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USING LIE SYMMETRIES IN EPIDEMIOLOGY

MARIA CLARA NUCCI

Abstract. Lie symmetry method has been and still is successfully applied in
different problems of physics for about a hundred years, but its application in

epidemiology has been rare perhaps because the ordinary differential equations
studied in this field are generally of first-order in contrast with those in physics
which are usually of second-order. Here we exemplify the use of Lie symmetry

method in the study of mathematical models in epidemiology, and show how it
complements the mathematical techniques (qualitative and numerical analysis)
traditionally used.

1. Introduction

In January 2001, the first Whiteman prize for notable exposition on the history
of mathematics was awarded to Thomas Hawkins by the American Mathemati-
cal Society. In the citation, published in the Notices of AMS 48 416-417 (2001),
one reads that Thomas Hawkins “. . . has written extensively on the history of Lie
groups. In particular he has traced their origins to [Lie’s] work in the 1870s on
differential equations . . . the idée fixe guiding Lie’s work was the development of
a Galois theory of differential equations . . . [Hawkins’s book [16]] highlights the
fascinating interaction of geometry, analysis, mathematical physics, algebra and
topology . . . ”. Also Hawkins had established “the nature and extent of Jacobi’s
influence upon Lie” [17]. This is particularly noteworthy since 2004 marks two
hundred years since Jacobi’s birth. “Given the fact that the Jacobi Identity is
fundamental to the theory of Lie groups, Jacobi’s influence upon Lie will come as
no surprise. But the bald fact that he inherited the Identity from Jacobi fails to
convey fully or accurately the historical dimension of the impact of Jacobi’s work
on partial differential equations” [17].

In the Introduction of his book [48] Olver wrote that “it is impossible to over-
estimate the importance of Lie’s contribution to modern science and mathematics.
Nevertheless anyone who is already familiar with [it] . . . is perhaps surprised to
know that its original inspirational source was the field of differential equations”.

Lie’s monumental work on transformation groups, [29], [30] and [31], and in
particular contact transformations [32], led him to achieve his goal [33]. Many
books have been dedicated to this subject and its generalizations [1, 6, 49, 48, 7,
52, 53, 18, 21, 22, 23, 19, 5].
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Lie group analysis is indeed the most powerful tool to find the general solution of
ordinary differential equations. Any known integration technique (We mean those
taught in most undergraduate courses on ordinary differential equations.) can be
shown to be a particular case of a general integration method based on the deriva-
tion of the continuous group of symmetries admitted by the differential equation,
i.e. the Lie symmetry algebra, which can be easily derived by a straightforward
although lengthy procedure. As computer algebra software becomes widely used,
the integration of systems of ordinary differential equations by means of Lie group
analysis is becoming easier to perform. A major drawback of Lie’s method is that
it is useless when applied to systems of n first-order equations1, because they admit
an infinite number of symmetries, and there is no systematic way to find even an
one-dimensional Lie symmetry algebra, apart from trivial groups like translations
in time admitted by autonomous systems. One may try to derive an admitted n-
dimensional solvable Lie symmetry algebra by making an ansatz on the form of its
generators but when successful (rarely) it is just a lucky guess.

However, in [39] we have remarked that any system of n first-order equations
could be transformed into an equivalent system where at least one of the equa-
tions is of second-order. Then the admitted Lie symmetry algebra is no longer
infinite-dimensional, and nontrivial symmetries of the original system could be re-
trieved [39]. This idea has been successfully applied in several instances. In [39]
it was shown that Krause’s symmetries [27] for the Kepler problem are actually
Lie symmetries, and in [45] how to derive the harmonic oscillator from the Kepler
problem by using Lie symmetries. The Kepler problem and MICZ-Kepler problem
were also shown to be equivalent to an isotropic two-dimensional system of linear
harmonic oscillators in [28] thanks to Lie symmetries. In [35] Lie group analysis
– when applied to Euler-Poisson equations as obtained from the reduction method
[39] – unveiled the Kowalevski top [26] and its peculiar integral without making
use of either Noether’s theorem [38] or the Painlevé method [26]. In [41] Lie group
analysis related the famous Lorenz system [34] to the Euler equations of a rigid
body moving about a fixed point and subjected to a torsion depending on time
and angular velocity, namely Lie group analysis transformed the “butterfly” into a
“tornado”. In [42] a solvable many-body problem introduced by Calogero [10] was
shown to be intrinsically linear by means of Lie symmetries. In [43] a three-body
problem derived and solved up to a quadrature by Jacobi [24] was shown to be
reducible to the equation of motion of a single free particle on the line.

