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MATHEMATICS AND FISHERIES: MATCH OR MISMATCH?

JON T. SCHNUTE

Abstract. Mathematics plays a major role in contemporary fisheries manage-

ment. Stock assessments often depend on elaborate models used to set catch

levels and address other policy objectives. In recent years, the collapse of var-
ious important fish stocks has caused some critics to suggest that mathemati-

cal models actually obscure the truth by narrowing scientific understanding to
the realm of quantifiable events. In the words of one fisherman, “Mathematics

has highjacked the definition and position of real science.” In this paper, I

present a number of typical fishery models, examine their limitations, discuss
controversies about their use, and explore possible alternatives. I draw on

examples from economics and investment theory to illustrate the problem of

making credible predictions about an uncertain future. The constraints of the
real world, where people care deeply about policy consequences, have altered

my scientific perspective as an applied mathematician. This paper reflects

the evolution of thought that has accompanied my experience working for 28
years at the Pacific Biological Station in Nanaimo, B.C., the host city for this

conference.

1. Introduction

Mathematics offers a wonderful tool for speculation about biological principles
that govern animal populations. Most sensible rules for birth, growth, movement,
and death can be stated mathematically. Ideally, theoreticians can use these as-
sumptions to derive theorems that characterize model behavior. If theory seems
intractable, computer simulations allow scientists to explore a model’s properties.
Unfortunately, even the most brilliant analysis leaves a nagging question unresolved.
Does this set of rules adequately describe how the world actually works?

Fishery science often depends heavily on mathematical methods for inferring
the state of fish stocks from limited available data. Fishermen care about fish, not
theorems, and they can be highly critical of models that fail to capture the biological
world as they see it. An optimistic theory that predicts a high birth rate becomes
meaningless if, in fact, these births do not take place. Similarly, a pessimistic
forecast that proves wrong can also bring mathematical models into disrepute.
Speaking in the context of a collapsed fishery, the fisherman James O’Malley [16]
concluded that “in our attempt to comprehend the oceans . . . mathematics has
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been elevated to a status which suppresses knowledge and actually detracts from
our efforts to acquire knowledge.”

In this paper, I examine the role of mathematics as a tool for making decisions
about the real world. Case studies from economics and fishery management suggest
reasons to apply mathematics with caution. Statistics plays a key role in financial
and fishery models, where observed data never conform to a deterministic model.
In practice, the interpretation of a data set can vary greatly with the choice of
assumptions about statistical error. A detailed analysis of one fish stock illustrates
the process commonly used to estimate the unknown total biomass from available
data. I conclude by discussing a recent shift in fishery research from estimation
methods to robust decision algorithms that perform well across a broad spectrum
of possible models.

2. Investments and fisheries

In 1973, a new mathematical formula (Black and Scholes [1]; Merton [14]) rev-
olutionized the world of finance by providing a rational system for setting prices
in the options market. Essentially, an option contract gives its owner the right,
without obligation, to buy or sell an asset at a specified future time and price. A
call option gives the right to buy, whereas a put option gives the right to sell. In
practice, traders want to know how to assign value to such contracts. For example,
if a stock has current price S, what is a fair price C for a call option to buy the
stock at the future time T and specified price K (the so-called strike price)? If the
prevailing interest rate is r and the stock price moves log-normally in continuous
time with standard deviation σ (a Wiener process), then the famous Black-Scholes
formula gives the call price
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The Internet (e.g., [23]) provides much more information and various mathematical
proofs.

The formula (2.1) solves an important problem in investment theory and has
the practical advantage that it can be implemented easily on the trading floor.
Mathematically, it follows from a continuous-time stochastic model. In 1997, af-
ter Black had died, Scholes and Merton won the Nobel prize in economics “for a
new method to determine the value of derivatives”, including this result. Not sur-
prisingly, investment strategists looked for opportunities posed by such an elegant
theory.

Lowenstein [12] gives an engaging account of the most famous example, Long-
Term Capital Management (LTCM). The name “hedge fund” derives from the
expression “to hedge one’s bets”, i.e., to bound risk like a common hedge bounds a
garden [12, p. 25]. A hedge fund typically bets on the spread between current and
future prices, where the future option usually sells at a discount and the spread
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Figure 1. Gross value of $1 invested in Long-Term Capital Man-
agement, March 1994 to October 1998 (green line; data from a
graph by Lowenstein [12]). The blue curve represents an exponen-
tial growth rate that compounds to 40% per year (proportional to
1.4t with time t in years).

shrinks over time. In this scenario, an investor is protected from the risk of market
fluctuations because the two prices generally move in tandem while the spread
between them declines.

