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A SYSTEM OF SEMILINEAR EVOLUTION EQUATIONS WITH
HOMOGENEOUS BOUNDARY CONDITIONS FOR THIN

PLATES COUPLED WITH MEMBRANES

JAIRO HERNÁNDEZ

Abstract. In this work we consider a semilinear initial boundary-value prob-

lem modelling an elastic thin plate (in the context of the so-called Kirchhoff-
Love theory) coupled with an elastic membrane, regarding homogeneous bound-

ary conditions. By means of the theory of strongly continuous semigroups of
linear operators applied to abstract semilinear initial valued problems [16],

we obtain existence and uniqueness of a weak solution which is defined in a

suitable way.

1. Introduction

In this work we consider a semilinear evolution problem which we pose as follows:
Let Ω and Ωm be two open bounded connected subsets of R2 with sufficiently
smooth boundary ∂Ω and ∂Ωm so that Ωm ⊂⊂ Ω. Let Ωp := Ω\Ωm and Γ1 := ∂Ωm.
We decompose ∂Ω in two connected parts Γ2 and Γ3 with Γ2 ∩ Γ3 = ∅, σ1(Γ2) 6= 0
and σ1(Γ3) 6= 0, where σ1 is the surface measure on ∂Ω, induced by the Lebesgue
measure on R (see figure 1). Then we consider the system of partial differential
equations

ρph
∂2up

∂t2
(t, x) +

h3

12

2∑
α,βγ,θ=1

∂2

∂xα∂xβ

(
Aαβγθ(x)

∂2up

∂xγ∂xθ
(t, x)

)
= fp(t, x, up(t, x)) in ]0, T ]× Ωp

(1.1)

ρm
∂2um

∂t2
(t, x)− C∆um(t, x) = fm(t, x, um(t, x)) in ]0, T ]× Ωm , (1.2)

h3

12
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α,β,γ,θ=1
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∂

∂xβ

(
Aαβγθ

∂2up

∂xγ∂xθ

)
+

h3

12
∂

∂~τ

( 2∑
α,β,γ,θ=1

νατβAαβγθ
∂2up

∂xγ∂xθ

)
= 0 on ]0, T ]× Γ2 ,

(1.3)
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h3

12

2∑
α,β,γ,θ=1

να
∂

∂xβ

(
Aαβγθ

∂2up

∂xγ∂xθ

)
+

h3

12
∂

∂~τ

( 2∑
α,β,γ,θ=1

νατβAαβγθ
∂2up

∂xγ∂xθ

)
+ C

∂um

∂~ν
= 0 on ]0, T ]× Γ1 ,

(1.4)

2∑
α,β,γ,θ=1

νανβAαβγθ
∂2up

∂xγ∂xθ
= 0 on ]0, T ]× (∂Ωp \ Γ3), (1.5)

up =
∂up

∂~ν
= 0 on ]0, T ]× Γ3, (1.6)

up = um on ]0, T ]× Γ1 , (1.7)

with the initial conditions

up(0, ·) = g0
p in Ωp, (1.8)

um(0, ·) = g0
m in Ωm, (1.9)

∂up

∂t
(0, ·) = g1

p in Ωp, (1.10)

∂um

∂t
(0, ·) = g1

m in Ωm. (1.11)

Equations (1.1)-(1.11) describe the vibrations of a structure which consists of a thin
elastic anisotropic plate (in the context of the so called Kirchhoff-Love theory) with
its middle surface occupying the domain Ωp, coupled with a membrane occupying
the domain Ωm (see figure 1).

It is supposed that ρp and ρm are positive constants, where ρp (resp. ρm )
is the density of the middle surface of the plate (resp. the membrane) and h is
the thickness of the plate. The coefficients Aαβγθ depend on the elastic modulus
of the plate and are assumed as C∞ functions on Ωp; they satisfy the symmetry
assumption

Aαβγθ = Aβαγθ, Aαβγθ = Aαβθγ , Aαβγθ = Aγθαβ (1.12)

and the coercivity hypothesis
2∑

α,β,γ,θ=1

Aαβγθ(x)ξγθξαβ ≥ ρ

2∑
α,β=1

ξ2
αβ (1.13)

for all x ∈ Ωp and for all real matrices (ξαβ)2×2 with ξαβ = ξβα for α, β ∈ {1, 2},
where ρ > 0 is a constant. Moreover it is supposed that the plate is clamped on Γ3

(equation (1.6)) and is free on Γ2 (see figure 1).
The vector ~ν = (ν1, ν2) is the unitary outward normal to ∂Ωp and τ = (τ1, τ2) =