Lie group analysis is successfully applied in different problems of physics (and
has been for about a hundred years), but rarely in biology (or epidemiology) maybe
because the ordinary differential equations studied in these fields are generally of
first-order in contrast with those in physics which are usually of second-order. Yet
when Lie group analysis is successfully applied to epidemiological models then sev-
eral instances of integrability even linearity are found which lead to the general
solution of the model. Thus the dynamics of epidemics can be exactly described.

1Any undergraduate science/engineering student knows that a n-order ordinary differential

equation can be transformed into an equivalent system of n first-order equations. Less well-
known to students but common knowledge among experts in Lie group analysis is the dramatic

consequence that that transformation has on the dimension of the admitted Lie symmetry algebra.

In fact while the maximum Lie symmetry algebra admitted by a single n-order equation is finite
[13] the dimension of the Lie symmetry algebra admitted by a system of n first-order equations is
infinite.
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The purpose of this paper is to promote the use of Lie symmetry method among
bio-mathematical practitioners. We present three examples [54], [12], [51] where
Lie symmetries have been found, and the general solution of the epidemiological
model consequently derived whenever appropriate conditions among the involved
parameters are satisfied. In [46] and [44] one can find an instance where Lie group
analysis leads to the general solution of a SIS model formulated in [8] without
any condition on the involved parameters. Moreover each example epitomizes a
different situation, i.e. hidden linearity of the model, an anomalous behavior in
the dynamics of the infectives, and a general periodic solution in apparent contrast
with prediction by qualitative analysis, respectively. In section 2 we show that for a
certain relationship among the involved parameters, Lie group analysis unveils the
hidden linearity [54] of a seminal model given by Anderson, which describes HIV
transmission in male homosexual/bisexual cohorts [2]. In section 3 we show that
for an appropriate relationship among the involved parameters, Lie group analysis
leads to the general solution of a core group model for sexually transmitted dis-
ease formulated by Hadeler and Castillo-Chavez [15], and gives a deeper insight on
the strange behavior of the number of infectives [12]. In section 4 we show that
for a certain relationship among the involved parameters Lie group analysis, when
applied to a SIRI disease transmission model formulated by Derrick and van den
Driessche [11], leads to a periodic general solution [51] in apparent contrast to the
qualitative analysis performed in [11]. In section 5 we conclude with some final
remarks.

2. An HIV-transmission model

In [54], Lie group analysis was applied to a seminal model formulated by An-
derson, which describes HIV transmission in male homosexual/bisexual cohorts [2].
This compartmental model divides the population at time t into susceptibles (HIV
negatives), infecteds (HIV positives), and AIDS patients, represented by u1(t),
u2(t), and u3(t), respectively. HIV infecteds are individuals who test positive for
specific antibodies to the virus [3]. AIDS patients are persons exhibiting charac-
teristic clinical manifestations of full-blown AIDS, the end-stage of the disease [36].
In this model, the population is not subject to recruitment and individuals are
removed only by death. An individual may belong to only one compartment at
any specified time. However, individuals move from one compartment to the next
according to the following flow diagram:

u1(t)

u2(t)

u3(t)

?

?

-

-

-

Natural death

Natural death

AIDS-related death

µ

µ

α

ν

λ

The parameter µ is the per capita natural death rate (non-AIDS related) of both
susceptibles and infecteds, and α is the AIDS-related death rate. The term λ is the
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per capita force of infection and is defined as:

λ =
βcu2(t)

u1(t) + u2(t) + u3(t)
,

where β is the average probability that an infected individual will infect a suscep-
tible partner over the duration of their relationship [2], [14], and c is the effective
rate of partner change within the specified risk category [2].