In February 1994, armed with a powerful mathematical theory and supported
by the now-famous economists Merton and Scholes, the experienced investment
manager John Merriweather started LTCM with assets of $1.25 billion contributed
by wealthy investors [12, p. 39]. For about four years following its inception, the
investment grew at an astonishing rate that kept it above a steady exponential
growth curve of 40% annually (Figure 1). Managers achieved this growth using
highly leveraged betting on assets purchased with loans from major banks. The
fund’s capital value, $4.7 billion at the start of 1998, had to support borrowed
assets of about $100 billion [12, p. xix–xx]. Furthermore, in Lowenstein’s words,
LTCM “had entered into thousands of derivative contracts, which had endlessly
intertwined it with every bank on Wall Street. These contracts, essentially side
bets on market prices, covered an astronomical sum – more than $1 trillion worth
of exposure.”

According to the model that underlies (2.1), asset values should move lognor-
mally with a standard deviation σ

√
δt during a small time period δt. Theoretically,

a huge change in a short time should be nearly impossible, but extreme market
conditions sometimes cause the model to fail. On August 17, 1998, Russia de-
valued the ruble and declared a moratorium on its Treasury debt of about $13.5
billion [8]. That event and other market crises caused LTCM’s equity to drop much
more rapidly than the most extreme model predictions. On September 23, 1998,
it appeared that the fund might not survive another day [12, p. xx]. Faced with
the prospect that a default by LTCM might trigger market panic and collapse, the
Federal Reserve Bank of New York organized a bail-out loan of $3.6 billion. A
consortium of 14 major firms now had the power to oversee all fund transactions.
The initial investors, including Merriweather, Merton, and Scholes, lost millions of
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Figure 2. Annual catch (kt = 106 kg) from two Canadian fish-
eries. A. British Columbia herring (Clupea pallasi), where red
lines highlight two periods: (1930-1966) historical expansion along
the Pacific coast and (1978-present) current stable fishery with an
annual catch near 30 kt. Data from Jake Schweigert, Pacific Bi-
ological Station, Nanaimo, B.C. B. Newfoundland northern cod
(Gadus morhua) in area 2J/3KL, where red ‘x’ symbols show an-
nual quotas imposed since 1973. Data from [11, Table 1, p. 63–64].

dollars. LTCM repaid its loans by December, 1999, and quietly closed down a few
weeks later [15].

This cautionary tale gives applied mathematicians ample opportunity to specu-
late about the application of theory to real world problems. Lowenstein [12] paints
a vivid picture of the players involved, and two related TV programs ([9], [15]) give
us an opportunity to hear their views. For example, Myron Scholes speculated [15]
that the difficulties with LTCM didn’t come only from the models. “It could be
inputs to the models, it could be the models themselves, it could be a combination
of many things. And so just saying models were flawed is not necessarily the right
answer.” Paul Samuelson, winner of the 1970 Economics Nobel Prize for his analyt-
ical work in the field, observed [15] that “There is a tempting and fatal fascination
in mathematics. Albert Einstein warned against it. He said elegance is for tailors,
don’t believe in something because it’s a beautiful formula. There will always be
room for judgment.” U.S. Federal Reserve Chairman Alan Greenspan asked [15]
“How much dependence should be placed on financial modeling, which for all its
sophistication can get too far ahead of human judgment?” Norbert Wiener, who
invented the continuous-time stochastic process that bears his name and underlies
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the Black-Scholes formula, regarded skepticism as a professional obligation [22]:
“One of the chief duties of a mathematician in acting as an advisor to scientists is
to discourage them from expecting too much of mathematicians.”

The shared word stock curiously links financial and fishery management. In the
investment world, a stock has a current price S known from the marketplace itself.
By contrast, a fish stock has a current biomass B that generally is not known and
may be impossible to measure directly. Consequently, biological models to predict
future values B have even greater uncertainty than financial models for predicting
S. Like financial managers who must decide how much stock to buy, sell, or hold,
fishery managers must decide how much stock biomass to allow as catch. The
same urge to use quantitative methods prevails in both worlds. Unfortunately,
like financial models, fishery management models can fail to represent the world
adequately.