(−ν2, ν1) is the positive oriented unitary tangent vector. C is a positive constant
depending on the material forming the membrane. fp (resp. fm) is the pressure
supported by the plate (resp. the membrane) and depend on the transverse dis-
placement up (resp. um) of the plate (resp. the membrane). The initial conditions
g0

p and g1
p (resp. g0

m and g1
m) are real functions defined on Ωp (resp. Ωm). The

equations (1.4) and (1.7) are the boundary conditions expressing the coupling be-
tween the plate and the membrane.
We give the definition of weak solution for our semilinear problem (1.1)-(1.11) and
with help of the theory of C0-semigroups of linear operators we obtain a result of
existence and uniqueness for this type of solution. For other works in the area of
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Figure 1. Ωm (resp. Ωp) is occupied by the membrane (resp.
the middle surface of the Plate). The Plate is clamped on Γ3.

transmission problems and networks we refer the reader to [2, 3, 4, 6, 7, 10, 11, 12,
13, 14, 15].

2. Notation and mathematical preliminaries

In this section we shall present the concepts and abstract framework that we
need for the treatment of our problem (1.1)-(1.11). We shall consider only real
valued functions. Let n a positive integer. For any multi-index α = (α1, . . . , α2)
(i.e. α ∈ Nn

0 , where N0 is the set of all nonnegative integers), we write

∂α :=
∂|α|

∂xα1
1 . . . ∂xαn

n
, where |α| := α1 + · · ·+ αn.

Sometimes we write ∂i for ∂
∂xi

, i = 1, . . . , n. For the rest of this section, let Ω be
an open bounded connected set in Rn with sufficiently smooth boundary.

For any nonnegative integer k let Ck(Ω) be the vector space consisting of all
functions φ which, together with all their partial derivatives ∂αφ of orders |α| ≤ k,
are continuous in Ω. C∞(Ω) is the vector space consisting of all functions φ, such
that φ ∈ Ck(Ω) for all nonnegative integer k.

We write Ck(Ω) for the Banach space consisting of all functions φ ∈ Ck(Ω) for
which ∂αφ is bounded and uniformly continuous on Ω for |α| ≤ k, with norm given
by

‖φ‖
Ck(Ω)

:= max
|α|≤k

sup
x∈Ω

|∂αφ(x)|.
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For a nonnegative integer k and 1 ≤ p ≤ ∞ let W k,p(Ω) be the usual Sobolev space
defined as

W k,p(Ω) := {u ∈ Lp(Ω); ∂αu ∈ Lp(Ω)forallα ∈ Nn
0 , |α| ≤ k}, (2.1)

where ∂αu is understood in distributional (or weak) sense, with the usual norm

‖u‖k,p,Ω :=
{ ∑
|α|≤k

∫
Ω

|∂αu(x)|pdx
}1/p if1 ≤ p < ∞, (2.2)

‖u‖k,∞,Ω := max
|α|≤k

ess sup
x∈Ω

|∂αu(x)|. (2.3)

As usual we shall write Hk(Ω) := W k,2(Ω).

Lemma 2.1. The set D(Ω) of restrictions to Ω of functions in C∞
c (Rn) (i.e. the

set of all infinitely differentiable functions on Rn with compact support) is dense in
W k,p(Ω) for 1 ≤ p < ∞.

For the proof of the above lemma, see Adams [1, theorem 3.18,].

Lemma 2.2. If kp = n, then W k,p(Ω) ↪→ Lq(Ω) for p ≤ q < ∞.

For the proof of the above lemma, see Adams [1, lemma 5.14].

Lemma 2.3. If kp > n, then W k,p(Ω) ↪→ C0(Ω).

The proof of the above lemma can be found in Evans [9, sec. 5.6, Theorem 6]
and in Adams [1, lemma 5.17].

Lemma 2.4. Let 1 ≤ p < ∞. Then there exists a linear operator

γ0 : W 1,p(Ω) → Lp(∂Ω) (2.4)

such that
(i) γ0u = u|

∂Ω if u ∈ W 1,p(Ω) ∩ C(Ω).
(ii) ‖γ0u‖Lp(∂Ω) ≤ c(p, Ω)‖u‖1,p,Ω for each u ∈ W 1,p(Ω), where c(p, Ω) is a

constant depending only on p and Ω.

For the proof of the above lemma, see Evans [9, theorem 5.5.1].

Remark 2.5. We call γ0u the trace of order zero of u on ∂Ω.

