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CRITICAL POINTS OF THE STEADY STATE OF A
FOKKER-PLANCK EQUATION

JORGE GUINEZ, ROBERT QUINTERO, ANGEL D. RUEDA

ABSTRACT. In this paper we consider a set of vector fields over the torus for
which we can associate a positive function ve which define for some of them in
a solution of the Fokker-Planck equation with ¢ diffusion:

eAve — div(veX) =0.

Within this class of vector fields we prove that X is a gradient vector field if
and only if at least one of the critical points of v, is a stationary point of X,
for an € > 0. In particular we show a vector field which is stable in the sense
of Zeeman but structurally unstable in the Andronov-Pontriaguin sense. A
generalization of some results to other kind of compact manifolds is made.

1. VECTOR FIELDS IN COVERING SPACES

Let 7: M — M be a covering space of a Riemannian and oriented manifold M.
In M there exists one and only one Riemannian structure such that

dry : Ty(M) — Ty (M)

is an isometry for all y € M. Then it is able to associate to every C" vector field
X in M, another C" vector field X in M in the following way:

X(y) = (d(m)(y) (X (w(y)))-

It is easy to verify the following theorem:

Theorem 1.1.
(X+Y)=X+Ym (1.1)
Vf = V(rof) (1.2)
div(X (y) = div(X)(n(y)) (1.3)

Definition A vector field X is called almost gradient respect to the projection 7,
if and only if X is a gradient in M. This set will be denoted by V4(7). Particular
we can write

grad(M) = Vog(1amr)
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There are non trivial projections for which is true the preceding statement, so
we have the following theorem.

Theorem 1.2. If 7 : M — M isa finite covering and M is compact, then V,q4 is
the set of gradient vector fields in M.

Proof. Let X be a vector field in M and let
X=Vf+W
be its Hodge’s decomposition. If X is gradient, then there exists a C'*° function g
such that: B .
Vg=X=V(fom)+W.
Then by Theorem 1.1 it follows that Wis a gradient vector field in M and we can
write W = Vh. Finally from Theorem 1.1 we get, div(W) = div(W) onm = 0. Thus

Vh = 0 and by compactness of M it follows h to be a constant. So W = 0 and
W =0. O

2. VECTOR FIELDS IN T},

Let 7 : R — T,, = R™/Z"™ be the universal covering space of the torus T,.
So there exists a Riemannian structure in 7, such that fn = R", where R" is
considered with the usual Riemannian structure. It is easy to realize that V,4(m)
is different from grad(M). More precisely we have the following statement.

Theorem 2.1. X € V,,(n) if and only if X is in the form X = Vf + X, where
A eR™
Proof. Let X = Vf + W be the Hodge’s decomposition of X. Then X € Vag(m)
implies N
X = an
but L .
X=Vf+W=V(fom)+W
and W = Vh with h = g— for. By the periodicity of W it follows that ||W|| <K.
Then
|h(z)| < K||z|]| Ve R". (2.1)
Because W has divergence zero so it does W, and h is an harmonic function in
whole R™. From the estimate (4) h is a linear function; i.e.,
hz)=a+ X -z (2.2)
with A € R" so VA=W = A, consequently W = A. (Il

3. THE FUNCTION v,

For the rest of this article, we consider X in T, to be of the form X =V f + A.
Let us consider ,
ve(z) = / exp ( <x’z))dz (3.1)
T €

n

where
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Lemma 3.1. X is a gradient if A = 0 and we have
ve = L(e) exp(f/e)
Proof. If A =0, we have

vo=exp() [ oD —ed) [ ez,

€ € €

Definition.X will be called without coupling, if
0X;
((i # j) and (=— #0)) = X; =0.
8.1‘]‘
Theorem 3.2. Let X be a vector field without coupling. Then v. is a solution of
the Fokker-Planck equation
eAv — div(vX) = 0. (3.4)

Proof. Let I be the set of indices for which A; # 0. Then the i-component of the
vector field X is

X, = fz/(l‘l) + N\
with f; a function in the variable x;. Therefore, X = Vf + X with

f= Z(fi(ﬂfi)) +p(z)

where p(z) is a periodic function and

3(; (p(z))=0, i€l

Then

h(z, z) = Z hi(zi, z;) + p(x) — p(z + 2).
iel
Because X is without coupling, applying Lemma 3.1 to Vp,

Ve = / exp (h(ac, Z))dz = K(Hvz(:m)) exp (}M) , (3.5)

€ €
n iel

where )
i hz 1y <1
vl(ﬂsi):/ eXp(M)dzi
0 €

is associated with the vector field Vf; + A;. If i € I it follows that

e(Vve)i = (Xy(zi)vl — eRy) H v exp (@)
ke(I—{i})
where
R = /1 Xi(i + 2) exp (fz'(l“z') — fl@i+2) — Aizi)dzi Cexp (- _)\i) Ll
0 € € €
For i ¢ I,

(eVve)i = (Vp(x))ive = Xjve
thus v is solution of (3.4). O
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4. DYNAMICS AND STEADY STATE

We begin this section with some definitions:
Definition Let X be a vector field in 7T,, and let u, = ZSO 1:7 be a series with a
positive ratio of convergence. Suppose that u, is a solution of (3.4). We will denote:

Cc.={x e M:Vu. =0} (4.1)
EX)={xeM: X(z)=0} (4.2)
0X;

D(X) ={z € M : det (

o, ) =0} (4.3)

In [1] and [2], we have such series on T, and S,.