In the model, all infecteds are supposed to develop AIDS with an average incu-
bation period 1/ν [2], [36]. The system of nonlinear ordinary differential equations
derived from this model is

du1

dt
=

−βcu1u2

u1 + u2 + u3
− µu1 (2.1)

du2

dt
=

βcu1u2

u1 + u2 + u3
− (ν + µ)u2 (2.2)

du3

dt
= νu2 − αu3. (2.3)

We can easily transform this system into a system of one equation of second order
in u1, and one of first order in u2. Indeed, if we derive u3 from (2.1), i.e.:

u3 =
−du1

dt (u2 − u1) + βcu1u2 + µu2
1 + µu1u2

du1
dt + µu1

(2.4)

then we obtain the following system in u1 and u2:

d2u1

dt2
=

[
αβcµu2

1u2 + αβcu1
du1

dt
u2 + αµ2u3

1 + αµ2u2
1u2

+ 2αµu2
1

du1

dt
+ 2αµu1

du1

dt
u2 + αu1

(du1

dt
)2 + α

(du1

dt
)2
u2

− βcµ2u3
1 − βcµ2u2

1u2 − βcµνu2
1u2 − 2βcµu2

1

du1

dt

− βcµu1
du1

dt
u2 − βcν u1

du1

dt
u2 − βcu1

(du1

dt
)2 + βc

(du1

dt
)2
u2

− µ3u3
1 − µ3u2

1u2 − 2µ2u2
1

du1

dt
− 2µ2u1

du1

dt
u2

− µu1

(du1

dt
)2 − µ

(du1

dt
)2
u2

]
/(βcu1u2)

(2.5)

du2

dt
= −

(
µu1 + µu2 + νu2 +

du1

dt

)
(2.6)

When Lie group analysis of this system is performed using [40], a linear partial
differential equation of parabolic structure is obtained. Its characteristic curve is
given by u1 + u2. Consequently, we introduce the new dependent variable:

v2 = u1 + u2 (2.7)

to obtain a new system, which in the case α = µ+ βc admits an eight-dimensional
Lie symmetry algebra. Actually, it becomes separable, i.e.:

d2u1

dt2
=

[
βcµu2

1 + βcu1
du1

dt
+ µ2u2

1 − µ νu2
1 + 2µu1

du1

dt
−

− νu1
du1

dt
+ 2(

du1

dt
)2

]
/u1

(2.8)
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dv2
dt

= −(µ+ ν)v2 + νu1 (2.9)

Therefore, equation (2.8) is linearizable by means of a point transformation [33]
because it admits an eight-dimensional Lie symmetry algebra generated by the
following eight operators:

X1 = e−(βc+µ−ν)t( 1
u1

∂t − µ∂u1

)
, X2 = e−µt

( 1
u1

∂t − (βc+ µ− ν) ∂u1

)
,

X3 = e(βc+µ−ν)tu2
1 ∂u1 , X4 = eµtu2

1 ∂u1 , X5 = u1 ∂u1 , X6 = ∂t,

X7 = e(βc−ν)t (−∂t + (βc+ µ− ν)u1 ∂u1) , X8 = −e(βc−ν)t (−∂t + µu1 ∂u1) ,

if βc 6= ν, or

X̂1 = e−µt
( 1
u1

∂t − µ∂u1

)
, X̂2 = e−µt

( t

u1
∂t − (µt+ 1) ∂u1

)
,

X̂3 = eµtu2
1 ∂u1 , X̂4 = eµttu2

1 ∂u1 , X̂5 = u1 ∂u1 , X̂6 = ∂t,

X̂7 = t (t ∂t − (µt+ 1)u1 ∂u1) , X̂8 = t (∂t − µu1 ∂u1) ,

if βc = ν. To find the linearizing transformation we have to look for a two-
dimensional abelian intransitive subalgebra, and, following Lie’s classification of
two-dimensional algebras in the real plane [33], we have to transform it into the
canonical form