Definition 2.6. Let j, k ∈ N, k > 1, 1 ≤ j ≤ k − 1 and u ∈ W k,p(Ω). We define
the trace of order j of u on ∂Ω by

γ
j
u :=

∑
|α|=j

j!
α1! · · ·αn!

γ0(∂αu)να1
1 · · · ναn

n , (2.5)

where ~ν = (ν1, . . . , νn) is the unit outward normal along ∂Ω.

Remark 2.7. γj : W k,p(Ω) → Lp(∂Ω) is a linear operator with

(i) γj u = ∂ju
∂~νj

∣∣∣
∂Ω

:=
∑
|α|=j

j!
α1!···αn!∂

αu|
∂Ωνα1

1 · · · ναn
n for j = 1, . . . , k − 1 if

u ∈ W k,p(Ω) ∩ Ck−1(Ω).
(ii) ‖γju‖Lp(∂Ω) ≤ c(k, p,Ω)‖u‖k,p,Ω for each u ∈ W k,p(Ω) and for all j =

1, . . . , k − 1.
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Now for j, k ∈ N0, 0 ≤ j ≤ k, and 1 ≤ p < ∞ we define the the functional given
by

|u|
j,p,Ω :=

{ ∑
|α|=j

∫
Ω

|∂αu(x)|pdx
}1/p

, u ∈ W k,p(Ω). (2.6)

Clearly, |u|0,p,Ω = ‖u‖0,p,Ω = ‖u‖
L

p (Ω)
. We have the following statement.

Lemma 2.8. The functional

((u))
k,p,Ω =

{
|u|p

k,p,Ω
+ |u|p

0,p,Ω

}1/p

is a norm on W k,p(Ω), equivalent to the usual norm ‖ · ‖k,p,Ω.

The proof of the above lemma can be found in Adams [1, corollary 4.16].
We need some crucial results of the theory of semigroups of linear operators in

Banach spaces. We refer to Pazy [16] or Dautray-Lions [8], chapter XVII, with
respect to this theory.

Let V (resp. H) be a real separable Hilbert space with scalar product (·|·)V

(resp. (·|·)H) and norm ‖ · ‖V (resp. ‖ · ‖H). We assume V ↪→ H and V dense in
H.
Let a(·|·) : V ×V → R be a continuous bilinear form, V -coercive with respect to H
i.e., there exists λ0 ∈ R and c0 > 0 such that

a(v|v) + λ0‖v‖2
H ≥ c0‖v‖2

V , ∀v ∈ V. (2.7)

We put

D(A) := {u ∈ V ;V 3 v 7→ a(u|v)is continuous for the topology ofH}. (2.8)

Theorem 2.9. Let A : D(A) ⊂ H → H be the operator given by (Au|v)H = a(u|v)
∀u ∈ D(A) and ∀v ∈ V . Then −A is the infinitesimal generator of a C0- semigroup
{T (t)}t≥0 in H which satisfies

‖T (t)‖L(H) ≤ eλ0t ∀t ≥ 0 .

For a proof of the above theorem, see Dautray-Lions [8, theorem XVII.3.3].
Now we assume furthermore that a(·|·) is symmetrical (a(u|v) = a(v|u) ∀u, v ∈

V ). Let H := V × H. H equipped with the scalar product defined by (u|v)H :=
a(u1|v1) + (u2|v2)H for u = (u1, u2)t, v = (v1, v2)t ∈ H ( we write the elements of
H as columns ) is a Hilbert space (cf. Dautray-Lions [8], Section VII.3.4., p. 331).

Let D(A) := D(A)× V . We define the operator A over D(A) by

Au :=
(

0 −id
A 0

)(
u1

u2

)
=
(
−u2

Au1

)
, ∀u =

(
u1

u2

)
∈ D(A). (2.9)

It follows that D(A) is dense in H and A is a closed operator.

Theorem 2.10. −A is the infinitesimal generator of a C0-semigroup in H.

For the proof of the above theroem, see Dautray-Lions [8, theorem XVII.3.4].

Theorem 2.11. Let −A be the infinitesimal generator of a C0-semigroup of li-
near operators on a Banach space X and u0 ∈ D(A). If f : [t0, T ] × X → X
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is continuously differentiable with bounded partial derivatives then there exists a
unique classical solution u ∈ C1([t0, T ];X) of the initial value problem

du(t)
dt

+ Au(t) = f(t, u(t)) in X, on ]t0, T ]

u(t0) = u0 .
(2.10)

The proof of this lemma ca be found in Pazy [16, theorem 6.1.5].

