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GENE REGULATORY NETWORKS AND DELAY
DIFFERENTIAL EQUATIONS

ARCADY PONOSOV

Abstract. This paper suggests a mathematical framework to study gene reg-
ulatory networks with time-delay effects, which is based on delay differential

equations. An essential feature of the gene regulatory networks is their “almost
Boolean” structure, where the dynamics is governed by sigmoid-type nonlin-
earities which are close to the step functions. This is due to the fact that genes

are only activated if certain concentrations are close to the respective thresh-
old values. Thus, any mathematical model describing such networks faces a
problem of how to study the dynamics in the vicinity of the thresholds. The

paper presents some properties of gene regulatory networks with delay in com-
parison with the non-delay model. A method of localizing stationary points
near the thresholds in the presence of delays is offered. The basic technical

tool, which is systematically applied in the paper, is a special modification of

the well-known “linear chain trick”. The results are illustrated by a number
of examples.

1. Introduction

The main object of the paper is to study the system of delay differential equations

ẋi = Fi(Z1, . . . , Zn)−Gi(Z1, . . . , Zn)xi (i = 1, . . . , n),

Zi = Zi(yi),

yi(t) = (<ixi)(t) (t ≥ 0, 0 ≤ Zi ≤ 1, xi ≥ 0),
(1.1)

where Fi ≥ 0, Gi ≥ δ > 0 (for 0 ≤ Zi ≤ 1) are real functions that are affine (i.e.
linear, possibly non-homogeneous, functions) in each Zi. Such systems describe
gene regulatory networks, the functions Fi, Gi standing for the production rate
and the relative degradation rate of the product of gene i respectively, and xi

denoting the gene product concentration. Both production and degradation are
assumed to be regulated. This means that the system has a feedback through the
variables Zi giving rise to the regulatory functions, which represent contributions of
the respective genes. Thus, each Zi depends on a single input variable called yi, on a
threshold value denoted by θi and, finally, on qi > 0, “the steepness parameter”, so
that Zi = Σ(yi, θ,qi). This is an ordinary functional dependence which is assumed
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to be “almost Boolean”. This means that qi > 0 are “small”, which implies that
the nonlinearities Zi are close to the step (Heaviside) functions with the jump at
yi = θi. The case of the step functions corresponds to qi = 0. The assumptions on
this functional dependence are specified in the next section.

In delay models the input variable yi may depend on the concentration xi in
a more tricky way. Namely, this dependence is given by (in general, nonlinear)
Volterra (i.e. delay) operators <i. The delay effects arise from the time required to
complete transcription, translation and diffusion to the place of action of a protein
[1]. Compared to biomolecular reactions with a typical time scale of seconds or
fractions of a second, these processes are slow: it may take several minutes or
even hours from the binding of the transcription factor to the promoter until the
transcription and translation process is finished.

If <i is the identity operator, then xi = yi, and we obtain a non-delay variable.
Non-delay regulatory systems, where xi = yi for all i = 1, . . . , n in their general
form, i.e. where both production and degradation are regulated, were introduced
in [4].

The precise assumptions on the delay operators will be described in Section 5.
Let us remark that in this particular paper only the case of linear delays given
by integral operators <i with degenerated kernels is studied. This requirement is
technical and helps to convert the delay system into a (larger) system of non-delay
equations. A more general case, including e.g. nonlinear operators <i, is of great
interest, too. However, this additional nonlinearity may cause far more technical
problems.

The case of multiple thresholds for the input variables is not studied here, either.
As only local properties of trajectories are analyzed, one can without loss of gen-
erality drop all but one threshold value for each yi. This assumption considerably
simplifies the notation.

Let us look again at the regulatory functions Zi = Σ(yi, θ,qi). In biologically
realistic models they are smooth (i. e. qi > 0), which results in a smooth dynamical
system. However, such systems are very complicated, as a considerable number of
equations is usually required. A generally accepted simplification of the model
consists in replacing the smooth regulatory functions by the step functions with
qi = 0. In the paper [2] it was observed that many essential features do not change
under this replacement. However, in the models with autoregulation (where both Fi

and Gi can vary) this may not necessarily be the case (see e.g. [6]). A mathematical
challenge one faces then is to compare the smooth model based upon sufficiently
steep, but still smooth, regulatory functions with the Boolean model based upon
the step functions. Delay effects provide additional troubles.

In the present paper, the paradigm introduced in [4] is used to formalize the
model describing gene regulatory networks with regulated production and degrada-
tion, which in addition include delay feedbacks. A formalism of localizing stationary
points (equilibrium concentrations) in the presence of time-delay is also justified.

There can be two qualitatively different types of stationary points for System
(1.1): regular (RSP) and singular (SSP). Roughly speaking, all regulatory functions
Zi are either on (Zi ≈ 1) or off (Zi ≈ 0) in a neighborhood of RSP. This gives a
system, which locally is almost affine. In the limit, when Zi become the step
functions, it is trivial to find the stationary points. A quite different situation
occurs if some coordinates of a stationary point are close to their threshold values.
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In a neighborhood of such a point some regulatory functions can change rapidly, and
the system becomes essentially nonlinear. In the limit, SSP belongs to a set where
one or more regulatory functions are discontinuous, so that a precise definition of
such a stationary point is required.

The analysis of stationary points in the case of non-delay models is described in
[4, 7] as well as in the later papers [6, 8]. The reader is referred to these papers for a
detailed description of mathematical challenges, comprehensive biological overview,
comparison of the models and further discussions.

2. Properties of regulatory functions

Let us start with two examples of regulatory functions.

Example 2.1. Let θ > 0, q > 0. The Hill function is given by

Σ(y, θ, q) :=

{
0 if y < 0

y1/q

y1/q+θ1/q , if y ≥ 0.

Example 2.2 ([4, 6]). The logoid function is defined by

Σ(y, θ, q) := L

(
0.5 +

y − θ

2q
,

1
q

)
, (θ > 0, 0 < q < 1),

where

L(u, p) =


0 if u < 0
1 if u > 1

up

up+(1−u)p if 0 ≤ u ≤ 1.

Both functions are used to model logistic-type nonlinearities (“sigmoids”). They
are non-decreasing, but only the Hill function is strictly monotone for all y ≥ 0 and
thus never reaches the value 1. The logoid function, on the contrary, assumes this
value for all y ≥ θ + (2q)−1.

Some important general properties ((A1)-(A3), (B1)-(B3)) of these two functions
are listed below. Notice that (B1)-(B3) can be deduced from (A1)-(A3). Any
sigmoid function Σ used in the sequel is assumed to satisfy (A1)-(A3). In particular,
the results proved are valid for the functions from Examples 2.1-2.2.

It is convenient to characterize some of these properties in terms of the inverse
function y = Σ−1(Z, θ, q), where it exists.

Let Z = Σ(y, θ, q) be any function defined for y ∈ R, θ > 0, 0 < q < q0. We say
that Z = Σ(y, θ, q) satisfies Property

(A1) If Σ(y, θ, q) is continuous in (y, q) ∈ R × (0, q0) for all θ > 0, continu-
ously differentiable with respect to y ∈ R for all θ > 0, 0 < q < q0, and
∂
∂y Σ(y, θ, q) > 0 on the set {y ∈ R : 0 < Σ(y, θ, q) < 1}.

(A2) If 0 ≤ Σ(θ, θ, q) ≤ 1 for all y ∈ R, q ∈ (0, q0), θ > 0, and in addition,
Σ(θ, θ, q) = 0.5, Σ(0, θ, q) = 0, Σ(+∞, θ, q) = 1 for all θ > 0, 0 < q < q0.

(A3) If for all θ > 0, ∂
∂Z Σ−1(Z, θ, q) → 0 (q → 0) uniformly on compact subsets

of the interval Z ∈ (0, 1), and Σ−1(Z, θ, q) → θ (q → 0) pointwise for all
Z ∈ (0, 1) and θ > 0.

Clearly, (A1)-(A2) imply that Z = Σ(y, θ, q) is non-decreasing in y ∈ R and strictly
increasing in y on the set {y ∈ R : 0 < Σ(y, θ, q) < 1}. The inverse function
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y = Σ−1(Z, θ, q) is defined then for Z ∈ (0, 1), θ > 0, 0 < q < q0, where it is strictly
increasing in Z and continuously differentiable w.r.t. Z.

If (A1)-(A3) are satisfied, then the function Z = Σ(y, θ, q) satisfies also the
following properties:

(B1) If q → 0, then Σ−1(Z, θ, q) → θ uniformly on compact subsets of the interval
Z ∈ (0, 1) and every θ > 0.

(B2) If q → 0, then Σ(y, θ, q) converges pointwise to 1 (if y > θ), to 0 (if y < θ),
and to 0.5 (if y = θ) for all θ > 0.

(B3) ∂
∂y Σ(yn, θ, qn) → +∞, whenever qn → 0 and Σ(yn, θ, qn) → Z∗ for some
0 < Z∗ < 1.