∂ũ, x̃∂ũ (2.10)

with ū and t̄ the new dependent and independent variables, respectively. We find
that one such subalgebra is that generated by X3 and X4, if βc 6= ν, or X̂3 and X̂4,
if βc = ν. Then it is easy to derive that the transformation which changes (2.8)
into a linear ordinary differential equations is either:

t̄ = e(ν−βc)t, ū = −e
(ν−βc−µ)t

u1
(2.11)

if βc 6= ν, or

t̄ = t, ū = −e
−µt

u1
(2.12)

if βc = ν. Thus, equation (2.8) becomes:

d2ū

dt̄2
= 0 (2.13)

and its general solution is trivially2

ū = a1t̄+ a2, (2.14)

which yields the following general solution of system (2.1)-(2.3):

u1 =
eνtc2

eµt [eνt (β c− ν) c1 + eβ c tβ c ]
, (2.15)

u2 =
(β c− ν)

∫
eβ c t+2νt

(eβ c tβ c+eνtβ c c1−eνtc1ν)
2 dt β c c2 + c3

eµt+νt
, (2.16)

2Here a1, a2 are arbitrary constants.
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u3 =

[
eνt (β c− ν) c1 + eβ c tν

]
c3

eβ c t+µt+νt (β c− ν)
+

−eνt c2
eµt [eνt (β c− ν) c1 + eβ c tβ c ]

+
β c c2

[
eνt (β c− ν) c1 + eβ c tν

] ∫
eβ c t+2νt

(eβ c tβ c+eνtβ c c1−eνtc1ν)
2 dt

eβ c t+µt+νt
.

(2.17)

where c1, c2, c3 are arbitrary constants. If βc = 2ν, the general solution assumes a
simpler form:

u1 =
c1

eµt (2eνt + c1c2)
, (2.18)

u2 =
[
2eνt log

(
2eνt + c1c2

)
c1 − 2eνtc1 + 4eνtc3 +

+ log
(
2eνt + c1c2

)
c21c2 + 2c1c2c3

]
/

[
2eµt+νt

(
2eνt + c1c2

)]
,

(2.19)

u3 =
[
eνt log

(
2eνt + c1c2

)
c1 − 2eνtc1 + 2eνtc3 +

+ log
(
2eνt + c1c2

)
c21c2 + 2c1c2c3

]
/

[
2eµt+2νt

]
.

(2.20)

In [54] the solution was tested on data from three U.S. epidemiologic studies, and
found to closely match observed epidemic data.

3. A core group model

In [15] Hadeler and Castillo-Chavez presented a model for sexually transmitted
diseases which takes into consideration an active and relatively small core group of
constant size. The core group recruits individuals from the non-core group, and the
rate of recruitment may depend on the state of the core group. The non-core group
is completely inactive. The total population has size P (t), and the non-core group
has size A. The population of the core group C is further divided into susceptibles
S, educated (or vaccinated) V , and infecteds I. The birth rate is b > 0, the birth
rate of infecteds is b̃ ≤ b, b̃ ≥ 0, the death rate is µ > 0, the death rate of infecteds
is µ̃ ≥ µ, the recovery rate is α ≥ 0, the education (vaccination) rate is ψ ≥ 0,
the transmission rate from infecteds to susceptibles is β ≥ 0, the transmission rate
from infecteds to educated (vaccinated) is β̃, 0 ≤ β̃ ≤ β. At recovery individuals
may either pass into the educated class at the rate αγ, 0 ≤ γ ≤ 1, or return to the
susceptible class at the rate α(1−γ). Recruitment into the core group is described by
a function r(I, C). Hadeler and Castillo-Chavez focused on the situation where the
disease has no demographic effects and population size is constant, i.e. P =const,
b = b̃ = µ = µ̃. Thus their model assumes the form

Ȧ = µP −Ar(I, C)− µA, (3.1)

Ṡ = Ar(I, C)− β
SI

C
− ψS + α(1− γ)I − µS, (3.2)

V̇ = ψS − β̃
V I

C
+ αγI − µV, (3.3)

İ =
βSI + β̃V I

C
− αI − µI. (3.4)

where the overdot denotes differentiation with respect to t. They point out that
this system is closely related to a model for an isolated population of constant size



EJDE/CONF/12 USING LIE SYMMETRIES IN EPIDEMIOLOGY 93

C = 1, i.e.