Figure 2 tells the tale of two Canadian fisheries, one successfully managed for
recovery and the other not. In the first case (Figure 2A), the British Columbia
herring fishery experienced a historical period of expansion, followed by severe
regulations to permit stock recovery. For the last two decades, under restrictive
management, the fishery has sustained a steady catch at a fraction of historical
levels. Because higher annual catches might only drive down market prices, the
industry finds economic reasons to agree with current regulations. Furthermore,
herring provide food for other commercial fish species, and stakeholders generally
recognize the importance of a robust herring population for other Pacific fisheries.

In the second case (Figure 2B), the Newfoundland cod fishery also experienced
a historical period of expansion, followed by quotas to limit the catch. However,
seemingly moderate catch levels during the 1980s still did not allow the population
to recover, and the fishery was closed in 1992. Evidence suggests that the population
still hasn’t recovered enough to allow more than very low levels of catch. Lilly et
al. [11] discuss possible reasons (still controversial) for this fishery collapse. Why
couldn’t historical catch levels be maintained? Why hasn’t the stock recovered like
Pacific herring? According to one scenario, fishery management did not respond
quickly enough to curtail a fishery on a population becoming stressed by changing
ocean conditions in the north Atlantic.

Some people saw the problem coming and advised caution, just as some econo-
mists had expressed concerns for the levels of risk prevailing at LTCM near the end
of 1997. But fishery and financial management always entail risk, and it’s tempting
to suppose that things won’t change too dramatically in a short time. Rapid climate
change, like a Russian default on bonds, may not come up on the radar screen
until it’s too late. Mathematical models, conditioned to past performance, tend to
handle regime shifts poorly. Myron Scholes expressed frustration with this problem
at LTCM [15]: “In August of 1998, after the Russian default, . . . all the relations
that tended to exist in a recent past seemed to disappear.”

3. Fishery models

Like economists seeking formulas for option prices, fishery scientists try to find
sensible rules for setting catch quotas. Figure 3 shows the logical structure of a
typical fishery model. An unknown biomass follows a dynamic process governed
by unknown parameters and the removal of a known catch. Natural variability
enters the dynamics as stochastic process error. Other known data come from
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Figure 3. A stochastic, dynamic fishery model. Colors indi-
cate the role of model components: theory (blue), observed data
(green), and unknown quantities (red).

biological observations, such as surveys and samples of the catch. An observation
model connects these data to the biomass, subject to measurement error, which
introduces another source of statistical noise. Practical applications depend on a
key idea related to the color codes in Figure 3: Use the blue theory to estimate
the unknown red quantities from the known green observations.

The simple deterministic model in Table 1 illustrates how this procedure might
actually work. Imagine a fixed stock of fish altered only by the removal of catch
Ct at various times t. Let Bt denote the biomass available prior to the catch Ct,
and suppose that a survey method exists to measure a biomass index It propor-
tional to Bt through an unknown coefficient q. (For example, the survey might use
acoustic sensors to produce a signal proportional to biomass.) The index data It at
times t = 1, 2 correspond to the two observation equations (T1.2)–(T1.3), and the
transition of biomass Bt from t = 1 to t = 2 gives the dynamic equation (T1.1).
In this example, only a few mathematical symbols define the dynamic (=,−) and
observation (=,×) models. Three equations relate three unknowns (B1,B2,q) to
three observations (C1,I1,I2). Simple algebra gives the estimates (T1.4)–(T1.6) of
unknown reds in terms of known greens.

The depletion model in Table 1 can readily be extended to include multiple time
steps t = 1, . . . , n, and the equations then imply the general result

It = qB1 − q
t−1∑
i=1

Ci (3.1)

for each observation It, where by definition
∑0

i=1 Ci = 0 when t = 1. In this
formulation, the model has only two unknowns (q,B1), regardless of the number n
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Table 1. A simple fishery depletion model with deterministic
equations for dynamics and measurement. Three data values
(catch C1 and biomass indices I1, I2) determine three unknowns
(parameter q and biomass levels B1, B2).