Property (B1) follows directly from (A3). To prove (B2), we observe that if Zn :=
Σ(y, θ, qn) ≥ δ > 0 for some 0 < y < θ and some qn → 0, then this would contradict
the uniform convergence of Σ−1(Z, θ, q) → θ on the interval [δ, 0.5], as all Zn belong
to it (see (B1)). A similar argument applies if y satisfies θ < y < 1.

Property (B3) follows from (A3) and the fact that Zn := Σ(yn, θ, qn) belong to
a compact subinterval of the interval Z ∈ (0, 1) for n > N .

It is evident that the functions from Examples 2.1-2.2 satisfy Properties (A1)-
(A3) and hence Properties (B1)-(B3).

Property (B2) justifies the following notation for the step function with threshold
θ:

Example 2.3.

Σ(y, θ, 0) :=


0 if y < θ

0.5 if y = θ

1 if y > θ

Remark 2.4. This is not exactly what one usually calls the (unit) step, or Heavi-
side, function, as Σ(θ, θ, 0) = 0.5. But studying the dynamics of System (1.1) with
Zi = Σ(yi, θi, 0) one can disregard this difference as the solutions do not depend on
the value of Zi at yi = θi.

On the other hand, this difference is essential for simplifying some definitions:
see e.g. Definitions 6.1 and 6.2 in Section 6.

3. Some examples of regulatory systems

First of all, let us consider an example of System (1.1) without time-delay (i.e.
under the assumption that <i are the identity operators). The example was in-
troduced in [6] and contains many important features of the general regulatory
networks (different types of stationary points, non-trivial attractor basins, sliding
modes etc.).

Example 3.1.
ẋ1 = Z1 + Z2 − 2Z1Z2 − γ1x1

ẋ2 = 1− Z1Z2 − γ2x2.
(3.1)

Let us assume that θ1 = θ2 = 1, γ1 ≥ 0, γ2 > 0 as well as yi = xi, Zi = Σ(xi, θi, 0)
(i = 1, 2) (remember that yi = xi means that no delay occurs for the variable xi).

Now, we have an example including delays.
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Example 3.2. Using the same system as in the previous example, let us again put
y1 = x1 (no delay). But the other variable will now be “delayed”: y2(t) = (<x2)(t)
where

(<x)(t) = c0x(t) +
∫ t

−∞
G(t− s)x(s)ds, t ≥ 0 (3.2)

for some kernel (“memory function”) G(u) ≥ 0 defined on [0,+∞) and c0 ≥ 0. A
simple, yet of practical importance, example of such a kernel is given by the weak
generic delay kernel

G1(u) = αe−αu, α > 0. (3.3)
Another important example is the strong generic delay kernel :

G2(u) = α2ue−αu, α > 0. (3.4)

Taking an arbitrary linear combination G(u) = c1G
1(u) + c2G

2(u) (c1 ≥ 0, c2 ≥ 0)
with the normalization condition c0 + c1 + c2 = 1, a more general feedback can be
obtained. In addition to their practical importance, such degenerate kernels are
easier to study, as one can apply the so-called ”linear chain trick” to remove delays
and obtain a finite dimensional system of ordinary differential equations, which
gives an opportunity to use the technique, developed in [4, 8], in the case of the
delay system (1.1).

Note that if c1 = c2 = 0, then automatically c0 = 1, and one obtains the non-
delay case.

Let us continue to study System (3.1) from Example 3.1. The regulatory func-
tions are now the step functions. On the set of its continuity the function Zi =
Σ(xi, θi, 0) assumes only two values: 0 and 1. This divides the phase space of the
system into 4 pieces, called boxes or regular domains. By definition these boxes
are open subsets of the phase space as Σ(θi, θi, 0) = 0.5 in view of Property (A2).
Inside any box, (3.1) becomes a fairy simple diagonal system of affine differential
equations:

• ẋ1 = −γ1x1, ẋ2 = 1− γ2x2 if Z1 = 0, Z2 = 0;
• ẋ1 = 1− γ1x1, ẋ2 = 1− γ2x2 if Z1 = 1, Z2 = 0;
• ẋ1 = 1− γ1x1, ẋ2 = 1− γ2x2 if Z1 = 0, Z2 = 1;
• ẋ1 = −γ1x1, ẋ2 = −γ2x2 if Z1 = 1, Z2 = 1.

The main advantage of this approach is that the dynamics inside each box can be
calculated explicitly. Each phase trajectory is a curve evolving towards a certain
point, as γi is always positive according to the assumptions on System (1.1). This
point is usually called the focal point of the given box. For example, the point
(x∗1, x

∗
2), where x∗1 = 0, x∗2 = γ−1

2 , is the focal point of the box where Z1 = 0, Z2 = 0
Any focal point, which belongs to the box it corresponds to, is a stable stationary

point of the system. For example, if γ2 > 1, then the focal point (x∗1, x
∗
2) of the

box, where Z1 = 0, Z2 = 0, belongs to this box. To check this, one simply observes
that x∗1 = 0 < θ1 = 1, x∗2 = γ−1

2 < θ2 = 1 and that Zi = 0 holds if and only if
xi < θi. Thus, as soon as a trajectory enters this box, it will approach the stable
stationary point (0, γ−1). For the focal points lying in the boxes they correspond
to, one uses the expression ”regular stationary points” (RSP) (see [9]).

However, if (for instance) γ1 = 0.6, γ1 = 0.9, then all focal points will lie outside
the respective boxes. In such a case, the system does not have any RSP, and its
dynamics becomes more complicated. To understand it better, one needs to classify
the sets between adjacent boxes. There are 5 such sets (called ”singular domains”
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[6]) in the example: 4 sets of codimension 1 (called ”walls”, in this case they are
open intervals), where one of the variable assumes its threshold value, while the
other does not, and 1 set of codimension 2 (x1 = θ1, x2 = θ2) which is the only
limit point for all 4 boxes.

One needs an appropriate notation to describe regular domains (i.e. boxes) and
singular domains (walls etc.). The problem is fixed in a convenient way (see e.g.
[4], [8], [6]) if to any coordinate xi one assigns the Boolean variables 1 (for YES)
or 0 (for NO). Given a box, one asks whether the coordinate xi is bigger than its
threshold value θi inside this box. If the answer is YES, then the value 1 is assigned
to it, if NO, then it will be 0. Alternatively, one can use the corresponding values of
Zi which is even easier: 0 (resp. 1) replaces Zi = 0 (resp. Zi = 1). This gives rise to
the mapping β : 0 7→ 0; 1 7→ 1 which extends to the set of all Boolean vectors (0, 1)p

in a natural way. To any 2-dimensional Boolean vector B = (B1, B2) ∈ (0, 1)2 one
associates the box B(B), where Zi takes the value β(Bi). For example, Z1 = 0 and
Z2 = 1 in the box B(0, 1), or equivalently, x1 < θ1, x2 > θ2.

To describe walls (i.e. singular domains of codimension 1) between two adjacent
boxes one should simply replace the only Boolean variable, which is different for the
two boxes, by the corresponding threshold value. For instance, the wall between
B(0, 1) and B(1, 1) is denoted by SD(θ1, 1). For this wall one has x2 > θ2 (as
Z2 = 1) and x1 = θ1. If the threshold values are fixed, then θi can be skipped (this
notation is used in [6]).

Example 3.1 displays why it is convenient to distinguish between Boolean values
and numbers: the walls SD(1, 1) and SD(1, 1) are different.

Singular domains of higher codimension can be described in a similar way. The
only singular domain of codimension 2 in the above example is SD(1, 1).

There exist three different types of walls: transparent, white and black (this
terminology was introduced in [7]). If the focal points of two adjacent boxes are
not separated by the wall between them (i. e. the focal points belong to the same
half-space), then the trajectories hit the wall from one side and depart from it on
the other side. One calls such a wall transparent. For System (3.1) with γ1 = 0.6
and γ2 = 0.9 the wall SD(0, 1) is transparent, because the focal points of B(0, 0)
and B(0, 1) are (0, 10/9) and (5/3, 10/9), respectively, and both belong to the half-
plane x2 > θ2 = 1. The trajectories hit the wall from below and stay then in the
box B(0, 1) until they hit the wall SD(1, 1).

Assume now that the focal points lie in different half-spaces. If either focal
point belongs to the half-space, which also contain the associated box, then the
wall is white. In this case, the trajectories never hit the wall as the focal points
are attractors. Black walls provide the opposite situation: the focal points and the
associated boxes lie in the different half-spaces. Therefore the trajectories hit the
black wall from either side. Black walls contain therefore potential attractors for
the dynamics of the system. For System (3.1) with γ1 = 0.6 and γ2 = 0.9 the wall
SD(1, 0) is white as the focal point (5/3, 10/9) of the box B(1, 0) is contained in the
half-plane {x1 > 1} and the focal point (0, 10/9) of the box B(0, 0) is contained in
{x1 < 1}. It is easy to see that the two remaining walls in this example are black.