Ṡ = µ− βSI − ψS + α(1− γ)I − µS, (3.5)

V̇ = ψS − β̃V I + αγI − µV, (3.6)

İ = βSI + β̃V I − αI − µI. (3.7)

In [15] the stationary solutions of system (3.5)-(3.7) are found and their qualitative
features discussed. Then the stationary solutions of system (3.1)-(3.4) are also
discussed. Qualitative conclusions are finally drawn.
In [12] Lie group analysis is applied to system (3.5)-(3.7) in order to determine
under which physical conditions on the parameters Lie point symmetries exist and,
when possible, deduce the general solution in closed form. Also in [12] a discussion
of the solutions that have been found is presented to show how Lie group analysis
complements Hadeler and Castillo-Chavez’s qualitative analysis.

System (3.5)-(3.7) is composed of three first order ordinary differential equations
which can be easily reduced to two equations by using the following condition

C ≡ 1 = S + V + I. (3.8)

Then we can easily transform the system of two equations so obtained into one
equation of second order. We derive I from (3.8), i.e.

I = 1− S − V, (3.9)

and then deduce V from equation (3.5), i.e.

V =
Ṡ − µS + ψS − µ

αγ − α+ βS
− S + 1. (3.10)

Consequently a second order equation for S is obtained. When we apply Lie group
analysis to this equation3 then we obtain a first-order linear partial differential equa-
tion for v(t, S); its characteristic curve suggests to make the following simplifying
transformation

S =
−αγ + α+ u

β
, (3.11)

where u(t) is the new dependent variable. Then (3.10) transforms into

V = 1 +
u̇+ α(1− γ)(µ+ ψ) + (αγ − α+ µ+ ψ − u)u− βµ

βu
, (3.12)

3We look for Lie operators of the form Γ = v(t, S)∂t + G(t, S)∂S .
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and we have to study the following equation in u = u(t):

ü =(α2βγ2µu+ α2βγ2ψu− α2βγµu− α2βγψu+ α2β̃γ2µ2 + 2α2β̃γ2µψ

− α2β̃γ2µu+ α2β̃γ2ψ2 − α2β̃γ2ψu− 2α2β̃γµ2 − 4α2β̃γµψ + 2α2β̃γµu

− 2α2β̃γψ2 + 2α2β̃γψu+ α2β̃µ2 + 2α2β̃µψ − α2β̃µu+ α2β̃ψ2

− α2β̃ψu+ αβ2γµu+ 2αββ̃γµ2 + 2αββ̃γµψ − 2αββ̃γµu− αββ̃γψu

− 2αββ̃µ2 − 2αββ̃µψ + 2αββ̃µu+ αββ̃ψu+ αβγµ2u

+ αβγµψu− 2αβγµu2 − αβγµu̇− 2αβγψu2 − αβγψu̇− αβγuu̇− αβµ2u

− αβµψu+ αβµu2 + αβµu̇+ αβψu2 + αβψu̇− 2αβ̃γµ2u− 4αβ̃γµψu

+ 2αβ̃γµu2 − 2αβ̃γµu̇− 2αβ̃γψ2u+ 2αβ̃γψu2 − 2αβ̃γψu̇+ αβ̃γuu̇

+ 2αβ̃µ2u+ 4αβ̃µψu− 2αβ̃µu2 + 2αβ̃µu̇+ 2αβ̃ψ2u

− 2αβ̃ψu2 + 2αβ̃ψu̇− αβ̃uu̇+ β2β̃µ2

− β2β̃µu+ β2µ2u− β2µu2 − β2µu̇− 2ββ̃µ2u− 2ββ̃µψu

+ 2ββ̃µu2 − 2ββ̃µu̇+ ββ̃ψu2 + ββ̃uu̇− βµ2u2 − βµψu2 + βµu3 − βµuu̇

+ βψu3 + βu2u̇+ βu̇2 + β̃µ2u2 + 2β̃µψu2 − β̃µu3 + 2β̃µuu̇

+ β̃ψ2u2 − β̃ψu3 + 2β̃ψuu̇− β̃u2u̇+ β̃u̇2)/(βu).