3. Function spaces and bilinear forms for the semilinear problem
plate-membrane

We define the vector space (with the usual vectorial sum and multiplication by
scalars)

V :=
{
(up, um) ∈ H2(Ωp)×H1(Ωm);up|Γ3

= γ1up|Γ3
= 0, up|Γ1

= γ0um|Γ1

}
(3.1)

(In this work we only consider real vector spaces). The vector space V , endowed
with the inner product

((up, um)|(vp, vm))
V

:= (up|vp)H2(Ωp)
+ (um|vm)

H1(Ωm)
, (3.2)

is a separable Hilbert space. The norm in V is given by

‖(up, um)‖
V

:=
(
‖up‖2

2,2,Ωp
+ ‖um‖2

1,2,Ωm

)1/2
. (3.3)

We consider also
H := L2(Ωp)× L2(Ωm) (3.4)

with inner product and norm given by

((up, um)|(vp, vm))
H

:= (up|vp)L2(Ωp)
+ (um|vm)

L2(Ωm)
(3.5)

and

‖(up, um)‖
H

:=
(
‖up‖2

0,2,Ωp
+ ‖um‖2

0,2,Ωm

)1/2

. (3.6)

Also we consider

Ṽ :=
{
(ũp, ũm) ∈ H2(Ωp)×H1(Ωm);

( 1√
ρph

ũp,
1

√
ρm

ũm

)
∈ V

}
, (3.7)

endowed with the norm

‖(ũp, ũm)‖Ṽ :=
( 1
ρph

‖ũp‖2
2,2,Ωp

+
1

ρm
‖ũm‖2

1,2,Ωm

)1/2
. (3.8)

We have the imbedding Ṽ ↪→ H with Ṽ dense in H. Identifying H with its dual

H ′ we obtain Ṽ
i

↪→H = H ′ i′

↪→ Ṽ ′, where i : Ṽ → H is the identity operator and
i′ : H → Ṽ ′ is the dual operator of i : V → H. Since i : Ṽ → H is injective and its
range is dense in H, the same holds for i′ : H → Ṽ ′. Furthermore we identify i′f
with f for f ∈ H. Therefore we regard H as subspace of Ṽ ′.

We consider the symmetric bilinear form

a((up, um)|(vp, vm))

:=
h3

12

2∑
α,β,γ,θ=1

∫
Ωp

Aαβγθ
∂2up

∂xγ∂xθ

∂2vp

∂xα∂xβ
dx + C

∫
Ωm

∇um · ∇vmdx
(3.9)
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for (up, um), (vp, vm) ∈ V (The symmetry is a consequence of the assumption
(1.12)). For technical reasons it is convenient to consider also

ã ((ũp, ũm)|(ṽp, ṽm)) := a
(( 1√

ρph
ũp,

1
√

ρm
ũm

)∣∣( 1√
ρph

ṽp,
1

√
ρm

ṽm

))
(3.10)

for (ũp, ũm), (ṽp, ṽm) ∈ Ṽ .

Lemma 3.1. Under the assumptions introduced for the coefficients Aαβγθ, the
bilinear form (3.9) (resp. (3.10)) is continuous and V -coercive (resp. Ṽ −coercive)
with respect to H.

Proof. From the Schwarz inequality we have the continuity of the bilinear forms
(3.9) and (3.10). Now let u = (up, um) ∈ V . From Lemma 2.8 we have that there
exists cp > 0 such that

((up))2,2,Ωp
≥ cp‖up‖2,2,Ωp

.

Then

a(u|u) =
h3

12

2∑
α,β,γ,θ=1

∫
Ωp

Aα,β,γ,θ
∂2up

∂xγ∂xθ

∂2up

∂xα∂xβ
dx + C

∫
Ωm

|∇um|2dx

≥ h3

12
ρ

2∑
α,β=1

∫
Ωp

∣∣∣ ∂2up

∂xα∂xβ

∣∣∣2dx + C|um|21,2,Ωm

=
h3

12
ρ|up|22,2,Ωp

+ C|um|21,2,Ωm

≥ h3

12
ρcp‖up‖2

2,2,Ωp
− h3

12
ρ|up|20,2,Ωp

+ C‖um‖2
1,2,Ωm

− C|um|20,2,Ωm
.