Now we are ready to explain why regulatory systems can have stationary points
which are not RSP. This is because the system can have stationary regimes that
are hidden in black walls. When replacing the corresponding step function by a
smooth, steep sigmoid, the situation cannot be excluded that the resulting smooth



EJDE/CONF/12 GENE REGULATORY NETWORKS 123

system will have stationary points close to such a wall. If the steepness parameter
goes back to zero, then this stationary point can again disappear in the black wall
(just because the wall is ”black”). Unfortunately, the limit system itself provides
no information about such hidden stationary points as the right-hand side of the
system is discontinuous in the walls.

Following [9] let us call such points singular stationary points (SSP).
Examples show that SSP do exist. For instance, in [6] it is shown that the point

(3/2, 1) in the black wall SD(1, 1) is an asymptotically stable SSP for System (3.1)
with γ1 = 0.6 and γ2 = 0.9. Although SSP are always contained in the sets of a
lower dimension, it is due to strongly nonlinear interactions in the system that such
points may not disappear under small perturbations. Stability analysis around such
”invisible” points is even more demanding.

The challenge of the present paper is to show how SSP can be studied in the
case of time-delay (of a special kind). We now look at Example 3.2.

The main idea is to replace System (3.1) with distributed delay (3.2) by a system
of ordinary differential equations. This is done by the linear chain trick described
in Section 4. It is assumed in the example that G(u) = c1G

1(u) + c2G
2(u), where

c0 + c1 + c2 = 1, ci ≥ 0 (i = 1, 2, 3). In other words, the delayed feedback y2 is
given by

y2 = c0x2 + c1w1 + c2w2, (3.5)
where

w1(t) = α

∫ t

−∞
e−α(t−s)x2(s)ds, w2(t) = α2

∫ t

−∞
(t− s)e−α(t−s)x2(s)ds.

It is easily seen that ẇ1 = −αw1 + αx2 and ẇ2 = αw1 − αw2. These formulae
are used in the classical linear chain trick. For the purposes of the present paper,
this trick can only be utilized in a modified form, because Z2 should, as before,
depend on a single variable. This modification and its justification are also offered
in Section 4. In the example, let us just formally change the variables as follows:
v2 = c2w1, y2 = c0x + c1w1 + c2w2 (the index ”2” for the variables v2 and y2 is
chosen to stress that we are considering the second, i.e. ”delayed”, variable; this
notation is also consistent with that used in the general case - see Section 5). By
this, the following system of ordinary differential equations is derived:

ẋ1 = Z1 + Z2 − 2Z1Z2 − γ1x1

ẋ2 = 1− Z1Z2 − γ2x2

ẏ2 = c0(1− Z1Z2 − γ2x2) + α(c0 + c1)x2 − αy2 + αv2,

v̇2 = αc2x2 − αv2,

(3.6)

where Zi = Σ(yi, θi, 0) (i = 1, 2).
This system is equivalent to System (3.1) with y1 = x1 (i.e. no delay in x1) and

y2(t) = c0x2(t) +
∫ t

−∞(c1G1(t− s) + c2G
2(t− s))x2(s)ds.

Among the system’s four variables x1, x2, y2, v2 only the first and the third have
thresholds θ1 = θ2 = 1. Thus, the system, as in the non-delay Example 3.1, has 4
boxes:

• B(0, 0) where Z1 = Z2 = 0;
• B(0, 1) where Z1 = 0, Z2 = 1;
• B(1, 0) where Z1 = 1, Z2 = 0;
• B(1, 1) where Z1 = Z2 = 1.
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However, these boxes are now 4-dimensional due to additional variables. In each
box, (3.6) becomes an affine system. Each system, governing the dynamics inside
the boxes, consists of two parts. One of the parts is formally identical with the
system in the same box for the correspondent system without delay (the first two
equations in (3.6)). The other contains the additional variables and coincides with
the last two equations in (3.6).

The focal points are:

• x∗1 = 0, x∗2 = γ−1
2 , y∗2 = (c1 − c2)γ−1

2 , v∗2 = c2γ
−1
2 for B(0, 0);

• x∗1 = γ−1
1 , x∗2 = γ−1

2 , y∗2 = (c1 − c2)γ−1
2 , v∗2 = c2γ

−1
2 for B(0, 1);

• x∗1 = γ−1
1 , x∗2 = γ−1

2 , y∗2 = (c1 − c2)γ−1
2 , v∗2 = c2γ

−1
2 for B(1, 0);

• x∗1 = x∗2 = y∗2 = v∗2 = 0 for B(1, 1).

Evidently, these points would be asymptotically stable for the respective systems
if the latter were defined in the entire R4. Hence the trajectories inside each box
will be, exactly as in the non-delay case, evolve towards the corresponding focal
point until they hit a wall. It also means that if the focal point belongs to the box
it is assigned to, then this focal point becomes an asymptotically stable stationary
point for the system (i.e. a stable RSP).

According to the non-delay case, the walls (which are 3-dimensional now) can be
black, white or transparent. Compared to Example 3.1, some qualitative changes
can be registered in the case with time-delay.

To give an impression of what can happen in the delay case, let us assume that
γ1 = 0.6, γ2 = 0.9 as well as 0 < c0 < 1, c2 = 0, so that c0 + c1 = 1 and v2(t) ≡ 0.
Thus, System (3.6) becomes

ẋ1 = Z1 + Z2 − 2Z1Z2 − γ1x1

ẋ2 = 1− Z1Z2 − γ2x2

ẏ2 = c0(1− Z1Z2 − γ2x2) + αx2 − αy2.

(3.7)

Recall that the wall between the boxes B(1, 0) and B(1, 1) is black for the non-delay
system (3.1). In the delay case the situation is different (in addition to the fact that
the boxes are 3-dimensional). To see it, let us observe that an arbitrary point P =
(x1, x2, θ1), x1 > 1, x2 > 0 in this wall will be a point of attraction, if at this point
ẏ2 < 0 for Z1 = 1, Z2 = 1 and ẏ2 > 0 for Z1 = 1, Z2 = 0. Clearly, these assumptions
are only fulfilled, if −α+ αx2 − c0γ2x2 < 0 and −α+ αx2 − c0γ2x2 + c0 > 0. This
does not hold for all x2. For instance, if x2 = θ2 = 1, then both inequalities are
fulfilled. However, if x2 lies far enough from the threshold value for y2, then one
of the conditions is violated, and the wall becomes transparent, yet never white, as
c0 > 0. If c0 = 0, this wall is never black either (only transparent).

This example illustrates the difference from the non-delay case, where one has:
“once black (white, transparent), always black (white, transparent)”. In the pres-
ence of delays a wall, on the contrary, can be partly black, partly transparent.

On the other hand, the walls corresponding to the non-delay variables (x1 in the
example) cannot change their type. This fact is proved in Proposition 7.2.

It is natural to expect that stationary points for System (1.1), with or without
delay, are the same. It is of course the case for smooth dynamical systems. It
is shown below (Proposition 5.5 and Theorem 8.2, respectively) that both RSP
and SSP in the delay and non-delay situation coincide, too, at least under some
additional assumptions.
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Now let us make a break, using it to describe the linear chain trick and its
modification. This modification will be applied in the forthcoming sections to
formalize the model which includes time-delays.

4. The linear chain trick and its modifications

This is a well-known algorithm (see e.g. [3]) to reduce delay differential equations
to finite dimensional systems of ordinary differential equations. It is widely used
in numerical and statistical analysis of delay differential equations. The method
consists in representing the delay operator < as a finite linear combination of ”el-
ementary” delay operators which admit a simple description. This section is or-
ganized as follows: the classical version of the ”trick” is first described, giving a
system of ordinary differential equations in a matrix form. The latter is then used
to construct the ”trick” in a modified form, which is needed for the purposes of the
paper.

Both versions are, in fact, special cases of the generalized linear chain trick,
which also covers infinite sums, non-smooth delay kernels etc. Its justification can
be found in [5].

In this section, the following scalar nonlinear delay differential equation is con-
sidered:

ẋ(t) = f(t, x(t), (<x)(t)), t > 0 (4.1)

with the initial condition
x(τ) = ϕ(τ), τ ≤ 0, (4.2)

The function f(·, ·, ·) : [0,∞)× R2 → R has three properties.
(C1) The function f(·, u, v) is measurable for any u, v ∈ R.
(C2) The function f(·, 0, 0) is bounded: |f(t, 0, 0)| ≤ C (t ≥ 0) for some constant

C.
(C3) The function f is Lipschitz: There exists a constant L such that

|f(t, u1, v1)− f(t, u2, v2)| ≤ L(|u1 − u2|+ |v1 + v2|) (4.3)

for all t ≥ 0, ui, vi ∈ R.
Note that these three conditions imply that |f(t, u, v)| ≤ L(|u| + |v|) + C for any
t ≥ 0 and u, v ∈ R.