Dynamics: B2 = B1 − C1 (T1.1)

Observations: I1 = q×B1 (T1.2)

I2 = q×B2 (T1.3)

Estimates: q =
I1 − I2

C1
(T1.4)

B1 =
I1

I1 − I2
C1 (T1.5)

B2 =
I2

I1 − I2
C1 (T1.6)

of observed time steps. An estimate of B1 gives biomass estimates

Bt = B1 −
t−1∑
i=1

Ci (3.2)

for all future times t > 1. The overdetermined system (3.1) of n equations with
two unknowns cries out for statistical analysis, such as linear regression of It on
the cumulative catch

∑t−1
i=1 Ci. But exactly how should we introduce error into the

model that underlies (3.1)? If we think that immigration and emigration randomly
alter the biomass Bt, we could introduce process error into the dynamics Bt+1 =
Bt − Ct. If we think that our measurements It aren’t exactly proportional to
Bt, we could (and almost certainly should) introduce measurement error into the
observation equation It = qBt. Such choices correspond to the decision by Black,
Scholes, and Merton to use a Wiener process for modeling stock price fluctuations.
In some cases, different choices can dramatically alter the analysis.

Figure 4 illustrates this issue for the problem of fitting a straight line through
four data points that lie on the corners of a rectangle in the xy-plane [19]. The
estimated regression line is horizontal if the error occurs in y, but vertical if the
error occurs in x. Because a line must have slope somewhere between 0 (horizontal)
and ∞ (vertical), this example shows that the perceived signal depends entirely on
the definition of noise. By analogy, think of watching 3D movies with polaroid
glasses. The two polarized axes define separate images for the left and right eyes.
Noise for the right eye is signal for the left, and vice-versa. Seemingly innocent
choices of error in biological models sometimes disguise other interpretations of the
data, even given the same deterministic model (e.g., a straight line in Figure 4).

Realistic fishery models involve much more complexity and data than the sim-
ple prototypes (T1.1)–(T1.3) or (3.1)–(3.2). For example, Figure 5 shows results
obtained from a model of a particular stock of Pacific ocean perch (POP) on the
coast of British Columbia, Canada [20]. The analysis uses three main data sets:
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Figure 4. Schnute’s [19, Figure 1] demonstration of the impor-
tance of noise in stochastic models. Four observed data points
(green circles) lie at the corners of a rectangle. If error occurs in
the y coordinate, the data determine a horizontal regression line
(solid red) through two observed mean values y = 2 (blue circles).
If error occurs in the x coordinate, the data determine a verti-
cal regression line (broken red) through two observed mean values
x = 3 (blue diamonds).

the annual catch Ct, intermittent biomass index measurements Itj obtained in var-
ious years t by two methods (j = 1, 2), and sample proportions pat of fish in the
catch that have age a in year t. Historical data also give reasonable values for the
weight wa of a fish at age a. POP start to appear in the fishery at recruitment
age k = 7, although the data suggest that young fish are less vulnerable to the
gear than older fish. The model tries to capture this phenomenon with unknown
selectivity coefficients βa that increase steadily toward 1 as a→∞.

Internally, the model keeps track of the number Nat of fish at age a in year t
prior to the fishery. From this matrix, various annual population characteristics
can be computed, including

recruitment: Rt = Nkt , (3.3)

total biomass: B′
t =

∑
a≥k

waNat , (3.4)

selected biomass: Bt =
∑
a≥k

βawaNat , (3.5)

selected proportion: uat = βaNat/
∑
a≥k

βaNat . (3.6)

Given suitable definitions of measurement error, the index data Itj should be pro-
portional to the selected biomass Bt with unknown coefficients qj (j = 1, 2), and
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Figure 5. Annual estimates of biomass (kt = 106 kg) for a stock
of Pacific ocean perch (POP, Sebastes alutus) assessed in [20]. The
model uses historical data on catch (kt, green bars) and two survey
indices with distinct coefficients qj (j = 1, 2) in (3.7). Observed
index values Itj are scaled to biomass levels Itj/qj for j = 1 (blue
circles) and j = 2 (blue triangles). The biomass vulnerable to
the fishery (solid red line, Bt in (3.5)) is smaller than the total
biomass (dotted line, B′

t in (3.4)), a feature represented in the
model by selectivity coefficients βa that increase steadily to 1 with
increasing fish age a.

