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FRIEDRICHS MODEL OPERATORS OF ABSOLUTE TYPE
WITH ONE SINGULAR POINT

SERGUEI I. IAKOVLEV

Abstract. Problems of existence of the singular spectrum on the continuous
spectrum emerges in some mathematical aspects of quantum scattering the-

ory and quantum solid physics. In the latter field, this phenomenon results

from physical effects such as the Anderson transitions in dielectrics. In the
study of this problem, selfadjoint Friedrichs model operators play an impor-

tant part and constitute quite an apt model of real quantum Hamiltonians.

The Friedrichs model and the Schrödinger operator are related via the inte-
gral Fourier transformation. Similarly, the relationship between the Friedrichs

model and the one dimensional discrete Schrödinger operator on Z is estab-

lished with the help of the Fourier series. We consider a family of selfadjoint
operators of the Friedrichs model. These absolute type operators have one

singular point t = 0 of positive order. We find conditions that guarantee the

absence of point spectrum and the singular continuous spectrum for such op-
erators near the origin. These conditions are actually necessary and sufficient.

They depend on the finiteness of the rank of a perturbation operator and on
the order of singularity. The sharpness of these conditions is confirmed by

counterexamples.

1. Introduction

Problem of existence of the singular spectrum on the continuous spectrum emerges
in some mathematical aspects of quantum scattering theory and quantum solid
physics. In the latter field this phenomenon results from physical effects such as
the Anderson transitions in dielectrics. Note that we understand the singular spec-
trum as the union of the point spectrum and the singular continuous spectrum. In
the study of this problem an important part is played by the selfadjoint Friedrichs
model operator S1 := t · +V acting in L2(R) (where t· stands for the operator of
multiplication by the independent variable t ∈ R, and V is an integral operator
with a continuous Hermitian kernel). This operator constitutes quite an apt model
of real quantum Hamiltonians. In [2] it was shown how the Friedrichs model can be
used for the study of the spectral properties of the Schrödinger operator (−∆ + q).
These operators are related via the integral Fourier transformation. A large body
of literature is devoted to this model; we mention the papers by Faddeev, Pavlov,
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Naboko, Iakovlev and others [1, 2, 10, 4, 5, 6, 7, 13, 14]. For the first time the fact
that here the singular spectrum may arise indeed was established by Pavlov and
Petras (1970) in [10]. Radically new conditions on V guaranteeing the finiteness
of the point spectrum of S1 (the singular continuous spectrum is missing) have
been found in the papers [1, 7]. Since, actually, these conditions are necessary and
sufficient in the context of the selfadjoint Friedrichs model the problem in question
was solved completely in [1].

Further elaboration of this topic seems to be of value. Namely, it is of interest to
investigate the singular spectrum of perturbations of the operators of multiplication
by a function f(t) of the independent variable (for example, f(t) is equal to cos t
or t2). Such operators naturally appear when various models of the Schrödinger
operator are considered in a momentum representation. For example, the operator
of multiplication by t2 is obtained if we write the Schrödinger operator in a mo-
mentum representation. Similarly, the relationship between the Friedrichs model
and the one dimensional discrete Schrödinger operator S on Z is established with
the help of the Fourier series. The operator S is equal to (U + U∗) + q and is
defined on the space l2(Z) of square summable complex sequences u = {un}+∞

n=−∞;
here U is the operator of right shift, U∗ is its adjoint, and q = {qn}∞−∞, so that
(Uu)n = un−1, (U∗u)n = un+1, and (q u)n = qn · un [8, 9]. Under the isomorphism
between l2(Z) and L2(−π, π) given by the map

Φ−1 : u → ũ(t) =
+∞∑

n=−∞
un · eınt, (1.1)

the operator S turns into S̃ acting by the formula

S̃ũ(t) = 2 cos(t) · ũ(t) +
∫ π

−π

q̃(t− x) · ũ(x) dx, (1.2)

where q̃(t) =
∑

n qn · eınt, ũ ∈ L2(−π, π). Indeed,

(S̃ũ) =Φ−1 [(U + U∗) + q]u =
+∞∑

n=−∞
(un−1 + un+1 + qnun)eınt

=
∑

n
uneı(n+1)t +

∑
n

uneı(n−1)t +
∑

n
qnuneınt

=2 cos(t)
∑

n
uneınt +

∫ π

−π

q̃(t− x) · ũ(x) dx .