The initial function ϕ is bounded and continuous. The integral operator < is
assumed to be as follows:

(<x)(t) =
∫ t

−∞
G(t− s)x(s)ds, t > 0, (4.4)

where

G(u) =
p∑

ν=1

cνG
ν
α(u) , (4.5)

Gν
α(u) =

ανuν−1

(ν − 1)!
e−αu (4.6)

The coefficients cν are real numbers, and it is also assumed that α > 0.
Note that the operator (4.4) is a particular case of the operator (3.2) with c0 = 0.

If the initial function is defined on a finite interval [−H, 0], then one can put x(τ) = 0
for τ < −H.
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The assumptions on < exclude delay terms like x(t−h). The linear chain trick is
therefore only applicable to some classes of smooth delay functions and differential
equations with distributed delays.

The functions Gν
α have the following properties:

Gν
α(∞) = 0,

Gν
α(0) = 0, (ν ≥ 2.)

G1
α(0) = α .

(4.7)

It is also straightforward to show that
d

du
Gν

α(u) = αGν−1
α (u)− αGν

α(u) (ν ≥ 2)

d

du
Gν

α(u) = −αGν
α(u) (ν = 1).

(4.8)

Hence, putting

vν(t) =
∫ t

−∞
Gν

α(t− s)x(s)ds (ν = 1, 2, . . . , p) (4.9)

yields

(<x)(t) =
∫ t

−∞

p∑
ν=1

cνG
ν
α(t− s)x(s)ds =

p∑
ν=1

cνvν(t), (4.10)

so that

ẋ(t) = f(t, x(t),
p∑

ν=1

cνvν(t)) = f(t, x(t), lv(t)), (4.11)

where
l = (c1, c2, . . . , cp), (4.12)

cν being identical with the coefficients in (4.5).
On the other hand, for ν ≥ 2 the functions vν satisfy

v̇ν(t) = αvν−1(t)− αvν(t),

while for ν = 1 one has
v̇1(t) = −αv1(t) + αx(t).

This gives the following system of ordinary differential equations:

v̇(t) = Av(t) + πx(t), t ≥ 0, (4.13)

where

A =


−α 0 0 . . . 0
α −α 0 . . . 0
0 α −α . . . 0
...

...
. . . . . .

...
0 0 . . . α −α

 and π =


α
0
...
0

 . (4.14)

Clearly, the system of ordinary differential equations (4.11), (4.13) is equivalent to
the delay differential equation (4.1).

The initial condition (4.2) can be rewritten in terms of the new functions as
follows:

vν(0) =
∫ 0

−∞
Gν

α(−τ)ϕ(τ)dτ = (−1)ν−1 αν

(ν − 1)!

∫ 0

−∞
τν−1eατϕ(τ)dτ, (4.15)
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ν = 1, . . . , p. As before, x(0) = ϕ(0).
The initial conditions (4.15) can be represented in a vector form as well:

v(0) =
∫ 0

−∞
eA(−τ)πϕ(τ)dτ. (4.16)

This classical version of the linear chain trick is, however, not directly suitable
for gene regulatory networks as the regulatory functions Zi depend only on one
variable, while the ”trick” gives a sum of the form (4.10). That is why a modification
of the linear chain trick, which is a particular case of the general reduction scheme
introduced in [5], is now described. First of all, let us observe that the solution to
the auxiliary system (4.13) can be represented as follows:

v(t) = eAtv0 +
∫ t

0

eA(t−s)πx(s)ds

= eAt

∫ 0

−∞
eA(−τ)πϕ(τ)dτ +

∫ t

0

eA(t−s)πx(s)ds

=
∫ t

−∞
eA(t−s)πx(s)ds,

(4.17)

as x(s) = ϕ(s) for s ≤ 0. Thus,

(<x)(t) =
∫ t

−∞

( p∑
ν=1

cνvν

)
ds = l

∫ t

−∞
eA(t−s)πx(s)ds. (4.18)

This formula is a starting point for a modification of the linear chain trick which is
used in this paper. Formally, the auxiliary system of the same form as in (4.13) is
exploited. However, the matrix A, the functionals π and l will be changed to AT ,

π′x = αx


c1
c2
...
cp

 (4.19)

and l′ = (1, 0, . . . , 0, 0), respectively.
It is claimed, in other words, that System (4.1) with Condition (4.2) is equivalent

to the following system of ordinary differential equations:

ẋ(t) = f(t, x(t), v1(t))

v̇ = AT v + π′x(t)
(4.20)

with the initial conditions x(0) = ϕ(0) and

v(0) =
∫ 0

−∞
eAT (−τ)π′ϕ(τ)dτ. (4.21)

Note that, unlike the right-hand side in the classical linear chain trick (see (4.11)),
the right-hand side in (4.20) depends only on two state variables: x and v1. This
is crucial for applications which are of interest in this paper.

To prove (4.20), one needs to show that the representation (4.18) holds true if
A, π and l are replaced by AT , π′ and l′, respectively. This is done by writing down
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the fundamental matrix of the corresponding homogeneous system:

Y (t) = e−αt



1 αt (αt)2

2! . . . (αt)p−1

(p−1)!

0 1 αt . . . (αt)p−2

(p−2)!

0 0 1 . . .
...

...
...

. . . . . . αt
0 0 . . . 0 1


. (4.22)

Then a direct calculation proves the result. A similar argument gives (4.21).

Remark 4.1. Assume that v(t) is a solution to v̇ = AT v + π′x(t), A, π′ are given
by (4.14) and (4.19), respectively. If now cν ≥ 0 for ν = 0, . . . p, vν(0) ≥ 0 for
ν = 1, . . . p, and x(t) ≥ 0 for all t ≥ 0, then vν(t) ≥ 0 for all t ≥ 0, ν = 1, . . . p as
well. It follows easily from the representation formula for the solution v(t) and the
formula (4.22) for the fundamental matrix.

5. Incorporating time-delays into the model

Now let us again look at System (1.1). The aim is to apply the modified linear
chain trick described in Section 4. To do it, let us assume that the delay operators
<ixi from (1.1) are all of the form

(<ixi)(t) = c
(i)
0 xi(t) +

∫ t

−∞
Gi(t− s)xi(s)ds, t > 0, (5.1)

where

Gi(u) =
p∑

ν=1

c(i)ν Gν
αi

(u) (5.2)

and the functions Gν
αi

(u) are defined by (4.6). Note that adding zero coefficients
one can always assume that the number p is independent of i.

First of all let us observe that the delay operators in this section are slightly dif-
ferent from those studied in Section 4: one term is added, namely c(i)0 xi. According
to Section 4, applying formally the (even modified) linear chain trick would give
(4.20) with the first equation equal ẋ = f(t, x, c0x+ v1). For (1.1) it would provide
sigmoids depending on two variables, which is not acceptable for the model. This
problem causes, however, no big troubles. We can, for instance, replace v1 by the
input variable y = c0x+ v1 arriving, as we will see, at a slightly different system of
ordinary differential equations. Indeed, differentiating y gives

ẏ = c0ẋ+ v̇1 = c0f(t, x, y)−αv1 +αv2 +αc1x = c0f(t, x, y)−αy+αv2 +αx(c0 +c1).

For (1.1) this results in the following system of ordinary differential equations:

ẋi(t) = Fi(Z)−Gi(Z)xi(t)

v̇(i)(t) = A(i)v(i)(t) + Π(i)(xi(t)), t > 0

Zi = Σ(yi, θi, 0), yi = v
(i)
1 (i = 1, . . . , n),

(5.3)
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where

A(i) =


−αi αi 0 . . . 0
0 −αi αi . . . 0
0 0 −αi . . . 0
...

...
. . . . . .

...
0 0 . . . 0 −αi

 , v(i) =


v
(i)
1

v
(i)
2
...
v
(i)
p

 , (5.4)

and
Π(i)(xi) := αixiπ

(i) + c
(i)
0 fi(Z, xi) (5.5)

with

π(i) :=


c
(i)
0 + c

(i)
1

c
(i)
2
...
c
(i)
p

 , fi(Z, xi) :=


Fi(Z)−Gi(Z)xi

0
...
0

 . (5.6)

Recall that according to the assumptions on System (1.1), Fi, Gi are real functions
which are affine in each Zi and which satisfy Fi ≥ 0, Gi ≥ δ > 0 for 0 ≤ Zi ≤ 1.
Such a system (up to notational changes) was already obtained in Section 3: see
(3.6).

