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THE RELATIVISTIC ENSKOG EQUATION NEAR THE
VACUUM

RAFAEL GALEANO ANDRADES, BERNARDO OROZCO HERRERA,
MARIA OFELIA VASQUEZ AVILA

ABSTRACT. We prove an existence and uniqueness theorem for the solution
with data near the vacuum in the Hard sphere.

1. INTRODUCTION
The relativistic Boltzmann equation is written as
V.V.F=-C(F,F),

where the dot represents the Lorentz inner product (+ — ——) of 4-vectors v =
(v1,v2,v3), V = (vg,v1,02,v3), X = (z0,21,Z2,23), * = (x1,2T2,23), To = —t and
C(F,F) is the collision integral. Normalizing the speed of light ¢ = 1 and the
particle mass m = 1, we have V- V =1 or vy = /1 + |[v|?.

For convenience, we separate the time and space variables, and then divide by
v the relativistic Bolttzman equation to obtain,

OF + -V, F =Q(F,F) (1.1)

where

Q(F,F) = vy 'C(F,F)yt = — = ——

Q(F,F)(v) =5 O///5 (U? = 1)8(U? = 1)8(V"? = 1)s0(s,0)5*
U+V-U - V’)[F(u’)F(v’)—F(u)F(v)]d4Ud4U’d4V

where U2 = U - U = u — |ul?, |u|? = u? +u3 + u3, § is the delta function in one
variable, 04 is the delta function in four variables, and all of the F are evaluated
at the same space-time point (¢, x). Furthermore o(s,#) is called the differential
cross section or the scattering kernel; it is a function of variables s and 6 which will
be defined below. The delta functions express the conservation of momentum and
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energy:
v+ =u+v.
VIF P+ I+ = VI [uP + /14 P

Let us begin by defining the remaining variables in the collision integral. We
define

S=(U+V)? = (ug+v9)* — |u+v?
= 2uguo — 2u - v +ud — |ul? +vd — |v

=2(/1 4 [ul2\/1+ ]2 —2u-v+1).

| 2

Now
49> = —(U - V)?
= —(up — o) + |u —v|?
= 2ugvg — 2u - v — ud + |ul? — v3 + |v?
=2(v/1+ [ul2V/1+ [o]2 —u-v +1)
=s5—4
and
] (V-U)-(V'=U"
cosf = V=0)
Furthermore, we define the Moller velocity as the scalar v, given by
o o S(s—4)
o= ol it = )
or

291+ g2

VoUo

vy =

The two expressions for v3, are equal because
38(8—4) = 5g% = (upvp — u- v + 1) (ugvg — u-v — 1)
= |ul® + [v]* + Ju|v]* = 2uovou - v + (u - v)?

= ug|v]? + vglul® = 2ugvou - v — (u x v)?

5 oflvf*  |ul? u v u U2
L R
v} ud uy vo ug Vo

The relativistic equation resulting is
OF + -V, F = / / onro (s, 0)[F ()P (W) — F(u)F(0)]ddu,
R3 JS2

where dSQ is the element of surface area on S? and we have to write ¢ as a function
of g and 0. The Enskog equation has the same structure of the Boltzmann equation,
of

where E(f) is the Enskog’s collision operator defined by E(f) = ET(f) — E~(f).
The left-hand side defines the total derivative of f that is equated by the Enskog’s
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collision operator, which is expressed by the difference between the gain and loss
terms respectively defined by

ET(f)(t,z,v) = az/ Y (f)o(s,0)f(t,z + an,w")dndw

2
IR3><SJr

E~(f)(t,z,v) = a®f(t,z,v) / Y (f)o(s,0)f(t,z —an,w')dndw ,
R3xS%

where Y is a functional on M, and S3 = {n € R? : |n| = 1, o(s,0) > 0}, and a is

the diameter of hard sphere.

A survey of mathematical results on the existence theory for the Cauchy problem
for small initial data decay to zero at infinity in the phase space is proposed in [I]
as well as in papers [2| [I1] 12, 13]. Several other papers have been published about
this type of results. Nevertheless, the main results are contained in the papers
which have been cited above.

Specifically, paper [12] refers to a hard sphere gas and to initial conditions which
tend exponentially to zero at infinity in the phase space. Paper [I1] generalizes the
result of [I2]. The main result concerning the existence of solutions to the classical
Boltzmann equation is a theorem by Diperna and Lions [4] that proves existence,
but not uniqueness of renormalized solutions; i.e, solutions in a weak sense, which
are even more general than distributional solutions. An analogous result holds
in the relativistic case, as was shown by Dudynsky and Ekiel-Jezewska [5]. Re-
garding classical solutions, Illner and Shinbrot [12] have shown global existence of
solutions to the nonrelativistic Boltzmann equation for small initial data(close to
the vacuum), Galeano, Vasquez and Orozco [6] shown a result for the relativistic
Boltzmann equation. When the data are close to equilibrium, global existence of
classical solutions has been proved by Glassey and Strauss [8] in the relativistic case
and by Ukay [I4] in the nonrelativistic case. In the case of the relativistic Enskog
equation we don’t known results and this would be a first one. The paper is divide
in two sections, we build the functional setting in the first, and we prove a lemma
and the theorem of existence and uniqueness in the second one.

2. FUNCTIONAL SETTING
For a given g > 0, let
M = {f € C([0,00) x R* x R?) : there exists ¢ > 0 such that
f(t,z,0)] < Cefﬁ(\/1+\v|2+lw+tv|2)}.
This space is a Banach space (See [4])
| £]| = sup e’V 1+|v\2+lm+tv\2)|f(t, z,v)]|.

t,x,v

We introduce the notation
fE(t,,0) = [tz + to,v),.