(1.3)

Obviously, that the change of variables 2 cos t = x would reduce the study of
σsing(S̃), the singular spectrum of the operator S̃, to that of σsing(S1). How-
ever, since (cos t)′ = − sin t|±π = 0, this substitution is not smooth (that is, not
diffeomorphism) near the points ±π and, therefore, may lead to a loss of subtle
information concerning the structure of σsing(S̃). It is clear that, having an idea
of the structure of the set σsing(S1), we can deduce some information about the
set σsing(S̃) (also near the singular points t = ±π) with the help of the change
of variables, but the results obtained in this way will be expressed in inconvenient
terms, and their sharpness near zero will be less than satisfactory.

Thus, as a model in the theory of continuous spectrum perturbations it seems
reasonable to consider the perturbations not of the operator of multiplication by
the independent variable t, but of the operator of multiplication by a function of t.
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In this case the main attention must be paid to the singular spectrum in a neighbor-
hood of so called singular points next to which it is impossible to introduce a smooth
(locally) change of variables reducing our problem to the standard Friedrichs model.
It will be shown that in a neighborhood of such points the behavior of the singular
spectrum acquires a quite different character.

The following two functions f1(t) = |t|m and f2(t) = sgn t · |t|m have one zero
of order m > 0 at the point t = 0. And near the origin f1 and f2 have a different
behavior. To these functions there correspond the selfadjoint Friedrichs model
operators Am, m > 0, with one singular point t = 0

Am = |t|m ·+V (the absolute type operators) , (1.4)

and the operators Sm

Sm = sgn t · |t|m ·+V (the symmetric type operators) (1.5)

also with one singular point t = 0 for m 6= 1. The operator S1 = t ·+V is the main
operator of the Friedrichs model. It has no singular points. In this paper we study
the case of the operators Am. The operators Sm ,m 6= 1, were partially considered
in [3].

2. Statement of the problem and main result.

In L2(R) we consider a family of selfadjoint operators Am ,m > 0, given by

Am = |t|m ·+V . (2.1)

Here |t|m· is the operator of multiplication by the function |t|m of the independent
variable t ∈ R,and V (perturbation) is an integral operator with a continuous
Hermitian kernel v(t, x). Thus, the action of the operator Am can be written as
follows (

Amu
)
(t) = |t|m · u(t) +

∫
R

v(t, x)u(x) dx . (2.2)

We assume that V is non-negative and belongs to the trace class σ1 :

V ≥ 0 , V ∈ σ1 . (2.3)

Consequently, the operator Am is defined on the domain of functions u(t) ∈ L2(R)
such that |t|mu(t) ∈ L2(R). The kernel v(t, x) is assumed to satisfy the following
smoothness condition

v(t + h, t + h) + v(t, t)− v(t + h, t)− v(t, t + h) ≤ ω2(|h|), |h| ≤ 1 , (2.4)

with the function ω(t) (the modulus of continuity of V ) monotone and satisfying a
Dini condition:

ω(t) ↓ 0 as t ↓ 0 , and
∫ 1

0

ω(t)
t

dt < ∞ . (2.5)

Inequality (2.4) may be regarded as a smoothness condition for the kernel v1/2(t, x)
of the integral operator V 1/2, because, as shown in [6], the expression on the left
in (2.4) can be written as the integral

∫
R |v1/2(t+h, x)−v1/2(t, x)|2 dx (and, there-

fore, is nonnegative). Together with (2.4) the fact that V is of class σ1 means that
the kernel v(t, x)satisfies a certain condition of decrease at infinity. The requirement
that the operator V be of trace class σ1 is sufficient for the absolutely continuous
spectrum of Am to coincide with the real semi-axis R+ = [0 ,+∞) (see [11]).
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Near the singular point t = 0 we study the dependence of the behavior of the
point and singular continuous spectrum on the smoothness of the kernel v(t, x) .
As noted above the structure of the singular spectrum σsing(S1) of the operator
S1 = t · +V (the usual Friedrichs model operator) is pretty well studied [1, 2,
4, 5, 6, 7, 10, 13, 14]. In particular, in the papers [7, 1] it was shown that for
this operator there exists a sharp condition of finiteness of the singular spectrum.
Namely, if ω(t) = O(