Note that the notation in (5.3) is chosen in such a way that the first coordinate
v
(i)
1 always coincides with the i-th input variable yi. For the sake of simplicity

the notation v
(i)
1 in (5.3) will be kept in the sequel. Assume that Zi = const

(i = 1, . . . n). Then System (5.3) becomes affine:

ẋi(t) = ψi − γixi(t)

v̇(i)(t) = A(i)v(i)(t) + Π̄(i)(xi(t)), t > 0, i = 1, . . . , n,
(5.7)

where yi = v
(i)
1 , ψi ≥ 0, γi > 0, and

Π̄(i)(xi) := αixi


c
(i)
0 + c

(i)
1

c
(i)
2
...
c
(i)
p

 + c
(i)
0


ψi − γxi

0
...
0

 . (5.8)

Proposition 5.1. If the initial conditions for System (5.7) satisfy xi(t0) ≥ 0,
v
(i)
1 (t0) ≥ c

(i)
0 xi(t0), v

(i)
ν (t0) ≥ 0 (ν = 2, . . . p), then the corresponding solution to

(5.7) satisfies xi(t) ≥ 0, v(i)
1 (t) ≥ c

(i)
0 xi(t), v

(i)
ν (t) ≥ 0 (ν = 2, . . . p) for all t ≥ t0.

Proof. First of all, let us notice that xi(t) ≥ 0 because ψi ≥ 0, γi > 0. Now
the idea is to use the property of solutions mentioned in Remark 4.1. It is worth
remembering however that although v(i)

ν for ν ≥ 2 remained the same, the variable
v
(i)
1 was replaced by yi = c

(i)
0 xi + v

(i)
1 . But if one assumes that yi (i.e. the new

v
(i)
1 ) satisfies yi(t0) ≥ c0xi(t0), then Remark 4.1 can be applied, and the result

follows. �

Remark 5.2. The following example shows that if the assumption v
(i)
1 (t0) ≥

c0xi(t0) is violated, then the coordinate v(i)
1 (t) can be negative. Putting p = 1,
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c
(i)
0 = 0.6, αi = 0.2, ψi = 0, γi = 1, x = xi, y = yi = v

(i)
1 gives the system

ẋ = −x
ẏ = −0.4x− 0.2y.

Solving it for x(0) = 1, y(0) = y0 results in

y(t) = e−0.2t
(
y0 + 0.5

(
e−0.8t − 1

))
.

Thus, if y0 < 0.5, then the y(t) becomes eventually negative. This example explains
why the sigmoids are to be defined for y < 0 (see Section 2).

However, looking at the original delay system (1.1), it is straightforward to
observe that the assumption v

(i)
1 (t0) ≥ c

(i)
0 xi(t0) is natural and always fulfilled.

Indeed, v(i)
1 (t) (= yi) is nothing but (<ixi)(t) given by (5.1), where

∫ t

−∞Gi(t −
s)xi(s)ds ≥ 0 as xi(t) ≥ 0. Thus, assuming for convenience that the sigmoids are
defined for all yi one, in fact, never obtains negative values for the inputs yi.

Proposition 5.3. System (5.7) is asymptotically stable: all its solutions converge
to the focal point of the system.

Proof. System (5.7) is affine. The linear part of this system (a matrix) is quasitri-
angular with the quasidiagonal consisting of the numbers −γi < 0 and the stable
matrices A(i). This observation implies also that the matrix has only real, negative
eigenvalues. The solutions of System (5.3) converge to the focal point given by

x∗i = ψiγ
−1
i

v(i),∗ = −(A(i))−1Π̄(i)(x∗i ) (i = 1, . . . , n)
(5.9)

(the matrix A(i) is invertible because it is stable). �

Thus, it is almost the same situation as in the non-delay case. The only difference
is that the matrix of System (5.7) has multiple eigenvalues.

Remark 5.4. One of the equations in (5.3) is of particular interest. It is the
equation containing v̇

(i)
1 (i.e. ẏi according to our notational agreement). If the

kernel (5.2) of the delay operator (5.1) contains at least one term, other than
G1

αi
(u), then this equation is given by

ẏi(t) = −αiyi(t) +αiv
(i)
2 (t) +αi(c

(i)
0 + c

(i)
1 )xi(t) + c

(i)
0 (Fi(Z)−Gi(Z)xi(t)). (5.10)

If the kernel (5.2) contains only the term G1
αi

(u), which corresponds to the case of
the weak generic delay kernel, then the equation, containing ẏi, becomes

ẏi(t) = −αiyi(t) + αixi(t) + c
(i)
0 (Fi(Z)−Gi(Z)xi(t)), (5.11)

as c(i)0 + c
(i)
1 = 1 and v(i)

2 (t) ≡ 0.

Proposition 5.5. Assume that in some open subset, containing the focal point
with the coordinates given by (5.9), one has Zi(yi) = const. Then this point is an
asymptotically stable stationary point for System (5.3).

Proof. Under these assumptions System (5.3) becomes (5.7) for some ψi ≥ 0, γi > 0.
As the matrix of the second system is stable, there exist numbers t0, κ (t0 > 0; 0 <
κ < 1) and a metric ρ in the phase space of System (5.7) such that the fundamental
matrix V (t) of the homogeneous system corresponding to (5.7) is a contraction in
the metric ρ for all t ≥ t0. In particular, any ball Br(0) in this metric, centered
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in the origin, will be V (t)-invariant for t ≥ t0. This implies that any trajectory
υ(t), t ≥ t0 of System (5.7) is contained in the ball Br(P ∗), centered in the focal
point P ∗, as soon as υ(t0) ∈ Br(P ∗). Now let us take a small r, such that System
(5.3) and System (5.7) coincide in Br(P ∗). In this ball the trajectories of the two
systems are the same for t ≥ t0. By this, the focal point for (5.7) becomes an
asymptotically stable stationary point for (5.3). �

Remark 5.6. It is usually assumed in this paper that Zi = Bi, where Bi is either 0
or 1. The set, where Zi = Bi (i = 1, . . . , n), is an open subset of the input space (i.
e. it is a box: see Definition 6.1 below). Any box is easily seen to be invariant under
the solution flow to any diagonal system of affine differential equations, provided
the focal point is inside this box. Thus, the proof of the proposition is trivial for
the non-delay case. However, in the delay case (i.e. for System (5.7)) the situation
is different, as boxes are not necessarily invariant.

To see it, let us consider a modified example from Remark 5.2, where we now
put p = 1, c(i)0 = 0.6, αi = 0.2, γi = 1, x = xi, y = yi = v

(i)
1 , as before, but change

ψi to be 1.2 assuming that this corresponds to Z = 1. Then the system becomes

ẋ = 1.2− x

ẏ = 0.6(1.2− x) + 0.2x− 0.2y.

Let us also set x(0) = 2.2, y(0) = 1.1. Clearly, the focal point of the box y > 1 is
(1.2, 1.2), thus belonging, together with the initial point, to this box. However, the
solution (which can easily be obtained from the corresponding formula in Remark
5.2 by adding ψi = 1.2 to both variables) is

y(t) = e−0.2t(−0.1 + 0.5(e−0.8t − 1)) + 1.2.

Now, y(t) < 0.9 for t = 1, so that the trajectory leaves the box. This example
explains why a slightly more precise argument to prove Proposition 5.5 is required.

Remark 5.7. It was already mentioned that the focal points, which belong to the
box they correspond to, are called regular (RSP) in the non-delay model. This
terminology can be kept in the delay case, too. Proposition 5.5 justifies this.

6. Some definitions

Using the examples from Section 3, let us now formulate some general definitions
related to geometric properties of System (1.1) with <i given by (5.1). Similar
definitions are known for the non-delay case (see e.g. [6]). However, according to
the idea described in the previous section, System (1.1) is to be replaced with a
system of ordinary differential equations (5.3). The latter is formally different from
the general system studied in [6] (i.e. from (1.1) with yi = xi for all i). Indeed,
(5.3) contains more than one state variable in all but one component. We observed
in the previous section that the two systems might have different properties, too.
By this reason, some definitions have to be revised.

But first of all let us describe some useful notation (see again [6]). In what
follows, it is assumed that

• M := {1, . . . ,m}, N := {1, . . . , n}, n ≤ m;
• S := N\R for a given R ⊂ N ;
• AR consists of all functions v : R→ A;
• aR := (ar)r∈R (aR ∈ AR), aS := (as)s∈S (aS ∈ AS).
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The following system of ordinary differential equations is used in this section to
simplify the notation in the main definitions:

u̇(t) = Φ(Z, u(t)), t > 0, (6.1)

where u = (u1, . . . um), Z = (Z1, . . . Zn), Zi = Σ(ui, θi, 0) for i ∈ N (i.e. the step
function with threshold θi > 0), the functions Φj : [0, 1]N × RM → R (j ∈ M) are
continuously differentiable in Z ∈ [0, 1]N for all u ∈ RM and affine in each vector
variable u ∈ RM for all Z ∈ [0, 1]N . These assumptions are fulfilled for System
(5.3) where ui is either xj or v(j)

ν . In fact, it is the only example which is of interest
in this paper. However, System (6.1) is used to keep the notation under control.