With λ0 := max
{

h3

12 ρ,C
}

and c0 := min
{

h3

12 ρcp, C
}

we obtain the V -coerciveness
of a(·|·) with respect to H. From this follows immediately the Ṽ -coerciveness of
ã(·|·) with respect to H. �

LetD(Ã) := Ã−1(H) and Ã := Ã|
D(Ã)

, where Ã : Ṽ → Ṽ ′ is given by 〈Ãũ|ṽ〉 =
ã(ũ|ṽ), for all ũ, ṽ ∈ Ṽ . We have that −Ã is the infinitesimal generator of a C0-
semigroup in H (see [11, p. 54].

4. Weak solution

For the function

(t, x, u) 7→ fp(t, x, u) : [0, T ]× Ωp × R → R (4.1)

we assume the following:
(i) For all t ∈ [0, T ], x 7→ fp(t, x, u(x)) : Ωp → R is measurable, if u : Ωp → R

is measurable.
(ii) |fp(t, x, u)| ≤ q

p
(t, x)+k

p
|u| for all (t, x, u) ∈ [0, T ]×Ωp×R, where q

p
(t, ·) ∈

L2(Ωp) for all t ∈ [0, T ] and k
p

> 0 is a constant.
(iii) ∂fp

∂t (t, x, u) exists for all (t, x, u) ∈ [0, T ] × Ωp × R. It is bounded and
Lipschitz continuous on [0, T ]× Ωp × R.

(iv) ∂fp

∂u (t, x, u) exists for all (t, x, u) ∈ [0, T ] × Ωp × R. It is bounded and
Lipschitz continuous on [0, T ]× Ωp × R.
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For the function

(t, x, u) 7→ fm(t, x, u) : [0, T ]× Ωm × R → R (4.2)

we assume the following:

(i) For all t ∈ [0, T ], x 7→ fm(t, x, u(x)) : Ωm → R is measurable, if u : Ωm → R
is measurable.

(ii) |fm(t, x, u)| ≤ qm(t, x) + km |u|, for all (t, x, u) ∈ [0, T ] × Ωm × R, where
qm(t, ·) ∈ L2(Ωm) for all t ∈ [0, T ] and km > 0 a constant.

(iii) ∂fm

∂t (t, x, u) exists for all (t, x, u) ∈ [0, T ] × Ωm × R. It is bounded and
Lipschitz continuous on [0, T ]× Ωm × R.

(iv) ∂fm

∂u (t, x, u) exists for all (t, x, u) ∈ [0, T ] × Ωm × R. It is bounded and
Lipschitz continuous on [0, T ]× Ωm × R.

Let fp : [0, T ] × L2(Ωp) → L2(Ωp) and fm : [0, T ] × L2(Ωm) → L2(Ωm) be defined
by

[fp(t, up)](x) := fp(t, x, up(x)) for (t, x) ∈ [0, T ]× Ωp up ∈ L2(Ωp) , (4.3)

[fm(t, um)](x) := fm(t, x, um(x)) for (t, x) ∈ [0, T ]× Ωm um ∈ L2(Ωm). (4.4)

From assumptions on (4.1) and (4.2), we see that fp(t, up) ∈ L2(Ωp) and fm(t, um) ∈
L2(Ωm), for up ∈ L2(Ωp) and um ∈ L2(Ωm).

For technical reasons we introduce the following functions:

f̃p(t, up) :=
1√
ρph

fp
(
t,

1√
ρph

up

)
for t ∈ [0, T ] up ∈ L2(Ωp) , (4.5)

f̃m(t, um) :=
1

√
ρm

fm
(
t,

1
√

ρm
um

)
for t ∈ [0, T ] um ∈ L2(Ωm) . (4.6)

Let us suppose that up : [0, T ] × Ωp → R and um : [0, T ] × Ωm → R are smooth
enough in such a way that the system (1.1) - (1.11) for (up, um) holds; i.e., we sup-
pose that (up, um) is a classical solution of the semilinear problem (1.1)-(1.11). Fur-
thermore we assume that (ũp(t, .), ũm(t, .)) ∈ D(Ã) for t ∈]0, T ], where (ũp, ũm) :=(√

ρphup,
√

ρmum

)
. If we multiply (1.1) (resp. (1.2)) with 1√

ρph
ṽp (resp. 1√

ρm
ṽm),

where (ṽp, ṽm) ∈ Ṽ , by use of integration by parts, (1.3)-(1.7) and the fact that Ṽ
is dense in H we obtain(∂2ũp

∂t2
(t, ·), ∂2ũm

∂t2
(t, ·)

)
+Ã(ũp(t, ·), ũm(t, ·)) =

(
f̃p(t, ũp(t, ·)), f̃m(t, ũm(t, ·))