In [12] Lie group analysis was applied to (3.13) and non-trivial Lie point symmetries
were obtained in five cases: in the first case an eight-dimensional Lie symmetry
algebra was obtained, which means that equation (3.13) is linearizable, while in
the other four cases a two-dimensional Lie symmetry algebra was found. Here we
present Case (5) of [12] in order to show how to get the general solution if a two-
dimensional Lie symmetry algebra is found and which new insights – not detected
by qualitative analysis - on the dynamics of the epidemics can be obtained from it.
Case (5) corresponds to the following relationship among the involved parameters:

β̃ = 0, ψ = αγ, β =
α(1− γ)(αγ + µ)

µ

Then (3.13) admits a two-dimensional Lie algebra generated by the following oper-
ators:

Γ1 = e(µ+αγ)t
(
∂t − (µ+ αγ)u∂u

)
, Γ2 = ∂t (3.13)

A basis of the differential invariants of order ≤ 1 for operator Γ1 in (3.13) is

t̃ = u e(µ+αγ)t, ũ = (u̇+ uµ+ uαγ) e2(µ+αγ)t, (3.14)

and therefore (3.13) becomes the first order equation:

dũ
dt̃

=
ũ+ t̃2

t̃
, (3.15)

which can be easily integrated, i.e.:

ũ = a1t̃+ t̃ 2. (3.16)



EJDE/CONF/12 USING LIE SYMMETRIES IN EPIDEMIOLOGY 95

The integration of (3.15) is not haphazard but derives from Lie symmetry method
itself [33]. In fact replacing (3.14) into (3.16) yields the following first order equa-
tion:

u̇ =
u

(
−e(αγ+µ)t(αγ + µ− u) + a1

)
e(αγ+µ)t

(3.17)

which is easy to integrate because it admits the Lie symmetry generated by Γ1 in
(3.13). Lie proved that if one knows a symmetry τ(t, u)∂t+ξ(t, u)∂u of a first-order
ordinary differential equation, say u̇ = f(t, u), then an integrating factor for the
corresponding linear differential form, say du − f(t, u)dt = 0, is 1/(ξ − f(t, u)τ)
[33]. Thus the general solution of (3.13) is

u =
a1

e(αγ+µ)t(ea1/(e(αγ+µ)t(αγ+µ))a1a2 − 1)
. (3.18)

and consequently the general solution of (3.5)-(3.7) is:

S =

(
e(αγ+µ)t

(
ea1/(e(αγ+µ)t(αγ+µ))a1a2 − 1

)
(γ − 1)α− a1

)
µ

e(αγ+µ)t
(
ea1/(e(αγ+µ)t(αγ+µ))a1a2 − 1

)
(αγ + µ)(γ − 1)α

, (3.19)

V =
e(αγ+µ)tα2γ(γ − 1)− a1µ

e(αγ+µ)t(αγ + µ)(γ − 1)α
, (3.20)

I =
ea1/(e(αγ+µ)t(αγ+µ))a2

1a2µ

e(αγ+µ)t
(
ea1/(e(αγ+µ)t(αγ+µ))a1a2 − 1

)
(αγ + µ)(γ − 1)α

. (3.21)

In [12] the effectiveness of a disease management program in the core group was
simulated by plotting the solutions with the help of the graphing capability of
MAPLE 7. In some instances a temporary increase of the number of infecteds
followed by a decrease occurs despite the presence of the vaccination/education
program. This outcome is in agreement with the qualitative description by Hadeler
and Castillo-Chavez. The quantitative description in [12] provides a further insight
on the strange behavior of the number of infecteds in the core group as can be seen
in several instances. In fact as it was shown in [12] if the prevalence of infecteds
is initially small in the core group then an increase occurs before the number of
infecteds actually decreases.