The assumptions imposed on System (6.1) are needed e. g. for the following
reason: if one replaces the step functions Σ(ui, θi, 0) with the sigmoid functions
Σ(ui, θi, qi) (qi ∈ (0, q0)), satisfying Conditions (A1)-(A3) from Section 3, then for
any u0 ∈ RM there exists the only solution u(t), t ≥ 0 to (6.1) satisfying u(0) = u0.
As qi > 0, the function Σ(ui, θi, qi) is smooth for all ui, so that the unique solution
does exist.

Assume again that all qi = 0. Then the right-hand side of System (6.1) can be
discontinuous, namely, if one or several ui (i ∈ N) assume the respective threshold
values ui = θi. Let Θ denote the set {u ∈ RM : ∃j ∈ N : uj = θj}. This set
contains all discontinuity points of the vector-function

f(Σ(u1, θ1, 0), . . . ,Σ(un, θn, 0), u1, . . . , um)

and consists of 2n open, disjoint subsets of the space RN . Inside each of these
subsets one has Zi = Bi, where Bi = 0 or Bi = 1 for all i ∈ N , so that System
(6.1) becomes affine:

u̇(t) = Φ(B, u(t)) := ABu(t) + fB , t > 0. (6.2)

Thus, if the initial values of the potential solution belong to one of these subsets,
then the local existence and uniqueness result can easily be proved. The global
existence problem is, however, complicated, at least in the case of black walls (see
Section 3), requiring a more involved technique (see [6]). This problem is not
addressed in the paper: global existence in the case of smooth Σ and local existence
in the case of the step functions are sufficient for what follows.

Below System (6.1) is studied under the assumption Zi = Σ(ui, θi, 0).
As in Section 3, it is convenient to use Boolean vectors, now n − dimensional.

The set of all Boolean vectors B = (B1, . . . , Bn) (where Bi = 0 or 1), according
to the general notation adopted in this section, will be denoted by {0, 1}N . The
mapping β : {0, 1}R → {0, 1}R acts on each component as follows: β(0) = 0;β(1) =
1 (remark that this mapping is given the same notation for all R).

The next three definitions can be found in [6].

Definition 6.1. Given a Boolean vector B ∈ {0, 1}N , the set B(B), which consists
of all u ∈ RM , where (Zi(ui))i∈N = β(B), is called a regular domain (or a box).

Note that any box is an open subset of the space RM , as Σ(θi, θi, 0) = 0.5 (ac-
cording to (A2)) excludes the value ui = θi. Remark also that only the coordinates
ui (n < i ≤ m) can attain any real value inside a box. In the delay system (3.6)
they correspond to the variables x2 and v2 which have no threshold. In the general
system, the variables ui with n < i ≤ m correspond to the variables which are
different from any yj , i.e. either to xj (if xj is ”delayed”), or to v(j)

ν with ν ≥ 2.
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Definition 6.2. Given a subset R ⊂ N,R 6= N and a Boolean vector BR ∈ {0, 1}R,
the set SD(θS , BR), which consists of all u ∈ RM , where β(BR) = (Zr(ur))r∈R and
uS = θS , is called a singular domain.

Any SD(θS , BR) is an open subset of the linear manifold {uN : uS = θS}.

Definition 6.3. Given a number j ∈ N and a Boolean vector BR ∈ {0, 1}R, where
R = N\{j}, the singular domain SD(θj , BR) is called a wall.

System (6.1) can be regarded, at least in some situations, as a switching dy-
namical system. Inside any regular domain, it is an affine system of differential
equations. Switching between domains can only occur if a trajectory hits a singu-
lar domain, usually a wall. But as it is demonstrated in [6], sliding modes can press
trajectories into singular domains of lower dimensions as well. It is also shown in
[6] that in such cases the dynamics cannot be described by a simple indication of
how the system switches between the regular domains.

As we already know, walls can be transparent, white and black. In the delay
case, walls can also be of a mixed type. That is why the properties of “blackness”,
“whiteness” and “transparency” can now only be described locally, i.e. without
using the focal points as in the non-delay case (see [6]).

For a given wall SD(θj , BR) and ν = 0, 1, let us put Bν := β(Bν), where
Bν

R = BR and B0
j = 0, B1

j = 1. Thus, the wall SD(θj , BR) lies between the box
B(B0), where Zj = 0, and the box B(B1), where Zj = 1.

This gives two different systems (6.2): for B = B0 and B = B1, respectively.
Let P be a point in a wall SD(θj , BR) and u(t, ν, P ) be the solution to (6.2) with
B = Bν , which satisfies u(0, ν, P ) = P (ν = 0, 1).

Definition 6.4. A point P ∈ SD(θj , BR) is called
“black”: if u̇j(0, 1, P ) < 0 and u̇j(0, 0, P ) > 0;
“white”: if u̇j(0, 1, P ) > 0 and u̇j(0, 0, P ) < 0;
“transparent”: if u̇j(0, 1, P ) < 0 and u̇j(0, 0, P ) < 0, or if u̇j(0, 1, P ) > 0

and u̇j(0, 0, P ) > 0.

Definition 6.5. We say that a wall SD(θj , BR) is black (white, transparent) if any
point in it, except for a nowhere dense set, is black (white, transparent).

Exceptional points correspond to the trajectories that are not transversal to the
hyperplane uj = θj , i. e. where u̇j = 0.

The definition means simply that black points are attracting, white points are
repelling, while at any transparent point the solution to (6.1) can be extended to
some neighborhood of this point. At any transparent point System (6.1) can be
rigorously characterized as a switching dynamical system. That is why it is easier
to study trajectories in the vicinity of a transparent (and of course, white) wall,
than trajectories that contain some black points.

7. Some general properties of the delay model

Let us again look at System (5.3) taking advantage of the general definitions
from the previous section. A challenge is to characterize walls in a more convenient
way.

For j ∈ N , R = N\{j}, put

ηj(x, v, Zj , BR) := −αjθj +χαjv+αj(c
(j)
0 +c(j)1 )x+c(j)0 (Fj(Zj , BR)−Gj(Zj , BR)x),
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where χ = 0 if the kernel (5.2) of the operator (5.1), with j instead of i, contains
only one term, namely, the weak generic delay kernel G1

αj
, and χ = 1 if the kernel

contains at least one term in addition to G1
αj

.
The following simple proposition can be obtained from Definition 6.4.

Proposition 7.1. For System (5.3), let P ∈ SD(θj , BR) and xj , v
(j)
2 be (two of)

the coordinates of P :

• if ηj(xj , v
(j)
2 , 0, BR) > 0 and ηj(xj , v

(j)
2 , 1, BR) < 0, then P is black;

• if ηj(xj , v
(j)
2 , 0, BR) < 0 and ηj(xj , v

(j)
2 , 1, BR) > 0, then P is white;

• if ηj(xj , v
(j)
2 , 0, BR) and ηj(xj , v

(j)
2 , 1, BR) have the same sign, then P is

transparent.
Note that the type of the point does not depend on its other coordinates.

Proof. We simply observe that, according to Remark 5.4, ηj(xj , v
(j)
2 , Zj , BR) coin-

cides with ẏj . The latter corresponds to u̇ in Definition 6.4, if (6.1) is replaced with
(5.3). �

Applying this proposition to System (3.7), it is easy to obtain the description of
the wall between the boxes B(1, 0) and B(1, 1), which was offered in Section 3.

Proposition 7.2. For System (5.3) with yj = xj (i.e. no delay in xj), the wall
SD(θj , BR) is black (white, transparent), once one of its points is black (white,
transparent).

Proof. Indeed, in this case c(j)1 = 0, c(j)0 = 1, xj = yj = θj , so that

ηj(xj , v
(j)
2 , Zj , BR) = Fj(Zj , BR)−Gj(Zj , BR)θj ,

which is independent of the point in the wall. �

Proposition 7.3. Assume that for System (5.3) with yj = xj (i.e. no delay in
xj), the wall SD(θj , BR) is black (white, transparent). Then for any delay operator
(5.1) (where i = j) with c

(j)
0 6= 0, System (5.3) with yj(t) = (<jx)(t) has at least

one black (white, transparent) point in the same wall, namely, any point P whose
coordinates (a part of coordinates, in fact) satisfy

xj = yj = θj

−θj + χv
(j)
2 + (c(j)0 + c

(j)
1 )θj = 0.

(7.1)

Proof. Let us first observe that (7.1) implies that

ηj(θj , v
(j)
2 , Zj , BR) = c

(j)
0 (Fj(Zj , BR)−Gj(Zj , BR)θj).

This means that at any point P , satisfying (7.1), the value of the function ηj

coincides (up to a positive factor) with the corresponding function in the non-delay
case. Due to Proposition 7.2, this gives then a point of the same type as in the
non-delay case.