√
t) as t → 0, the singular spectrum of S1 consists of at

most a finite number of eigenvalues of finite multiplicity (the singular continuous
spectrum is absent). On the other hand, if limt→0ω(t)/

√
t = +∞, then examples

are constructed showing that even in the case when V is a rank 1 perturbation
the eigenvalues of S1 may have cluster points. By using the simple change of
variables |t|m = x, we can show that outside any neighborhood of the origin on
the interval [0,+∞) the structure of the spectrum σsing(Am) is locally identical
with that of the operator S1. This result is explained by the smoothness of the
above change of variables outside any neighborhood of the origin, and also by the
local character of the main results of [1, 2, 10, 4, 5, 6, 7, 13, 14] relating to the
structure of σsing(S1) . Here by locality we mean the following. Suppose that
conditions (2.4), (2.5) are fulfilled only in some interval (c, d) ⊂ R, then the main
results in [1, 2, 10, 4, 5, 6, 7, 13, 14] about the structure of σsing(S1) remain
true in any closed subinterval ∆ ⊂ (c, d). However, as shown in this paper, in
a neighborhood of the origin the behavior of σsing(Am) is quite different. Here,
near zero, we can still use the change of variables |t|m = x mentioned above, but,
since, e.g., (|t|m)′|0 = 0 for m > 1, this change is not smooth (that is, not a
diffeomorphism) near zero. In this sense the zero point is a singular point of the
operators Am ,m > 0, so it needs a special inspection. Observe that the origin is
also a boundary point of the continuous spectrum of Am, which coincides with the
interval [0,+∞).

Naturally, there appears a problem of finding sharp, in a sense, conditions on the
kernel v(t, x) that guarantee that the singular spectrum is absent near the origin. In
this paper it is shown that such sufficient conditions are given in terms of asymptotic
behavior of the modulus of continuity ω(t) as t tends to zero. It appears that for
m ∈ ( 1 , 3] these conditions also depend on a rank of the perturbation operator
V . Namely, if rank V < ∞, then provided that ω(t) = O(t(m−1)/2), t → 0, the
spectrum near zero is purely absolutely continuous. But if rankV = +∞, then the
structure of σsing(Am) depends on the value of a constant C in the condition ω(t) =
Ct(m−1)/2. The sharpness of these conditions is confirmed by counterexamples. For
m ≤ 1 the spectrum is always purely absolutely continuous in some neighborhood
of the zero point on the interval [0,+∞). At the same time for m > 3 the singular
spectrum may appear near zero for any modulus of continuity ω(t). Hence, for
m > 3 near zero there is no condition of the singular spectrum absence in terms of
ω(t) as for m ∈ ( 1 , 3].

In Sections 3, 4 the main results of the paper are formulated. In Section 3
sufficient conditions on the perturbation V are given ensuring the singular spectrum
absence near the origin. Counterexamples constructed in Section 4 show that these
conditions are sharp. Note that some results of this paper (for the case m ∈ N)
were announced in [15], and the case of m = 2 has been in detail considered in [16].
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3. Sufficient conditions for absolute continuity of the spectrum on
[0,+∞) near zero

For z ∈ C\ [0,+∞) we define an analytic operator–valued function Tm(z) : E →
E, where E := R(V ) is the closure of the range of V , as follows:

Tm(z) := −
√

V (|t|m − z)−1
√

V . (3.1)

Here (|t|m−z)−1 denotes the operator of multiplication by the corresponding func-
tion in L2(R). Obviously, that Im Tm(z) ≥ 0 if Im z > 0, and Tm(z) ∈ σ1.

proposition 3.1. If V satisfies conditions (2.3)–(2.5), then in the complex plane
cut along [0,+∞) the analytic operator–valued function Tm(z) admits a σ1–norm
continuous extension to the upper and the lower parts of the cut on the interval
( 0 ; +∞).