The same numerical value of α, µ and γ as given in [15] are used, i.e.:

α = 4, µ = 0.2, γ = 0.025. (3.22)

The numerical values of the other parameters are derived from the relationships
that Lie group analysis has discerned.
The dynamics of the core group is simulated by taking into consideration two
different initial conditions at time t = 0:

(A) no vaccinated/educated are present and the prevalence of infecteds is rela-
tively small, i.e. S(0) = 0.9, V (0) = 0, I(0) = 0.1;

(B) no vaccinated/educated are present and the prevalence of infecteds is high
being nearly half the size of the core group, i.e. S(0) = 0.6, V (0) = 0, I(0) = 0.4

In the figures, the solid line represents the plot of S, the lighter dashed line
represents the plot of V , and the darker dashed line represents the plot of I. In
this case the numerical values of the remaining parameters are as follows:

β̃ = 0, ψ = αγ = 0.1, β =
α(1− γ)(αγ + µ)

µ
= 5.85
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Note that if the initial prevalence of infecteds is small (I(0) = 0.1), then there is a
delay in the effectiveness of the vaccination/education program as can be seen in
Figure 1, even in this case when there is no exchange between vaccinated/educated
and infecteds (i.e., β̃ = 0). Instead if the initial prevalence of infecteds is high
(I(0) = 0.4), then the vaccination/education program immediately takes effect
(Figure 2) as expected. Further discussion can be found in [12].

0

0.2

0.4

0.6

0.8

2 4 6 8 10
t

Figure 1. β̃ = 0, ψ = 0.1, β = 5.85, S(0) = 0.9, V (0) = 0,
I(0) = 0.1

0
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0.4

0.5
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Figure 2. β̃ = 0, ψ = 0.1, β = 5.85, S(0) = 0.6, V (0) = 0,
I(0) = 0.4

4. A SIRI model

In [11] Derrick and van den Driessche formulated a model of disease transmission
in a nonconstant population of size N divided into three classes: susceptibles (S),
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infectives (I) and recovereds (R). Individuals move from one compartment to the
next according to the following flow diagram:

S I R S

?

? ? ?

-
-

�
-

dS

bN

IΦ(S, I,N) γI

IΨ(R, I,N)

ρR

(d+ ε)I (d+ δ)R

The parameter b is per capita birth-rate, d per capita disease free death rate, ε excess
per capita death rate of infectives, δ excess per capita death rate of recovereds,
γ per capita recovery rate of infectives, and ρ per capita loss of immunity rate of
recovereds. The incidence of disease in the susceptible class is given by the function
IΦ(S, I,N), while IΨ(R, I,N) is the transfer rate of the recovered class into the
infective class. The above hypotheses lead to the following differential equations,
where ′ denotes differentiation with respect to t,

S′ = bN − dS + %R− IΦ(S, I,N) (4.1)

I ′ = I[Φ(S, I,N) + Ψ(R, I,N)− (d+ ε+ γ)] (4.2)

R′ = γI − (d+ δ + %)R− IΨ(R, I,N) (4.3)

The analysis in [11] was mainly dedicated to show existence (or nonexistence) of
periodic solutions for the SIRS model (4.1)-(4.3) when proportions of individuals
in the three epidemiological classes are considered, i.e.

s = S/N, i = I/N, r = R/N . (4.4)

With these variables system (4.1)-(4.3) becomes

s′ = b(1− s) + %r + εsi+ δsr − iΦ(s, i) (4.5)

i′ = −(b+ ε+ γ)i+ εi2 + δir + iΦ(s, i) + iΨ(r, i) (4.6)

r′ = γi− (b+ %+ δ)r + εri+ δr2 − iΨ(r, i) (4.7)

where Φ(s, i) = Φ(s, i, 1) = Φ(S/N, I/N,N/N) = Φ(S, I,N) and Ψ(r, i) = Ψ(r, i, 1)
= Ψ(R/N, I/N,N/N) = Ψ(R, I,N).