the observed proportions pat should match the internal proportions uat. Thus, the
model’s observation component (Figure 3) involves stochastic counterparts of the
deterministic equations

Itj = qjBt , (3.7)

pat = uat . (3.8)

Figure 5 shows a fishery similar to the one portrayed in Figure 2A. Large histori-
cal catches Ct have been curtailed by regulation to a relatively modest steady catch
during the last two decades. According to the model, historically large biomass lev-
els Bt were driven down by large catches in the 1960s and 1970s, but have recovered
somewhat after the catch was reduced. Sporadic surveys lend support to this sce-
nario, but the survey index data deviate substantially from the biomass trend.
(Note the scatter of blue points around the solid red line.) A recent slow decline in
biomass stems from low recruitment in the 1990s, as discussed below.

The observed age data pat, portrayed as a bubble plot [17] in Figure 6A, display
a pattern with several diagonal lines of large bubbles. These correspond to episodes
of high recruitment; for example, a particularly strong cohort proceeds from ages
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Figure 6. (A) Observed and (B) estimated age distributions pat

and uat of the population in Figure 5. Circular areas represent rela-
tive age proportions within each year, where

∑
a pat =

∑
a uat = 1

for each t. Solid lines show the annual mean age. The circle at the
top of each column represents a “plus class”, i.e., fish of the indi-
cated age or older. An improved ageing method in 1977 gave better
discrimination to ages in the range 17 to 29. Observed data in (A)
show an abrupt increment in age resolution. Model estimates in
(B) show a more gradual change as the plus class increases annually
from age 17 in 1963.

7 to 24 during the years 1983–2000. POP live long enough to spawn many times.
Ocean conditions and other factors determine the success of each annual spawning
event, which occasionally pays off very well. Like good financiers, the fish dis-
tribute their genetic investments across time, taking advantage of occasional high
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returns. The estimated proportions uat show this cohort effect even more strongly
(Figure 6B). Each diagonal has small proportions of fish near the recruitment age
k = 7, due to low selectivity by the fishery. Natural and fishing mortality also cause
the proportions to decline as fish reach advanced ages.

For brevity, I have omitted many technical details in this discussion of the POP
example. The model handles process error (Figure 3) by allowing independent re-
cruitments Rt for each cohort, with some constraints on their variability and serial
correlation. Stochastic versions of (3.7)–(3.8) introduce measurement error. As
in the dilemma of Figure 4, model definition here requires balancing recruitment
variability with survey observation error. The scenario portrayed in Figures 5–6
involves estimates of nearly 60 independent unknown quantities from which many
others (such as the matrices Nat and uat) are calculated. I haven’t even men-
tioned the statistical properties of all these estimates, which might be assessed
using computer-intensive algorithms from Bayesian statistics. Interested readers
can find a complete model description in [20].

Like most fishery age-structured models, the POP model has an essential sim-
plicity at its core. Each cohort (represented as a diagonal of bubbles in Figure 6A)
experiences successive depletion from annual removals by the fishery, analogous to
the simple model in Table 1. Combining removals with the effects of selectivity
and natural mortality gives the pattern in Figure 6B, where suitable recruitment
parameters scale the cohorts sizes relative to each other. Despite this simplic-
ity, however, a complete mathematical statement of the stochastic model and its
likelihood functions occupies several pages dense with equations and notation [20,
p. 23–29].

When scientists meet to debate the legitimacy of such a model, the discussion can
become highly technical, often using terminology that alienates fishermen and other
stakeholders. Furthermore, analysts typically invest substantial effort in writing
computer code, running various analyses, producing tables, and crafting figures.
All this hard work can generate resistance to new ideas, which might be difficult to
include in an otherwise tidy framework. Like the legendary sculptor Pygmalion who
fell in love with his own ivory statue, analysts can become attached to their models.
Picture a cartoon scenario at LTCM in August, 1998: “Sir, now that Russia has
defaulted on its bonds, should I trash the model that made 40% annually and start
again?”

Skeptical fisherman James O’Malley sensed this problem in his claim [16] that
“mathematics has been elevated to a status which suppresses knowledge and actu-
ally detracts from our efforts to acquire knowledge.” In his view, the problem is
“not mathematics per se, but the place of idolatry we have given it. . . . Like any
priesthood, it has developed its own language, rituals and mystical signs to main-
tain its status, and to keep a befuddled congregation subservient, convinced that
criticism is blasphemy. Late at night, of course, many members of the scientific
community will confess their doubts. But in the morning, they reappear to preach
the catechism once again.”