)
(4.7)

in H, for t ∈]0, T ]. On the other hand we have

ũp(0, ·) = g̃0
p, ũm(0, ·) = g̃0

m,
∂ũp

∂t
(0, ·) = g̃1

p,
∂ũp

∂t
(0, ·) = g̃1

m, (4.8)

where g̃0
p :=

√
ρphg0

p, g̃0
m :=

√
ρmg0

m, g̃1
p :=

√
ρphg1

p and g̃1
m :=

√
ρmg1

m.
We suppose

(i) (g0
p, g0

m) ∈ A−1(H), (ii) (g1
p, g1

m) ∈ V (4.9)

where A : V → V ′ is given by 〈Au|v〉 = a(u|v), for all u, v ∈ V .
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Equations (4.7) and (4.8) motivate the following definition: Consider the Hilbert
space H := Ṽ ×H endowed with the inner product

(((ũ1
p, ũ

1
m)

(ũ2
p, ũ

2
m)

)∣∣∣((ṽ1
p, ṽ1

m)
(ṽ2

p, ṽ2
m)

))
H

:= a((ũ1
p, ũ

1
m)|(ṽ1

p, ṽ1
m)) + ((ũ2

p, ũ
2
m)|(ṽ2

p, ṽ2
m))H .

(4.10)

Moreover let D(Ã) := D(Ã) × Ṽ and Ã :=
(

0 −id

Ã 0

)
. It follows from theorem

2.10 that −Ã is the infinitesimal generator of a C0-semigroup of contractions in H.
We put

F̃(t, Ũ) :=

(
0(

f̃p(t, ũ1
p), f̃m(t, ũ1

m)
)) for Ũ :=

(
(ũ1

p, ũ
1
m)

(ũ2
p, ũ

2
m)

)
∈ H, (4.11)

G̃ :=

(
(g̃0

p, g̃0
m)

(g̃1
p, g̃1

m)

)
. (4.12)

Next we define weak solution for our semilinear problem.

Definition 4.1. Assume that (1.12), (1.13), (4.1), (4.2) and (4.9) are satisfied. We
say that a function (up,um) ∈ C1([0, T ];V ) ∩ C2([0, T ];H) is a weak solution of
the semilinear problem (1.1)-(1.11) if the function

(ũp, ũm) :=
(√

ρphup,
√

ρmum

)
∈ C1([0, T ]; Ṽ ) ∩ C2([0, T ];H)

has the following properties:

(i)
(d2ũp(t)

dt2
,
d2ũm(t)

dt2
)

+ Ã(ũp(t), ũm(t)) =
(
f̃p(t, ũp(t)), f̃m(t, ũm(t))

)
in H, on ]0, T ]

(ii)(ũp(0), ũm(0)) = (g̃0
p, g̃0

m).

(iii)
(dũp

dt
(0),

dũm

dt
(0)
)

= (g̃1
p, g̃1

m).

(4.13)

Lemma 4.2. Assume (1.12), (1.13), (4.1) and (4.2). Then the function (t, U) 7→
F(t, U) : [0, T ] × H → H which is defined by (4.11), is continuously differentiable
with bounded partial derivatives.

Proof. 1. The assumptions (4.1)(i),(ii) and (4.2)(i),(ii) lead to

f̃p(t, ũ1
p) ∈ L2(Ωp) and f̃m(t, ũ1

m) ∈ L2(Ωm)

for ũ1
p ∈ L2(Ωp) and ũ1

m ∈ L2(Ωm) and for all t ∈ [0, T ] (cf. [5, theorem 2.1]).
Then we have F̃(t, Ũ) ∈ H for (t, Ũ) ∈ [0, T ]×H.
2. It follows from (4.1)(iii) that

∂fp

∂t

(
t, ·, 1√

ρph
ũ1

p(·)
)
∈ L2(Ωp) ∀t ∈ [0, T ] ∀ũ1

p ∈ L2(Ωp).
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Let t ∈ [0, T ]. For τ ∈ R with −t ≤ τ ≤ T − t we have∥∥ f̃p(t + τ, ũ1
p)− f̃p(t, ũ1

p)
τ

− 1√
ρph

∂fp

∂t

(
t, ·, 1√

ρph
ũ1

p(·)
)∥∥2

L2(Ωp)

=
∫

Ωp

1
ρph

∣∣∣ ∫ 1

0

[∂fp

∂t

(
t + ξτ, x,

1√
ρph

ũ1
p(x)