In [11] a theorem was presented and proved in order to establish under which
conditions system (4.5)-(4.7) does not possess periodic solutions in the feasibility
region

D = {s ≥ 0, i ≥ 0, r ≥ 0 : s+ i+ r = 1} (4.8)

An example of the nonexistence of periodic solutions was then introduced, namely
a special SIRI case of the general model (4.5)-(4.7) with % = δ = 0, Φ(s, i) = φs,
and Ψ(r, i) = ψr. Since s+ i+ r = 1 it is possible to eliminate r and finally obtain
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the following system:

s′ = b(1− s)− (φ− ε)si (4.9)

i′ = i[(φ− ψ)s+ (ε− ψ)i− (ε+ b+ γ − ψ)] (4.10)

In [51] Lie group analysis was applied to system (4.9)-(4.10), namely to either the
second-order equation in the unknown s that one obtains by deriving i from (4.9)
or the second-order equation in the unknown i that one obtains by deriving s from
(4.10). Several cases were found, even instances of hidden linearity. Here we show
that when

b = 0, φ = 2ε− ψ, γ = ψ − ε

then a two-dimensional Lie symmetry algebra is admitted by equation

i′′ =− ((ψi2 − i′)i′ + γφi3 + b2i2 + (i− 1)ε2i3 + ((i− 1)ψi+ i′)φi2

− (γi+ 2i′ + (φ+ ψ)(i− 1)i)εi2 + (ψi2 + i′ + γi

+ (i− 1)φi− (2i− 1)εi)bi)/i

(4.11)

which is obtained from system (4.9)-(4.10) by deriving s from equation (4.10), i.e.

s =
[b+ γ − (ε− ψ)(i− 1)]i+ i′

(φ− ψ)i
(4.12)

and substituting it into equation (4.9). The Lie symmetry algebra is generated by
the operators

Γ1 = t∂t − i∂i, Γ2 = ∂t . (4.13)

This means that equation (4.11) can be easily integrated by quadrature as was
shown in the previous section. Its general solution is

i =
a1

sin
(
a1 a2−a1 t

ε−ψ
)
(ε2 − 2 ε ψ + ψ2)

(4.14)

and from (4.12) one obtains:

s =
1
2

a1

(
cos

(
a1 a2−a1 t

ε−ψ
)
− 1

)
sin

(
a1 a2−a1 t

ε−ψ
)
(ε2 − 2 ε ψ + ψ2)

(4.15)

This general solution of system (4.9)-(4.10) is clearly periodic in apparent contrast
with the findings in [11]. Note that the functions (4.14)-(4.15) are neither bounded
nor positive nor continuous, and do not belong to the feasibility region (4.8). In
fact b must be positive for nonexistence of periodic solutions. However in [11] the
condition b = 0 was allowed in order to show that system (4.5)-(4.7) has periodic
solutions if Φ(s, i) = φsi, and Ψ(r, i) = 0.

5. Final remarks

In the Introduction to his Principia, Newton stated [37, 9]:

I wish we could derive the rest of the phenomena of nature by the
same kind of reasoning from mechanical principles.

However, Pulte [50] has reminded us that in his lectures on analytical mechanics
Jacobi wrote [25]:
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Wherever Mathematics is mixed up with anything, which is out-
side its field, you will find attempts to demonstrate these merely
propositions a priori, and it will be your task to find out the false
deduction in each case . . . Mathematics cannot invent how the re-
lations of system of points depend on each other.

In 1964 Arscott in the Preface to his book on periodic differential equations wrote
[4]:

Only rarely does one find mention, at post-graduate level, of any
problem in connection with the process of actually solving such
equations. The electronic computer may perhaps be partly to blame
for this, since the impression prevails in many quarters that almost
any differential equation problem can be merely “put on the ma-
chine”, so that finding an analytical solution is largely a waste of
time. This, however, is only a small part of the truth, for at higher
levels there are generally so many parameters or boundary condi-
tions involved that numerical solutions, even if practicable, give no
real idea of the properties of the equation. Moreover, any analyst of
sensibility will feel that to fall back on numerical techniques savours
somewhat of breaking a door with a hammer when one could, with
a little trouble, find the key.

In conclusion, Lie group analysis should be considered an essential tool for anyone
who wants to “comprehend” differential equations of relevance in physics and other
scientific fields. As brilliantly stated by Ibragimov [20]

cherchez le groupe!
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