Let Tm(λ) := Tm(λ + i0), λ > 0, denote the corresponding boundary values
of Tm(z). The set Nm := {λ > 0 : ∃g ∈ l2, g 6= 0, Tm(λ)g = g} ≡ {λ > 0 :
ker(I − Tm(λ)) 6= ∅} is called a set of roots of the operator–function Tm. The
vector g is called a root vector corresponding to the root λ.

proposition 3.2. If V satisfies conditions (2.3)– (2.5), then σsing(Am), the sin-
gular spectrum of the operator Am = |t|m · +V , m > 0, embeds into the set Nm

supplemented by the origin, i.e.,

σsing(Am) = σp(Am) ∪ σs.c.(Am) ⊆ Nm ∪ {0} , (3.2)

where σp(Am) is the point spectrum, and σs.c.(Am) is the singular continuous spec-
trum of the selfadjoint operator Am.

From the Fredholm analytic alternative (see [12, §8]) it follows that the set
Nm ∪ {0} ⊂ R is a closed set of Lebesgue measure zero. Also [16, Theorem 3] says
that under the condition V ≥ 0 the point 0 is not an eigenvalue of the operator
Am = |t|m · +V . Below some conditions on the modulus of continuity ω(t) of
the perturbation operator V are given guaranteeing the absolute continuity of the
spectrum of the operator Am on the interval [0,+∞) near zero. For m ∈ (1, 3]
these conditions depend on a rank of the operator V .

Theorem 3.3. Suppose that conditions (2.3)–(2.5) are fulfilled. Then for m ∈ (0; 1]
the roots set Nm is empty in some neighborhood of the origin. And, hence, the
spectrum of the operator Am = |t|m · +V , defined by (2.2), is purely absolutely
continuous in some neighborhood of the origin on the interval [0,+∞).

Theorem 3.4. Suppose that the perturbation V satisfies conditions (2.3)– (2.5)
with the function ω(t) = Cωtα, where α = (m− 1)/2, and m ∈ (1; 3]. If

Cω < Cm := (2
∫ 1

0

(1− x)m−1

1− xm
dx)−1/2 , (3.3)

then the roots set Nm is empty in some neighborhood of the origin. Consequently,
the spectrum of the operator Am = |t|m ·+V , defined by (2.2), is purely absolutely
continuous in some neighborhood of the origin on the interval [0,+∞).

Note: Clearly that for the modulus of continuity ω(t) = Cωtα the greatest pos-
sible value of α is 1. The value α = 1 exactly corresponds to m = 3.



54 S. I. IAKOVLEV EJDE/CONF/13

Observation: It is not difficult to obtain for the constant Cm a two–sided estimate.
Indeed, since for m > 1 and x ∈ [0, 1]

1− x ≤ 1− xm ≤ m(1− x) , (3.4)

we have
1
m

∫ 1

0

(1− x)m−1

1− x
dx ≤

∫ 1

0

(1− x)m−1

1− xm
dx ≤

∫ 1

0

(1− x)m−1

1− x
dx . (3.5)

Whence

(
m− 1

2
)1/2 ≤ Cm ≤ (

m(m− 1)
2

)1/2 . (3.6)

At the same time for m = 2 and m = 3 the integral
∫ 1

0
(1− t)m−1/(1− tm) dt

is evaluated exactly. For m = 2 we obtain C2 = (1/ ln 4)1/2 = 0, 849 . . . that
coincides with the value of this constant from the paper [16, Theorem 1]. Likewise,
we find that C3 = (π/

√
3 − ln 3)−1/2 = 1, 182 . . . . Note also that from (3.6) it

follows immediately that Cm → +0 as m → 1+ (compare that with the assertion
of Theorem 3.3).

If the perturbation V is a finite rank operator, the result of Theorem 3.4 can be
improved.

Theorem 3.5. Suppose that the perturbation operator V satisfies conditions (2.3)–
(2.5) and rank V < ∞. If m ∈ (1; 3] and ω(t) = O(t(m−1)/2) as t → 0+, then the
origin is not a cluster point of the set of roots Nm of the operator-valued function
Tm. Consequently, the spectrum of the operator Am = |t|m ·+V , defined by (2.2),
is purely absolutely continuous in some neighborhood of the origin on the interval
[0,+∞).