Then the Enskog equation can be written as

d .y _p#
dtf (t,z,v) = E7(f).
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Therefore f#(t,x,v) = fo(x,v) —|—f0t E#(f)dr. Now

ET(f)(t,z,v) = a? / Y(f)o(s,0)f(t,x,v") f(t,x + an,w')dndw

R3x Si
and

BT (f7)(t,z,v)

= [ YU ) ) (b a0
R3xS%

= a2/ Y (fF)o(s,0)f(t,z + tv,v') f(t,x + an + tv,w)dndw
R3xS%

= [ YUl (b tlo = o)) (b an (o - ), ddu.
R3xsi

Analogously
E~(f#)(t,z,v)

=a?f(t,r + tv,v) / Y (f#)o(s,0)f(t,z — an + tv, w)dndw

R3xS%

=) [ V(o 0)fH = an o - w),w)dndu.

3 2
R5XS+

3. RELATIVISTIC ENSKOG EQUATION

Lemma 3.1. Suppose that o(s,0) € L. _(Q) and that there is a constant ¢ > 0

loc

such that |Y (f#)| < c||f#| for every f# € M. Then for some constant L > 0,
t 2
4acL 3
/ \E*(f#)|dr < aiiﬂeﬁ\/lﬂv\ Kad&
0 BHv|
! 4acLm?
1B lar < STV g
0 Bv]
Proof. Note that
[BY(f7)] < a2/ cll ) (s, 0)] 1F#(t, @ + t(v — '), )| PV IFI el
R3xS%

x| fE(tx + an + Ho — '), w’)| PV T P Hetanttof?)
% e—ﬂ(\/m+|w+tv\2)e—ﬂ(\/mﬂxmwwlz)dndw _
Since o(s,0) € Li (), there is a constant L > 0 such that
| B (f7)]
< / CL ) [Be= B0/ T o+t =BT o tamt o) gy gy
R2xS2
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Applying the conservation of energy law, we obtain

/ CL|| f#)|[Be~ AW IHI Pz tto®) o=/ T+ Hatan+tol®) g
R3xS%
= CLHf#)HS/ 67[‘3(\/1+\v|2+|z+t7j|2)676(«/1+\w|2+\z+an+tv\2)dndw.
R3xS2
2

Moreover,
CL||f#)||3/ —5(\/1+| 24|z +tv)?) =B/ 1+|w|2+|z+an+tv|? )dndw
R3x 5%
— cLHf#)\\36_5‘/1+‘“|26_5|’”+t”|2 / e—ﬁ(\/1+\w|2+\x+an+tv\2)dndw.

2
]RC“><SJr

By Fubbini’s theorem,

/ e P 1+\W|2+|1‘+an+tv|2)dndw = /
R3x S2

R3

dr [ 1
<Z /L.,
=3 a

4a2cLr? B ST —Blatto?
|E+(f#)| < W“Jc#)”ge OV = Blettol

6—6\/1+|w\2(/ e—ﬁ|w+an+tv|2dn)dw

s
Therefore,

Hence
! 4acLr? ) S [o° )
/|E+(f#)|d7371”]@#)”364@/ o~ Blattol? o
0 0

< 4;‘;?’? | 7#)[BePVIT

Then
‘ (f#)‘ < a2|f(t T+ to, U)|€ (\/ 14024 |x+tv]?) —B(\/1+|v|2+|z+tv]?)
x/ Y (%) o (s, )| f# (s — an + to — tw, w)
]R3><Si
x eVl Fle—antto]?) o —A(\/1+hw P tHe—anttvl) g 4o,
< @?||f#|PeLe PV g Blttol? / o BT e —ant o) g g,

R3xS%
S e I L e
R3 52

4a’cLm g /TToE ,—plo+tof? L
5 Ba

3/2
AaCLTOTR T g-latl?|
67/2 € ¢
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and
[ 1B i < MR o [ e o
< 0L /T g,
= Bl
So that
Lt dacLm® u3 gy /TFToR
BTl < =5 1
which completes the proof ([l

Theorem 3.2. Suppose that o(s,0) € L () and there exists ¢ > 0 such that
4 v

Y(#| < clf#)] Jor every [# € Mg = {f € M : |[f]| < R} with B> < st

and || foll < Then the Enskog relativistic equation has solution in Mg.

2 —ﬁ\ 12
Proof. We define the operator F on M by

t
FI# = folwsv) + / E#(f)dr
Then

t
\FF#] < |folz,v)| + |/ E*(f)dr|
0
< |f0(x7U)‘eﬁ(\/WHfblz)e—ﬁ(\/WHmIz) 4 |/ E-‘r(f#) _ E_(f#)dT|
0
< Ille VI 4 [ () e (#ar
0
< [ follePVIFFT -t 4 BUCLT s o /T

Bl
R 8acLu?
<7 31 ,—B/1+|v?
— [2 + ﬂ4|’0| R ]e
:Refﬂ /1+|v\2[ SGCLW R2]
2 " T

_ 1 8acLn? [*v]
< pe-fviror (L
= [2+ B4 v| 167r20La]

< RVl L L
- 2 2
= Re AVIHIP < R,

Therefore, F maps Mp into itself. Similarly, we show that F is a contraction on
Mp. Since elements of My are continuous, the continuity of F f# is evident. O
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