subsection 2.3 can also be used
to find the equilibrium by entering an initial approximation. (Recall that the equi-
librium is stable if τ < τ0 and unstable if τ > τ0.) The dde-biftool located
a Hopf bifurcation point at τ0. This is a supercritical Hopf bifurcation where a
branch of periodic solutions emerges. This branch is shown in Figure 3(a) where
the bifurcation parameter is the delay τ and the amplitude of x can be seen as the
delay changes. The Floquet multipliers can be determined for any value of the de-
lay. Since all the multipliers are inside the unit circle of the complex plane, except
the trivial one which is exactly one, periodic solutions are stable. The amplitude
and also the frequency of periodic solutions can be computed for any value of the
delay. As an example, if τ = 40 [s] then the amplitude of x is 39.8 as it can also be
checked approximately in Figure 3(a), while the period is 111 [s], so the frequency
is 0.009 [1/s]. Compare these results with those obtained by the simulations, i.e.,
see Figure 2(b). The maximum of the periodic solution is 47.4, while the minimum
is 7.7, so the amplitude is 39.7. There are 8 periods between the maxima at t = 97
[s] and t = 985 [s], so the period is (985-97)/8=111 [s]. We can conclude that the
simulation results and the results of numerical bifurcation analysis coincide very
well. An interesting periodic solution is shown in Figure 3(b). The transport delay
is τ = 65 [s] and the amplitude of x is 69.3. Since x̄ = 29.1842 in the equilibrium,
that would imply a negative value for the minimum of x. However, in reality, the
CO2 concentration is never less than the inspired value, i.e., x > 0 (and similarly,
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y > 0). Our model considers these conditions and therefore the peaks of periodic
solutions do not go under zero.
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Figure 3. (a) Amplitude of x as τ changes (b) 1 period of x and
y for τ = 65 [s]

3.2. Numerical Results on the Five-State Model. The five-state model (3.2)
with the ventilation function (3.3) is examined numerically in this section. Due
to the complicated form of this system, theoretical study similar to that of the
preceding subsection is not carried out here. This emphasizes the importance of
the numerical tools that may be used to investigate delay differential equations.

We approach the final and most complete model of the present study in three
steps. First, all the parameters of the system are fixed and it is assumed that
all four delays take the same value. The equilibrium of this system is computed
by the Matlab code based on the approximation scheme presented in Subsection
2.2. A critical value of the delay where the equilibrium becomes unstable and
stable periodic solutions occur is determined by applying the rootfinder Matlab
code described in Subsection 2.1. Simulations are also carried out for both cases,
i.e., when the equilibrium is stable and when the periodic solutions are stable. In
the second step, we assume that some parameters are not constant, but they take
different values in different regions of some of the state variables. The critical
delay is determined in the region that describes the system in the vicinity of the
equilibrium and the system is simulated. Finally, the different values of time delays
are also taken into account, and the obtained most complete system is simulated.

The parameter values used in the first step are given in Table 1 in Appendix 1.
The equilibrium of the system is (P̄aCO2

, P̄aO2
, P̄BCO2

, P̄VCO2
, P̄VO2

) = (38.40, 94.25,
47.63, 47.44, 38.97), and the critical value of the time delay is τcr = 0.9535 [min].
It is calculated by the rootfinder Matlab code in the same fashion as it is described
in Subsection 3.1. The characteristic roots of smallest modulus for τ = 1.1 [min]
are given in Figure 4(a). It can be seen that the pair of characteristic roots with
the largest real part is already greater than 0, therefore the equilibrium is unstable
and the periodic solution is stable. Simulation results are shown in Figures 4(b)
and 4(c) for τ = 0.5 [min] and for τ = 1.1 [min], respectively. The system was
simulated for further values of the delay, and we obtained stable equilibrium for
τ = 0.84 [min], but periodic solution appeared for τ = 0.85 [min]. Hence, the critical
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value of the delay can be found between these values which means that there is an
approximately 10 % difference between the results obtained by the rootfinder as
well as by simulation.
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Figure 4. (a) characteristic roots for τ = 1.1 [min], (b) simulation
for τ = 0.5 [min], (c) simulation for τ = 1.1 [min], (d) simulation
with state-dependent parameters for τ = 0.5 [min], (e) for τB =
0.7098 [min], τT = 0.9102 [min], τV = 0.9102 [min] and τa = 0.5100
[min], (f) for τB = 1.1830 [min], τT = 1.5170 [min], τV = 1.5170
[min] and τa = 0.8500 [min]
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From now on four parameters, namely mv, Bv,ma and Ba, are considered as
state-dependent parameters. More precisely, ma and Ba depend on PaO2

, while mv

and Bv depend on PVO2
. The dependence is shown in Table 2 in Appendix 1. In the

equilibrium PaO2
= 94.25 and PVO2

= 38.97, thus, the conditions PaO2
≥ 70 and

PVO2
< 55 are satisfied. It gives exactly the system with the parameters given in

Table 1 that was discussed in the previous paragraph. The critical time delay was
τcr = 0.9535 [min] according to the rootfinder, and τcr = 0.85 [min] according to
simulations. If the different regions defined by the state-dependent parameters are
considered, then the critical value is the same with accuracy of 0.01 [min] according
to simulations. A simulation result is drawn in Figure 4(d) where τ = 0.5 [min].