I can easily find late-night reasons for doubts about the POP model. It represents
only one stock along the British Columbia coastline, chosen for the availability of
historical survey data. The precise spatial definition of this stock is somewhat
arbitrary, and its genetic extent remains uncertain. Although POP have a complex
spatial distribution associated with geological features of the continental slope, the



154 J. T. SCHNUTE EJDE/CONF/12

Management

Strategy

Quota

Data

Biological

Dynamics

Figure 7. Robust management strategy. Uncertain biological
dynamics generate observed data from which a management strat-
egy, specified as a mathematical algorithm, determines the next
allowable quota. This decision influences the dynamics during the
next management cycle. The future quota remains unknown until
calculated from the data. What algorithms define sensible man-
agement policies over a broad spectrum of potential dynamic sys-
tems?

model includes no spatial structure at all. Furthermore, the fishery that captures
POP also removes significant amounts of about 100 other species, and smaller
amounts of many others. Perhaps the most reassuring message comes directly from
the catch data in Figure 5. After a history of much higher catches, modest removals
have been sustained for more than two decades.

4. Decisions and uncertainty

In economics, risk is quantifiable, but uncertainty is not. For example, if a pro-
cess can follow one of three scenarios A, B, or C, then risk analysis requires knowing
the corresponding probability (pA, pB , pC) for each scenario, where pA+pB+pC = 1.
Casinos and lotteries, with games that have known outcomes and probabilities, can
exploit risk analysis to the fullest. Investors and fisheries managers rarely have the
benefit of such clear understanding. Typically, they face uncertainty with unknown
event probabilities and an incomplete list of potential scenarios. For example, fu-
ture events might actually follow scenario X not contemplated when formulating
policies to deal with A, B, or C.

Mathematics proceeds from assumptions to conclusions, and a mathematical
model necessarily describes a chosen set of scenarios. The estimation model in
Figure 3 limits data interpretation to a specified framework of dynamics and obser-
vation. In practice, the analyst usually looks at several alternative models to see
how much the interpretation changes. But perhaps this entire approach is wrong.
If, for example, the goal is to set a catch quota for the next year, then why worry
about the profusion of estimates that spill out of a complicated analysis like the
one discussed for POP? All we really need is a formula or algorithm to calculate
the (currently unknown) future quota from the observed data.

Figure 7 portrays the decision problem from this point of view. We want a
management strategy that is robust to an unknown biological system. For example,
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suppose that we seek to operate a fishery based on a time series of known catches
Ct and biomass indices It. Then what function F should we use to set the catch
quota

Qn+1 = F (C1, . . . , Cn, I1, . . . , In; θ) (4.1)

for time t = n+1, given data up to time t = n? This formulation allows a specified
parameter vector θ to configure the rule for particular circumstances and policy
objectives. For example, the recruitment age might be used to set time lags in the
definition of F . Other components of θ might deal with risk tolerance, margins for
error, and catch stability. When this policy is implemented in year n+1, the actual
catch Cn+1 normally equals the quota, but conceptually Figure 7 and formula (4.1)
admit the possibility of implementation error with Cn+1 6= Qn+1.

Fishery literature in recent years (e.g., [5] and [18]) has begun to investigate
problems similar to the one posed in Figure 7. Unlike optimal control theory, this
research seeks pragmatic controls that work sensibly across a spectrum of biological
models, where the actual model remains unknown. For example, the policy (4.1)
might simply be to stay the course:

Qn+1 = Cn , (4.2)

as has happened recently in the herring and POP fisheries (Figures 2A and 5).
Under what circumstances would this be a good or bad policy? Furthermore,
could some really clever algorithm (4.1) guide fishery management toward a policy
robust to nature’s unpredictability? As illustrated in a different context by the
Black-Scholes formula (2.1), a standard calculation based on a relatively simple
model might give acceptable results most of the time.