)
− ∂fp

∂t

(
t, x,

1√
ρph

ũ1
p(x)

)]
dξ
∣∣∣2dx

≤
∫

Ωp

1
ρph

[ ∫ 1

0

∣∣∂fp

∂t

(
t + ξτ, x,

1√
ρph

ũ1
p(x)

)
− ∂fp

∂t

(
t, x,

1√
ρph

ũ1
p(x)

)∣∣dξ
]2

dx

≤ 1
ρph

const.µ
p
(Ωp)τ2 −−−→

τ→0
0

(4.14)
The above inequality because the Lipschitz continuity of ∂fp

∂t .
3. It follows from (4.2)(iii) that

∂fm

∂t

(
t, ·, 1

√
ρm

ũ1
m(·)

)
∈ L2(Ωm) ∀t ∈ [0, T ] ∀ũ1

m ∈ L2(Ωm).

Let t ∈ [0, T ]. For τ ∈ R with −t ≤ τ ≤ T − t we have as above∥∥ f̃m(t + τ, ũ1
m)− f̃m(t, ũ1

m)
τ

− 1
√

ρm

∂fm

∂t

(
t, ·, 1

√
ρm

ũ1
m(·)

)∥∥2

L2(Ωm)
(4.15)

approaches zero as τ → 0.

4. Let (t, Ũ) ∈ [0, T ] × H with Ũ :=
(

(ũ1
p, ũ

1
m)

(ũ2
p, ũ

2
m)

)
. We consider the operator

D1F̃(t, Ũ) ∈ L(R;H) which is defined by

D1F̃(t, Ũ)τ :=

(
0(

1√
ρph

∂fp

∂t

(
t, ·, 1√

ρph
ũ1

p(·)
)
τ, 1√

ρm

∂fm

∂t

(
t, ·, 1√

ρm
ũ1

m(·)
)
τ
)) (4.16)

For (t, Ũ) ∈ [0, T ]×H and from (4.14) and (4.15) we have that

‖F̃(t + τ, Ũ)− F̃(t, Ũ)−D1F̃(t, Ũ)τ‖H
|τ |

0−−−−−−−−−−−−−−→
−t≤τ≤T−t, τ 6=0, τ→0

. (4.17)

Then there exists the partial derivative of F̃ with respect to t for all (t, Ũ) ∈ [0, T ]×H
and it is equal to D1F̃(t, Ũ). By the Lipschitz continuity of ∂fp

∂t and ∂fm

∂t it can be
showed that

‖D1F̃(t1, Ũ1)−D1F̃(t2, Ũ2)‖L(R;H) ≤ const.
(
|t1 − t2|+ ‖Ũ1 − Ũ2‖H

)
. (4.18)

Then the maping

(t, Ũ) 7→ D1F̃(t, Ũ) : [0, T ]×H → L(R;H)

is continuous. The boundedness of ∂fp

∂t and ∂fm

∂t implied by the boundedness of
D1F̃.
5. From (4.1)(iv) and (4.2)(iv) we have

∂fp

∂u

(
t, ·, 1√

ρph
ũ1

p(·)
)
ṽ1

p ∈ L2(Ωp)

and
∂fm

∂u

(
t, ·, 1

√
ρm

ũ1
m(·)

)
ṽ1

m ∈ L2(Ωm)
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for all t ∈ [0, T ] and all (ũ1
p, ũ

1
m), (ṽ1

p, ṽ
1
m) ∈ H. For t ∈ [0, T ], Ũ :=

(
(ũ1

p, ũ
1
m)

(ũ2
p, ũ

2
m)

)
∈

H and Ṽ :=

(
(ṽ1

p, ṽ
1
m)

(ṽ2
p, ṽ

2
m)

)
∈ H we put

D2F̃(t, Ũ)Ṽ :=

(
0(

1
ρph

∂fp

∂u

(
t, ·, 1√

ρph
ũ1

p(·)
)
ṽ1

p,
1

ρm

∂fm

∂u

(
t, ·, 1√

ρm
ũ1

m(·)
)
ṽ1

m

)) (4.19)

Since ∂fp

∂u (resp. ∂fm

∂u ) is bounded on [0, T ]×Ωp×R (resp. [0, T ]×Ωm×R), we see
that D2F̃(t, Ũ) ∈ L(H) for all (t, Ũ) ∈ [0, T ]×H.