To check that points satisfying (7.1) do exist, let us first put χ = 0. This gives
the case of the weak generic kernel, where c(j)0 + c

(j)
1 = 1. Thus, the second of the

equations becomes trivial, and one can take any point (7.1), satisfying xj = yj = θj .
If χ = 1, then the second equation is always solvable w.r.t. v(j)

2 . �
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Proposition 7.4. Given arbitrary i ∈ N , xi, yi ∈ R, the system

A(i)v(i) + αiπ
(i)xi = 0

v
(i)
1 = yi,

(7.2)

where A(j) and π(j) are defined by (5.4) and (5.6), respectively, has a solution
v
(i)
1 , v

(i)
2 , . . . , v

(i)
p if and only if xi = yi. In this case, the solution is unique. In

particular, any point P whose coordinates satisfy (7.2) with i = j, xj = yj = θj,
satisfies also the assumptions of Proposition 7.3.

Proof. It suffices to prove the following: if yi ∈ R, then System (7.2) has one and
only one solution, which necessarily satisfies xi = yi. Rewriting it as a matrix
equation gives 

c
(i)
0 + c

(i)
1 1 0 . . . 0

c
(i)
2 −1 1 . . . 0
c
(i)
3 0 −1 . . . 0
...

...
. . . . . .

...
c
(i)
p 0 . . . 0 −1



xi

v
(i)
2
...
v
(i)
p

 =


yi

0
...
0

 . (7.3)

Observe that the determinant of the matrix is equal to

c
(i)
0 + c

(i)
1 (−1)p−1 − c

(i)
2 (−1)p−2 + c

(i)
3 (−1)p−3 − · · ·+ (−1)p−1c(i)p

= (−1)p−1

p∑
ν=0

c(i)ν = (−1)p−1 6= 0.

To show that xi = yi, let us notice that adding together all the rows in the matrix
equation(7.3) (or, in other words, left-multiplying this equation by the row-vector
(1, 1, . . . , 1)) yields (c0 + c1 + · · ·+ cp)xi = yi. As c0 + c1 + · · ·+ cp = 1, one obtains
xi = yi. The last part of the proposition follows from Remark 5.4. �

This proposition will be used in the next section to compare singular stationary
points in the delay and non-delay cases.

Proposition 7.5. For System (5.3) with c(j)0 = 0 (the case of pure delay), the wall
SD(θj , BR) is always transparent.

Proof. If c(j)0 = 0, then ηj(x, v, Zj , BR) = αj(−θj + χv
(j)
2 + c

(j)
1 xj), which is in-

dependent of Zj . Thus, at no point the function ηj changes the sign, when Zj

switches from 0 to 1 or back. The subset, where ηj = 0, is a nowhere dense subset
of SD(θj , BR), if v(j)

2 is present (χ = 1). If not (χ = 0), then one has the case of
the weak generic delay kernel, where c(j)1 = 1. This again gives a nowhere dense
exceptional subset. �

8. Singular stationary points in the delay case

According to Proposition 5.5 any focal point belonging to the associated box will
necessarily be an asymptotically stable stationary point for System (5.3). Localiza-
tion of singular stationary points is a more delicate issue. A method of solving this
problem in the non-delay case was suggested in [4], [7], [8]. This section is devoted
to a generalization of this method to the delay model.
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Let us start with System (3.6), used previously as an example, and again look
at the wall between boxes B(0, 1) and B(1, 1). The wall is denoted by SD(θ1, 1).
The degradation rates in the example are γ1 = 0.6, γ2 = 0.9, the threshold values
are set to be θ1 = θ2 = 1.

First, let us assume that there is no delay in this system, i.e. that y1 = x1,
y2 = x2. Then the wall, where Z1 = 1 and x2 = θ2, is black (see Section 3).
We want to know if this wall contains hidden stationary points. The challenge is
discontinuity of the system for x2 = θ2. As Z1 = 1, x2 = θ2, System (3.6) becomes

ẋ1 = 1− Z2 − γ1x1

ẋ2 = 1− Z2 − γ2θ2.
(8.1)

Let us now replace the step function Z2 = Σ(x2, θ2, 0) by a smooth sigmoid function
Z2 = Σ(x2, θ2, q), q > 0, satisfying Conditions (A1)-(A3). If for small q > 0 the
resulting smooth system has a stationary point xq tending to x0 ∈ SD(θ1, 1) as
q → 0, then it is natural to call x0 a singular stationary point (SSP) for System
(8.1) and, thus, for the original system (3.6). This definition suggests also a method
of localizing SSP, however, rather impractical one. Fortunately, there exists a much
more efficient method suggested by E. Plahte et al. in the papers mentioned in the
beginning of the section. According to this method, one does not need to study the
system with q > 0 (which however is used for the justification purposes). Instead,
one needs to solve the linear system

1− Z2 − γ1x1 = 0
1− Z2 − γ2θ2 = 0

(8.2)

with two additional constraints: 0 < Z2 < 1 and x1 > θ1. The second constraint
says that the point should correspond to the chosen value of Z1 (which is 1). The
first constraint reminds us that the variable Z2 takes values in [0, 1]. However,
strict inequalities are required, because they are stable under small perturbations
of the parameters of the system, and this is used to justify the method.

¿From the second equation one obtains Z2 = 0.1, so that x1 = 1.5. This solution
satisfies the above constraints. This means that the point (1.5, 1) is SSP for the
system.

A similar procedure is used to check whether SSP is asymptotically stable. How-
ever, stability analysis is beyond the scope of this paper.

Let us now take a look at the delay case assuming, as before, that y1 = x1 (no
delay) and letting y2 be a three-term delay operator described right after System
(3.6). The wall is no longer black, but contains some black spots (see Proposition
7.3). Putting again Z1 = 1 gives System

ẋ1 = 1− Z2 − γ1x1

ẋ2 = 1− Z2 − γ2x2

ẏ2 = c0(1− Z2 − γ2x2) + α(c0 + c1)x2 − αθ2 + αv2,

v̇2 = αc2x2 − αv2,

(8.3)

as now y2, rather than x2, has a threshold.
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Let us proceed as in the non-delay case. The corresponding system of algebraic
equations is now given by

1− Z2 − γ1x1 = 0
1− Z2 − γ2x2 = 0

c0(1− Z2 − γ2x2) + α(c0 + c1)x2 − αθ2 + αv2 = 0
αc2x2 − αv2 = 0

(8.4)

with the same constraints as before: 0 < Z2 < 1, x1 > θ1 (remember that x2 and v2
have no thresholds). A straightforward calculation results in the following solution
Z2 = 0.1, x2 = 1, x1 = 1.5, v2 = c2, which satisfies the constraints. Notice that Z2

and x2 assume the same values as before. It is not a coincidence: any stationary
point for a delay system has to be a stationary point for the corresponding system
without delay. Notice also that if c0 6= 0, then this SSP is “black” due to Proposition
7.3.

Let us turn to the general case of the delay system (1.1) with the delay feed-
back operators given by (5.1). In the ”tricked” form it becomes (5.3). Our main
interest is SSP in one of the system’s singular domains, say SD(θS , BR), where S
is a nonempty subset of the set N = {1, 2, . . . , n}, and R := N\S. Assume that
we are given a Boolean vector BR being a mapping from R to {0, 1}. Put also
BR := β(BR), where β is defined right before Definition 6.1. In a sufficiently small
neighborhood of each point of the singular domain SD(θS , BR) the vector ZR al-
ways assumes the value BR regardless of the box, where trajectories currently are
contained. So, without loss of generality, we may assume that (5.3) becomes

ẋi(t) = Fi(ZS , BR)−Gi(ZS , BR)xi(t)

v̇(i)(t) = A(i)v(i)(t) + Π(i)(xi(t)) (t > 0)

yi = v
(i)
1 (i ∈ N),

(8.5)

where only ZS = (Zs)s∈S , Zs = Σ(ys, θs, 0) are active. Here A(i), v(i) are the same
as in (5.4), while Π(i) is defined by

Π(i)(xi) := αixiπ
(i) + c

(i)
0 fi(ZS , BR, xi), (8.6)

and π(i), fi(Z, xi) are described in (5.6).
The state space of System (5.3) is in the sequel denoted by Ω. It coincides, in

fact, with the ordinary Euclidean space of dimension n(p+ 1).

Definition 8.1. A point P 0 ∈ SD(θj , BR) is called a singular stationary point
(SSP) for System (5.3) if for any set of functions Σ(ys, θs, qs), s ∈ S, satisfying
(A1)-(A3) from Section 2, there exist a number ε > 0 and points P q, where q :=
qS = (qs)s∈S , qs ∈ (0, ε), such that

• The point P q ∈ Ω is a stationary point for System (8.5) with Zs =
Σ(ys, θs, qs) (s ∈ S);

• P q → P 0 as qs → +0 (s ∈ S).