In the last step, we consider that the delays take different values. Measured
values of the delays are published in [8] that are obtained after carrying out ex-
periments on healthy people: lung to brain delay τB = 0.1183 [min], lung to tissue
transport delay τT = 0.1517 [min], venous side transport delay from tissue to lung
τV = 0.1517 [min], and lung to carotid artery delay τa = 0.0850 [min]. In what
follows, the delays are increased, in particular they are multiplied by 6 and 10, and
simulation results are presented in Figures 4(e) and 4(f), respectively. It can be
observed that the equilibrium loses its stability when values of delays are between
the two sets corresponding to these figures. It means that critical values of the
delays are in the same range as in the case of the system with one delay, the critical
value of the lung to carotid artery delay, τa, the lung to brain delay, τB , the lung to
tissue delay, τT , and the venous side tissue to lung delay, τV , are around 0.8 [min],
1.0 [min], 1.3 [min] and 1.3 [min], respectively.

The comparison of the main results obtained for the two-state and the five-state
systems lead to the following conclusion. Both systems show the same behavior,
i.e. increasing transport delay causes loss of stability of the equilibria and occurrence
of periodic solutions. The five-state system, however, predicts larger value for the
critical transport delay than the two-state system.

4. Conclusions

We have developed computational tools and demonstrated that they are effec-
tively applicable to study stability and bifurcations in two sets of delay equations
which have been proposed as possible models of the human respiratory system.
The equilibria of the examined systems and their stability were determined. The
transport delay was considered as parameter in the two-state model and its critical
value was found when the equilibrium loses its stability. This is a supercritical
Hopf bifurcation point where a stable periodic solution emerges. The branch of pe-
riodic solutions was found (amplitude and frequency obtained for any value of the
transport delay). This periodic solution describes the medically important periodic
breathing. Periodic breathing occurs when the transport delay exceeds its critical
value and the control system reacts to information which no longer describes the
state of the system.

The five-state model with four delays was examined in three steps. First, the four
delays were assumed to take the same value, and the critical delay was almost double
of that obtained in the two-state model. Then, the piecewise linear dependence of
the parameters on the state variables in the dissociation curves are considered,
but simulation results were only slightly different from that obtained for constant
parameters. Finally, different values of the delays were taken into account, and
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simulation results are presented for a set of delays based on transport processes
in healthy human bodies. Due to the complexity of the five-state model the only
feasible way to conduct a nonlinear stability analysis is by computational means,
which shows the significance of the availability of the numerical tools used in this
paper.

5. Appendix

5.1. Nomenclature.
a, b: Reciprocal of p and σ
Ba, ma: Constants referring to the relationship between arterial concentra-

tion and partial pressure of CO2

Bv, mv: Constants referring to the relationship between venous concentration
and partial pressure of CO2

CaCO2
, CaO2

: Arterial CO2 and O2 concentrations
CBCO2

: CO2 concentration in brain
CVCO2

, CVO2
: Venous CO2 and O2 concentrations,

EF : Proportionally constant reflecting the reduction in the alveolar ventila-
tion,

GC , GP : Control gain and peripheral control gain
IC , IP : Apneic threshold and peripheral cutoff threshold
K1, KCO2 , KBCO2

: Constants referring to the relationship between arterial
concentration and partial pressure of CO2

MBCO2
, MLCO2

, MTCO2
: Effective CO2 volume in brain, lung and tissue com-

partment
MLO2

, MTO2
: Effective O2 volume in lung and tissue compartment

MRBCO2
, MRTCO2

: Metabolic rate for CO2 in brain and tissue compartment
MRTO2

: Metabolic rate for O2 in tissue compartment
Q: Volume of blood per unit time
QB, QT : Blood flow to the brain and tissue
p: CO2 production rate
PaCO2

, PaO2
: Arterial partial pressures of CO2 and O2

PBCO2
: Partial pressure of CO2 in brain

PICO2
, PIO2

: Inspired partial pressures of CO2 and O2,
PVCO2

, PVO2
: Venous partial pressures of CO2 and O2

t : Time
V : Transformed ventilation function of the two-state model
VI : Ventilation function of the five-state model
W : Ventilation function of the two-state model
x, y: Transformed state variables of the two-state model
x̃, ỹ: Arterial CO2 and O2 concentrations,
xI , yI : Inspired CO2 and O2 concentrations
α, β: Positive constants referring to the diffusibility of CO2 and O2,
ξ, η: Perturbation of x and y around their equilibrium
σ: O2 consumption rate
τ : Transport delay
τ0 : Analytically computed critical delay
τcr: Approximate critical delay
τa: Lung to carotid artery delay
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τB: Lung to brain delay,
τT : Lung to tissue transport delay
τV : Venous side transport delay from tissue to lung.
¯ : The superscript ¯ indicates quantities in equilibrium.

Table 1. Values of the parameters of the five-state system

Quantity Unit Value
PICO2

mmHg 0.24
PIO2

mmHg 125.64
MLCO2

l 3.2
MLO2

l 2.5
MBCO2

l 0.9
MTCO2

l 15.0
MTO2

l 6.0
MRBCO2

l/min 0.042
MRTCO2

l/min 0.235
MRTO2

l/min 0.29
Q l/min 6
QB mmHg/min 0.7
QT mmHg/min 4.0
KCO2 lSTPD/(l mmHg) 0.0065
KBCO2

lSTPD/(l mmHg) 0.0065
EF 1 0.8
mv lSTPD/(l mmHg) 0.0021
Bv lSTPD/l 0.0662
ma lSTPD/(l mmHg) 0.00025
Ba lSTPD/l 0.1728
GP 1/(min mmHg) 26.5
IP mmHg 35.5
GC 1/(min mmHg) 3.2
IC mmHg 35.5

Table 2. Dependence of ma, Ba,mv, Bv on PaO2
, PVO2

ma Ba mv Bv

PaO2
< 55 0.00211 0.0662

55 ≤ PaO2
< 70 0.00067 0.1434

70 ≤ PaO2
0.00025 0.1728

PVO2
< 55 0.00211 0.0662

55 ≤ PVO2
< 70 0.00067 0.1434

70 ≤ PVO2
0.00025 0.1728
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