4. Sharpness of the absence conditions for the singular spectrum:
Counterexamples

The following theorem states that for an infinite rank perturbation (rankV =
∞) the absence condition for the singular spectrum of Am, m ∈ (1; 3], near the
origin is indeed related to the constant Cω by ω(t) = Cω · t(m−1)/2 as t → 0, (see
Theorem 3.4). In particular, this means that the result of Theorem 3.5 cannot be
extended to perturbations of infinite rank. Namely, Theorem 3.4 is sharp in the
following sense.

Theorem 4.1. Let m ∈ (1; 3]. For any value of Cω ≥ C̃m := 2(m−1)/2m there
exists an operator V with rank V = ∞, such that V satisfies conditions (2.3)–(2.5)
with ω(t) = Cωt(m−1)/2, and the origin is a cluster point of the set of eigenvalues
of the operator Am = |t|m ·+V , defined by (2.2).

Note: It is easy to verify that C̃m = 2(m−1)/2m ≥ (m(m− 1)/2)1/2 ≥ Cm for
m > 1.

If rank V = 1, then V = (·, ϕ)ϕ with ϕ ∈ L2(R). In this case the smoothness
condition (2.4) is written in the form

|ϕ(t + h)− ϕ(t)| ≤ ω
(
|h|

)
, |h| ≤ 1 , (4.1)

with the function ω(t) satisfying condition (2.5). Note that for any function ϕ(t)
its actual modulus of continuity ω̃(h) := sup{|ϕ(x) − ϕ(y)| : |x − y| < h} always
satisfies the additional constraint of semiadditivity: ω̃(t1 + t2) ≤ ω̃(t1) + ω̃(t2) for
all t1, t2 ≥ 0.



EJDE/CONF/13 FRIEDRICHS MODEL OPERATORS 55

Theorem 3.5 involves the condition ω(t) = O(t(m−1)/2) as t → 0 ensuring for
the finite rank perturbation operator V the emptiness of the roots set Nm near the
origin. This condition appears to be sharp in the class of semiadditive functions
ω(t).

Theorem 4.2. Let m > 1. Suppose that ω(t), t ≥ 0, is a monotone nonde-
creasing function satisfying the condition ω(0+) = ω(0) = 0 as well as the nat-
ural additional condition of semiadditivity: ω(t1 + t2) ≤ ω(t1) + ω(t2) for all
t1, t2 ≥ 0. If lim supt→0 ω(t)/t(m−1)/2 = +∞, then a compactly supported func-
tion ϕ : R → R satisfying condition (4.1) is constructed and such that the operator
Am = |t|m ·+(·, ϕ)ϕ has a sequence of positive eigenvalues converging to zero.

Corollary 4.3. It is not hard to show (see [3, Lemma 2.2]) that if ω(t) is a non-
negative semiadditive function and ω(t) ↓ 0 as t ↓ 0, then for any a > 0 there exists
a constant C > 0 such that Ct ≤ ω(t) for t ∈ [0, a]. Hence,

lim sup
t→0

ω(t)/t(m−1)/2 = +∞

for all m > 3. Therefore, it follows from Theorem 4.2 that for every m > 3 and
for each monotone and semiadditive function ω(t), t ≥ 0, satisfying the condition
ω(0+) = ω(0) = 0 (and thus nonnegative) a real–valued compactly supported func-
tion ϕ is constructed satisfying the smoothness condition (4.1) and such that the
operator Am = |t|m · +(·, ϕ)ϕ has a sequence of positive eigenvalues converging to
zero. This means, in particular, that for m > 3 there is no condition guaranteeing
the absence of the singular spectrum of the operator Am = |t|m ·+V near the origin
in terms of the modulus of continuity ω(t) of the perturbation V .