Before formulating the main result of this section let us introduce some more
notation. As before, let us put FS = (Fs)s∈S , and in addition, GS = diag[Gs]s∈S ,
which is a diagonal |S| × |S|-matrix, where |S| is the number of elements in S. In
what follows, a crucial role is also played by the Jacobian ∂

∂ZS
FS(Z)− ∂

∂ZS
GS(Z)yS

corresponding to ẋs, Zs (s ∈ S). This is an |S| × |S|-matrix, too. The entry in
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the s-th row and the σ-th column of this matrix amounts ∂
∂Zσ

Fs(Z)− ∂
∂Zσ

Gs(Z)ys.
The determinant of this matrix at ZR = BR is denoted by JS(ZS , BR, yS) in the
sequel. In other words,

JS(ZS , BR, yS) = det
( ∂

∂ZS
FS(ZS , BR)− ∂

∂ZS
GS(ZS , BR)yS

)
= det

[ ∂

∂Zσ
Fs(ZS , BR)− ∂

∂Zσ
Gs(ZS , BR)ys

]
s,σ∈S

.

(8.7)

Theorem 8.2. Assume that the system of linear algebraic equations

Fs(ZS , BR)−Gs(ZS , BR)θs = 0 (s ∈ S)

Fr(ZS , BR)−Gr(ZS , BR)yr = 0 (r ∈ R)
(8.8)

with the constraints
0 < Zs < 1 (s ∈ S)

Zr(yr) = Br (r ∈ R)
(8.9)

has a solution Z̄S := (Z̄s)s∈S, ȳR := (ȳr)r∈R, which, in addition, satisfies

JS(Z̄S , BR, θS) 6= 0. (8.10)

Then for any delay operators <i (i ∈ N), given by (5.1), there exists a singular
stationary point P 0 ∈ SD(θS , BR) for System (5.3). This point is independent of
the choice of the operators <i. The coordinates x0

i , y
0
i , v

(i),0
ν (i ∈ N, ν = 1, . . . , p)

of this point satisfy

(1) x0
r = y0

r = ȳr, Zr(y0
r) = Br (r ∈ R);

(2) x0
s = y0

s = θs (s ∈ S);
(3) A(i)v(i),0 + αiπ

(i)x0
i = 0 (i ∈ N).

Proof. The idea of the proof (suggested in [6]) can be described as follows. First of
all, we have to replace the step functions Zs = Σ(ys, θs, 0) by the smooth sigmoid
functions Σ(ys, θs, qs), qs > 0. Then, using the inverse sigmoid functions, we arrive
at a system of functional equations w.r.t. Zs which is resolved by the implicit
function theorem. This gives the values of Zs depending on the vector parameter
q = qS (qs ≥ 0). Then we restore, step by step, the other variables, namely yq, xq

and finally, v(i),q
ν . All of them depend continuously on the parameter q. Letting qs

go to zero gives SSP in the wall SD(θS , BR).
To implement this program let us first rewrite the stationarity conditions for the

variables yS in the matrix form. It gives

FS(ZS , BR)−GS(ZS , BR)yS = 0, (8.11)

which is an equation in RS . Originally, i. e. in (8.8), it was assumed that yS = θS .
If the step functions are replaced by smooth sigmoid functions, then this equality
may be violated.

Let ZS = Σ(yS , θS , q) := (Σ(ys, θs, qs))s∈S , where qs > 0. Due to Property (A1)
from Section 2 the inverse function yS = Σ−1(ZS , θS , q) is continuously differen-
tiable with respect to Zs ∈ (0, 1), s ∈ S. Putting it into (8.11) produces

FS(ZS , BR)−GS(ZS , BR)Σ−1(ZS , θS , q) = 0. (8.12)
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The Jacobian of the left-hand side with respect to ZS is equal to
∂

∂ZS
FS(ZS , BR)− ∂

∂ZS
GS(ZS , BR)Σ−1(ZS , θS , q)

+ (FS(ZS , BR)−GS(ZS , BR)yS)
∂

∂ZS
Σ−1(ZS , θS , q).

(8.13)

According to Properties (A1)-(A2) from Section 2 and assumptions on F,G listed
in Introduction, this is a continuous function w.r.t. (ZS , q), if 0 < Zs < 1, 0 <
qs < q0. We let now q go to zero (i.e. to the zero-vector) and observe that for
any Zs, 0 < Zs < 1, s ∈ S the last Jacobian in (8.13) goes to the zero matrix in
view of Property (A3) from Section 2, while Σ−1(ZS , θS , q) → θS due to Property
(B1). In both cases the convergence is uniform on compact subsets of the set
{ZS : 0 < Zs < 1, s ∈ S}. Thus, the Jacobian becomes

∂

∂ZS
FS(ZS , BR)− ∂

∂ZS
GS(ZS , BR)θS (8.14)

in the limit. The uniform convergence of the Jacobian as qS → 0 implies that the
left-hand side of Equation (8.12) is, in fact, continuous in (ZS , q) and continuously
differentiable w.r.t. ZS on the set 0 < Zs < 1, 0 ≤ qs < q0 (s ∈ S). Remember that
the solution Z̄S of System (8.8) satisfies the constraints 0 < Zs < 1, too. Moreover,
at ZS = Z̄S , q = 0 the determinant of the matrix, given by (8.14), is equal to
JS(Z̄S , BR), defined by (8.7), i.e. this matrix is invertible by (8.10). This allows for
using the implicit function theorem yielding a continuous (in q) (vector-)function
Zq

S , where 0 ≤ qs < ε for all s ∈ S and some ε > 0. This function satisfies Z0
S = Z̄S ,

so that, in particular, 0 < Z0
s < 1 for all s ∈ S.

Now, put
xq

s = yq
s = Σ−1(Zq

s , θs, qs) (s ∈ S)

xq
r = yq

r = Fr(Zq
s , BR)G−1

r (Zq
s , BR) (r ∈ R)

(8.15)

and for an arbitrary i ∈ N consider the following system for the auxiliary variables
v(i):

A(i)v(i) + Π(i)xq
i = 0

v
(i)
1 = yq

i ,
(8.16)

where
Π(i)(xq

i ) := αix
q
iπ

(i) + c
(i)
0 fi(Z

q
S , BR, x

q
i )

and
fi(Z

q
S , BR, x

q
i ) = (Fi(Z

q
S , BR)−Gi(Z

q
S , BR)xq

i , 0, . . . 0)T

(see (8.6)). By construction, Fi(Z
q
S , BR)−Gi(Z

q
S , BR)xq

i = 0 for all i ∈ N , so that

A(i)v(i) + αix
q
iπ

(i) = 0

v
(i)
1 = yq

i .
(8.17)

This is a system of the form (7.2), where xq
i = yq

i . Applying Proposition 7.4 gives
the only solution v(i),q to (8.17).

By this, all the coordinates of the stationary point P q for qs > 0, s ∈ S are
calculated. Let now q → 0. It is already shown that Zq

S → Z0
S . Using again

Property (B1) gives

y0
S := lim

q→0
yq

S = lim
q→0

Σ−1(Zq
S , θS , q) = θS .
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This and (8.15) justify also the equalities

x0
S := lim

q→0
xq

S = lim
q→0

yq
S = θS and y0

R := lim
q→0

yq
R = lim

q→0
xq

R := x0
R.

Finally, v(i),q → v(i),0 which solves Equation (8.17), where x0
i = y0

i for all i ∈ N .
By this, the point P 0 is constructed as a limit point for P q, q → 0, the latter being
stationary points for the perturbed system (8.5) with Zs = Σ(ys, θs, qs) (qs > 0,
s ∈ S).

To show that P 0 ∈ SD(θS , BR), one has to check that yS = θS and that
ZR(yR) = BR. The first equality is already proved. To verify the other let us
simply observe that by construction,

y0
r = Fr(Z0

S , BR)G−1
r (Z0

S , BR) = Fr(Z̄S , BR)G−1
r (Z̄S , BR).

On the other hand, from the second of the equations (8.8) it follows that ȳr =
Fr(Z̄S , BR) ×G−1

r (Z̄S , BR). Hence, y0
r = ȳr for all r ∈ R. At the same time, ȳR

satisfies, by assumption, the second constraint in (8.9). Therefore ZR(y0
R) = BR,

so that, indeed, P 0 ∈ SD(θS , BR). The theorem is proved. �

Remark 8.3. In the non-delay case, the definition of SSP for System (1.1), where
both production Fi and degradation Gi are regulated (i.e. dependent on Z), as well
as the described method of localizing SSP in singular domains were suggested and
justified by E. Plahte et al. in [8] for the logoid functions and in ([6]) for the Hill-
like sigmoids. The fact that SSP are independent of the choice of approximating
sigmoids is natural and was observed in the above works.

Remark 8.4. Theorem 8.2 shows, in particular, that stationary regimes are inde-
pendent of the choice of delays (at least in the case of the delay operators (5.1)).
This statement is evident in the smooth case, but in the case of SSP requires some
work, as the definition of a stationary point in this case is not straightforward.

Conclusion. The main results of the paper can be summarized as follows:

(1) a framework for analysis of gene regulatory networks with time-delay and
Boolean-like interactions, which is based on a modification of the linear
chain trick, is offered;

(2) the notion of a singular stationary point in the time-delay case is introduced
and a method of localizing such points is justified;

(3) it is shown that singular stationary points are the same for systems with
or without time-delays.
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