Theorem 4.1. Consider X € Vou(T),) such that

(i) There exists a convergent series ue = > o 2+ solving (3.4) for L <r;r >0
(ii) There exists an infinity set S C [r1,7], r1 > 0 and a point x in T, such
that

1
xreC.NEX) V-€8 (4.4)
€
Then X is a gradient vector field.

Proof. Because X € V,4(T},), by Theorem 2.1 we can write

X =Vf+2A, (4.5)
Vue=0=> Vﬂ(x)(%)i Ve e S. (4.6)
1=0

Then VF;(x) = 0, for every i. In particular VF;(z) = Vf(z) = 0 and by (15)
A=0. O

Theorem 4.2. Let X be a vector field without coupling. Then the following state-
ments are equivalent.

(i) There exists € such that C. N E(X) # 0
(i) Foralle, C.NE(X)#0
(iii) X s gradient.

Proof. For x € C. N E(X) and ¢ € I we have a contradiction:

0= () (x)=e* — 1+ %vs(x).

€

wich completes the proof. (I

Remark. The main idea here is that for non-gradient cases critical points of
a steady state are different from stationary points of the vector field. This fact
enable us to find a vector field X with an associated u. which has not generated
critical points, even when X has degenerated stationary points.

Lemma 4.3. Let’s suppose that X = V f + X\ is without coupling and let I be the
set of index such that \; > 0 and let I_ be the set of index such that \; < 0. Then

C. C ﬂ1'5]+Xi_1((0,+OO)) Mier_ Xi_l((foo,()))
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Proof. For a such f we can write

f= Z(fl(xl)) +p(2)

where p(z) is not depending of z; fori € I =1_U I, and

ve = K ( Hvé(xl)) exp (M) (4.7

, €
el
where .
; () — flas +21) — Nz
vl = / exp (f () = flai + 2) z )dz; (4.8)
0 €
So for every ¢ € I, we have
O, Xi(x;)vt & p(x
ke(I—{i})
where R; = —exp(—X\;/e) + 1. Soif z € C,,
Xi(x;) oy .
@) i _exp (=) 41, ier (4.10)
€ €
Then for ¢ € I, we have X;(x;) > 0 and for i € I_ we have X;(z;) < 0. O

Lemma 4.4. Under the hypothesis of Lemma 4.3, the set of degenerated critical
points of ue is a subset of

D1(X) = Uier, [D(X:) N (X710, +00))] Uier_ [D(X3) N (X[ (=00,0))] U D(V,)

K3

Here x € D(X;), means X'(z;) =0 and z € D(V,) means det( Op ) =0.

6’xixj

Proof. With the notation of Lemma 4.3 and by (4.9) and (4.10), for every z € C.,

2

%;f; (1) = X'(x)ue, i€l (4.11)

0%u,
= Ljeli#] 4.12
a362_5.%(96) 0, i,jeli#] (4.12)

0%u 9%p
< = i,jel’ 4.1

8:61-830]- ($) axﬁxj (x)u67 ni € ( 3)

where I' = {1,2,...,n} — 1. So

0%u 9%p

< = X (z; — . " 4.14
det (- T (z)) (H (@) (det (5~ oz () ser) (te(@)) (4.14)
If « is a degenerated critical point of u., by Lemma 4.3, we get 2 € D(X). [

Theorem 4.5. Let X =V f + X\ be a vector field without coupling and suppose
Iy ={i: >0}, I_={i:\<0}, I=I,Ul_, k=card(])
Let also suppose:
(i) For everyi € Iy the set Di(X;) = D(X;) N X; (0, +00) is finite and for
x; € D1(X;) there exits z; € (0,1) such that f(x;) — f(x; + z;) — Xizi > 0.
(ii) Fori € I_ the set D1(X;) = D(X;) N X; ! (—00,0) is finite and for every
z; € (0,1) we have f(x;) — f(a; + 2:) — Nz < 0.
(iii) Considering p as a function in T,—k do not has critical points which are
degenerated.
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Then there exists g > 0 such that u. does not have degenerated critical points for
0<e<eg.

Proof. Suppose there exists a sequence of values €,, with €, > 0 and lim,, ., €, =0
and a sequence of point x, in such way that x, is a critical degenerated point of
e, . Then by the proceeding Lemma and under conditions (i), (ii) and (iii) we can
find a sequence of (e,, ) such that limy,_.o 2, = = with x; € D1 (X} for some index
i € I. Clearly (z,,); = ; for k > ko because D;(X;) is finite set. Then for that
index 1, it follows:

, Ai
Xi(mi)uink (i) = €n,, (— exp (6 )+1) (4.15)
n
then for (i) or (ii) we have a contradiction when k — oco. O

Example. Consider the vector field
1
fﬁexp(fm) 1/2<z<1
It is a C*° vector field on T7. We put

1/2 1
H:/ exp(—i)7
0

sen2mx
X=Vf+A
hz,z) = f(z;) — flx+2) — Az

/X dt—/ X(t

h(1/4,3/4) = (8= )H. A= (o~ B)H

Then if a > 3> §, A = (a— ) >0, D1(X) = {1/4} and by theorem 4.5, we have
€o > 0 such that u. does not have degenerated critical points. In this case, v, is a
Morse function for € < ¢y and X is Zeeman Stable vector field [3].

Then we have
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