Fishery scientists use simulation models with realistic biological complexity to
evaluate management strategies like (4.1) and tune the control parameters θ to meet
management objectives [18]. In practice, each new year n provides an opportunity
to review and update the strategy in light of new information. This allows the
process to be guided by human judgment and reduces the risk of disaster, but no
model can reduce that risk to zero. Like financial markets altered by a crisis, nature
sometimes changes the perceived “rules” governing fish population dynamics [21].

During the last few decades, the discovery of chaotic behavior has stimulated
extensive research into nonlinear dynamic models. May [13] characterizes the spirit
of this revolution in the 1970s by quoting a line from the play Arcadia by Tom
Stoppard: “It’s the best possible time to be alive, when almost everything you knew
is wrong.” The boundary between determinism and chance became blurred when
scientists realized that deterministic models from an orderly Newtonian tradition
could generate highly complex trajectories. Kuznetsov [10] illustrates the depth
and variety of results that have emerged in this field. Brauer and Castillo-Chávez
[2] incorporate some of these developments in their modern treatment of biological
models. By discussing the historical and conceptual context for each model, they
also guide readers toward appropriate model application.

While mathematicians developed the new science of chaos theory, statisticians
began exploring new approaches to data analysis made possible by the computer
revolution. For example, in 1979 Efron [6] speculated that computationally inten-
sive methods might bypass the need for statistical theory. In their textbook written
14 years later, Efron and Tibshirani [7, p. xiv] explain that “The traditional road
to statistical knowledge is blocked, for most, by a formidable wall of mathematics.
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Our approach here avoids that wall. The bootstrap is a computer-based method of
statistical inference that can answer many real statistical questions without formu-
las.” This technique belongs properly to frequentist statistics, in which parameters
have actual values in nature and their estimates inherit a distribution from the
data. The bootstrap algorithm involves resampling the data with replacement and
generating an empirical distribution of parameter estimates.

A similar computational revolution has also taken place in Bayesian statistics,
which uses probability distributions to describe subjective uncertainty in parameter
values. Starting from an initial prior distribution, new data determine a revised
posterior distribution. The proposed algorithms use clever methods to generate a
random sample of parameter values from the posterior, and this sample represents
the analyst’s current understanding. Clifford ([3], p. 53) emphasized the practi-
cal impact of one sampling method: “. . . from now on we can compare our data
with the model that we actually want to use rather than a model which has some
mathematically convenient form. This is surely a revolution”.

To some extent, these historical developments have drawn mathematicians into
two camps. Using deliberate oversimplification, I’ll call them theorists and realists.
In this hypothetical world, a theorist explores deterministic models to find interest-
ing theorems and sometimes surprising dynamic behavior. Scenarios emerge from
first principles. For example, different regions of parameter space might produce
qualitatively different trajectories – stable, periodic, or chaotic. Data come into
the discussion only after a clearly formulated understanding of how things might
work. In fact, too much attention to data might restrict the theorist’s range of
imagination and exploration.

A realist, on the other hand, considers the data paramount, as in the quote
from Sherlock Holmes [4]: ”It is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories, instead of theories to suit facts.”
Data never fit a deterministic model exactly, so any analysis falls automatically into
the realm of statistics. The focus shifts from theorems to algorithms, from abstract
theory to detective work.

Given these stereotypes, it’s easy to imagine areas of disagreement. The re-
alist asks: “Why bother proving existence theorems about models that don’t fit
any data?” And the theorist counters: “How can you trust your complex model
framework, with unknown global properties and limited computer explorations that
blunder around randomly in the dark?” Perhaps like many readers of this paper,
I consider myself an applied mathematician with roots in both camps. Applied
work demands respect for reality, not just mathematical elegance (Samuelson [15]):
“. . . don’t believe in something because it’s a beautiful formula. There will al-
ways be room for judgment.” I’ll give the final words to fisherman James O’Malley,
who puts mathematics in a singular position between knowledge and understanding
about the real world [16]:

“What is happening out there on the ocean, and why is it happening? What will
we do about it? . . . We owe it to ourselves, to the ocean, and especially to science
itself, to assemble that great body of knowledge, those millions of observations,
and to use every tool, including mathematics, to further our understanding of that
knowledge. Knowledge and understanding are not the same. They may, in fact, be
separated by a wide chasm. Mathematics is neither knowledge nor understanding.
It may be a useful tool to help up bridge that gap. That is where it belongs, that is
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how we should use it, and we need to start now – before the bean-counters destroy
us all.”
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