For (t, Ũ) ∈ [0, T ]×H and Ṽ ∈ H with ‖Ṽ‖H 6= 0 we have (with “const” denoting
different constants)

‖F̃(t, Ũ + Ṽ)− F̃(t, Ũ)−D2F̃(t, Ũ)Ṽ‖2
H

‖Ṽ‖2
H

≤ const
‖Ṽ‖2

H

{∫
Ωp

[ ∫ 1

0

∣∣∂fp

∂u

(
t, x,

1√
ρph

(ũ1
p(x) + ξṽ1

p(x))
)

− ∂fp

∂u

(
t, x,

ũ1
p(x)√
ρph

)∣∣dξ
]2 |ṽ1

p(x)|2

ρph
dx

+
∫

Ωm

[ ∫ 1

0

∣∣∂fm

∂u

(
t, x,

1
√

ρm
(ũ1

m(x) + ξṽ1
m(x))

)
− ∂fm

∂u

(
t, x,

ũ1
m(x)
√

ρm

)∣∣dξ
]2 |ṽ1

m(x)|2

ρm
dx
}

≤ const
‖Ṽ‖2

H

{ 1
ρ2

ph
2

∫
Ωp

|ṽ1
p(x)|4dx +

1
ρ2

m

∫
Ωm

|ṽ1
m(x)|4dx

}
.

(4.20)

The above holds because of the Lipschitz continuity of ∂fp

∂u and ∂fm

∂u . Since

ṽ1
p ∈ H2(Ωp) ↪→ C0(Ωp) ↪→ L4(Ωp) and ṽ1

m ∈ H1(Ωm) ↪→ L4(Ωm)

(see lemmas 2.2 and 2.3), from (4.20), we have

‖F̃(t, Ũ + Ṽ)− F̃(t, Ũ)−D2F̃(t, Ũ)Ṽ‖2
H

‖Ṽ‖2
H

≤ const.
‖Ṽ‖2

H

( 1
ρ2

ph
2
‖ṽ1

p‖4

H2(Ωp)
+

1
ρ2

m

‖ṽ1
m‖4

H1(Ωm)

)
≤ const.
‖Ṽ‖2

H

‖(ṽ1
p, ṽ

1
m)‖4

Ṽ

≤ const.
‖Ṽ‖2

H

‖Ṽ‖4
H

= const.‖Ṽ‖2
H

.

(4.21)

It follows that the partial derivative of F̃ with respect to the second variable Ũ
exists and it is equal to D2F̃(t, Ũ) for all (t, Ũ) ∈ [0, T ]×H. We can show similarly
that the Lipschitz continuity (resp. the boundedness) of ∂fp

∂u and ∂fm

∂u leads to the
continuity (resp. the boundedness) of

(t, Ũ) 7→ D2F̃(t, Ũ) : [0, T ]×H → L(H).
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So the proof is complete. �

Lemma 4.3. Let F̃ : [0, T ]×H → H (resp. G̃) be defined by (4.11) (resp. (4.12)).
Under assumptions (1.12), (1.13), (4.9), (4.1) and (4.2), there exists a unique func-
tion Ũ : [0, T ] → H with the following properties:

(i)Ũ ∈ C1([0, T ];H).

(ii)
dŨ(t)

dt
+ ÃŨ(t) = F̃(t, Ũ(t)) in H on]0, T ].

(iii)Ũ(0) = G̃.

(4.22)

Proof. 1. It follows from theorem 2.10 that −Ã is the infinitesimal generator of a
C0-semigroup of linear operators in H.
2. From lemma 4.2 we have that F̃ : [0, T ]×H → H is continuously differentiable
with bounded partial derivatives.
3. It can be seen that G̃ belongs to D(Ã).
4. From theorem 2.11 we have the desired result. �

Theorem 4.4. Under assumptions (1.12), (1.13), (4.9), (4.1) and (4.2), there
exists a unique weak solution of the semilinear problem (1.1)-(1.11).

Proof. Let

Ũ :=

(
(ũ1

p, ũ
1
m)

(ũ2
p, ũ

2
m)

)
: [0, T ] → H

be the unique function satisfying (4.22) (Lemma 4.3). It can be showed that
(ũ1

p, ũ
1
m) belongs to C1([0, T ]; Ṽ ) ∩ C2([0, T ];H) and that it satisfies (4.13). Then

( 1√
ρph

ũ1
p,

1√
ρm

ũ1
m) is the desired weak solution. The uniqueness follows from the

uniqueness of Ũ. �

Remark 4.5. For sufficiently smooth solutions in the sense of definition 4.1 we
can obtain as usual a classical pointwise solution of system (1.1)-(1.11). See [12].
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