Corollary 4.4. If m ∈ (1, 3], then, according to Theorem 4.2, the sufficient con-
dition ω(t) = O(t(m−1)/2) as t → 0 guaranteeing the absence of the singular spec-
trum of the operator Am near the origin for the finite rank perturbation operator,
rank V < ∞, (see Theorem 3.5) is sharp. If this condition is not fulfilled, that is,
lim supt→0 ω(t)/t(m−1)/2 = +∞, then even in the case when V is a rank 1 pertur-
bation there can exist nontrivial singular spectrum near zero, and, in particular, the
operator Am can have a sequence of positive eigenvalues converging to zero.

Acknowledgements. The author thanks Professor S. N. Naboko for his attention
to this work.

References

[1] E. M. Dinkin, S. N. Naboko, and S. I. Yakovlev; The boundary of finiteness of the singular

spectrum in the selfadjoint Friedrichs model, Algebra i Anal. 3 (1991), no. 2, 77–90.
[2] L. D. Faddeev; On a model of Friedrichs in the theory of perturbations of the continuous

spectrum, Trudy Mat. Inst. Steklov 73 (1964), 292–313.
[3] S. I. Iakovlev; Examples of Friedrichs model operators with a cluster point of eigenvalues.

International Journal of Mathematics and Mathematical Sciences. . Vol. 2003, pp. 625–638.
[4] Ya. V .Mikityuk; The singular spectrum of selfadjoint operators, Dokl. Akad. Nauk SSSR

303 (1988), no.1, 33–36.
[5] S. N. Naboko; Uniqueness theorems for operator–functions with positive imaginary part and

the singular spectrum in the selfadjoint Friedrichs model, Dokl. Akad. Nauk SSSR 275 (1984),
no.6, 1310–1313.

[6] S. N. Naboko; Uniqueness theorems for operator-valued functions with positive imaginary

part, and the singular spectrum in the selfadjoint Friedrichs model, Arkiv för matematik 25
(1987), no.1, 115–140.



56 S. I. IAKOVLEV EJDE/CONF/13

[7] S. N. Naboko and S. I. Yakovlev; Conditions for the finiteness of the singular spectrum in a

selfadjoint Friedrichs model, Functional Anal. i Pril. 24 (1990), no.4, 88–89.

[8] S. N. Naboko, S. I. Yakovlev; On point spectrum of the discrete Schrödinger operator, Funk-
tsional. anal. i Prilozhen. 26 (1992), no. 2, 85–88.

[9] S. N. Naboko, S. I. Yakovlev: Discrete Schrödinger operator: The point spectrum on the

continuous one, Algebra i Anal. 4 (1992), no. 3, 183–195.
[10] B. S. Pavlov and S. V. Petras; The singular spectrum of a weakly perturbed multiplication

operator, Functional Anal. i Pril. 4 (1970), no.2, 54–61.

[11] M. Reed and B. Simon; Methods of modern mathematical physics 4. Analysis of operators.
Academic press, New York–London,1978.

[12] D. R. Yafaev; Mathematical scattering theory, Saint-Petersburg University press, 1994.

[13] S. I. Yakovlev; Perturbations of a singular spectrum in a selfadjoint Friedrichs model, Vestnik
Leningrad Univ. Mat. Mekh. Astronom. (1990), no.1, 116–117.

[14] S. I. Yakovlev; On the structure of the singular spectrum in selfadjoint Friedrichs model, L.,
(1991) (Manuscript, Depon. VINITI, no. 2050–B, 17.05.91).

[15] S. I. Yakovlev; On the singular spectrum of the Friedrichs model operators in a neighborhood

of a singular point, Functional Anal. i Pril. 32 (1998), no.3, 91–94.
[16] S. I. Yakovlev; The finiteness bound for the singular spectrum of Friedrichs model operators

near a singular point, Algebra i analis, 10 (1998), no.4, 210–237.

Departamento de Matematicas, Universidad Simon Bolivar, Apartado Postal 89000,

Caracas 1080-A, Venezuela
fax +58(212)-906-3278, tel. +58(212)-906-3287

E-mail address: iakovlev@mail.ru serguei@usb.ve


	1. Introduction
	2. Statement of the problem and main result.
	3. Sufficient conditions for absolute continuity of the spectrum on [0,+) near zero
	4. Sharpness of the absence conditions for the singular spectrum: Counterexamples
	Acknowledgements

	References

