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EXACT CONTROLLABILITY OF A NON-LINEAR
GENERALIZED DAMPED WAVE EQUATION: APPLICATION

TO THE SINE-GORDON EQUATION

HUGO LEIVA

Abstract. In this paper, we give a sufficient conditions for the exact control-

lability of the non-linear generalized damped wave equation

ẅ + ηẇ + γAβw = u(t) + f(t, w, u(t)),

on a Hilbert space. The distributed control u ∈ L2 and the operator A is
positive definite self-adjoint unbounded with compact resolvent. The non-

linear term f is a continuous function on t and globally Lipschitz in the other

variables. We prove that the linear system and the non-linear system are both
exactly controllable; that is to say, the controllability of the linear system is

preserved under the non-linear perturbation f . As an application of this result
one can prove the exact controllability of the Sine-Gordon equation.

1. Introduction

In this paper, we give sufficient conditions for the exact controllability of the
following non-linear generalized damped wave equation on a Hilbert space X,

ẅ + ηẇ + γAβw = u(t) + f(t, w, u(t)), t ≥ 0, (1.1)

where γ > 0, η > 0, β ≥ 0, the distributed control u is in L2(0, t1;X), and
A : D(A) ⊂ X → X is a positive definite self-adjoint unbounded linear operator
in X with compact resolvent. This implies the following spectral decomposition of
the operator A:

Ax =
∞∑

n=1

λn

γn∑
k=1

〈x, φn,k〉φn,k =
∞∑

n=1

λnEnx, x ∈ D(A).

The non-linear term f : [0, t1] × X × X → X is a continuous function on t and
globally Lipschitz in the other variables. i.e., there exists a constant l > 0 such
that for all x1, x2, u1, u2 ∈ X we have

‖f(t, x2, u2)− f(t, x1, u1)‖ ≤ l {‖x2 − x1‖+ ‖u2 − u1‖} , t ∈ [0, t1]. (1.2)
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We consider the operator

A =
[

0 IX

−γAβ −ηI

]
(1.3)

which corresponds to the equation ẅ + ηẇ + γAβw = 0 written as a first order
system in the space D(Aβ/2)×X. Then we prove the following statements:

(I) A generates a strongly continuous group {T (t)}t∈R on D(Aβ/2) ×X such
that ‖T (t)‖ ≤ M(η, γ)e−

η
2 t, t ≥ 0.

(II) The linear system (1.4) (f = 0) is exactly controllable on [0, t1].
(III) The non-linear system (1.1) is also exactly controllable on [0, t1].

Moreover, each of the following statements are equivalent to the exact controllability
of the linear system

ẅ + ηẇ + γAβw = u(t) t ≥ 0, (1.4)
(a) Each of the following finite dimensional systems is controllable on [0, t1],

y′ = AjPjy + PjBu, y ∈ R(Pj); j = 1, 2, . . . ,∞. (1.5)

(b) B∗P ∗j eA∗
j ty = 0, for all t ∈ [0, t1], implies y = 0

(c) Rank
[
PjB AjPjB A2

jPjB · · · A
2γj−1
j PjB

]
= 2γj

(d) The operator Wj(t1) : R(Pj) → R(Pj) given by

Wj(t1) =
∫ t1

0

e−AjsBB∗e−A∗
j sds, (1.6)

is invertible, where λj are the eigenvalues of A, {Pj} are the projections on
the corresponding eigenspace,

B =
[

0
IX

]
, Aj =

[
0 1

−γλβ
j −η

]
Pj , j ≥ 1.

The operator, Wj(t1), allows us to compute explicitly the control u ∈ L2(0, t1;X)
steering an initial state z0 to a final state z1 in time t1 > 0 for the linear system
(1.4). This control is given by the formula

u(t) = B∗T ∗(−t)
∞∑

j=1

W−1
j (t1)Pj(T (−t1)z1 − z0). (1.7)

We use this formula to construct a sequence of controls un that converges to a
control u that steers an initial state z0 to a final state z1 for the non-linear system
(1.1). That is to say, we proved the exact controllability of this system.

As an application of this result we can prove the exact controllability of The
Sine-Gordon Equation

wtt + cwt − dwxx + k sinw = p(t, x), 0 < x < 1, t ∈ R,

w(t, 0) = w(t, 1) = 0, t ∈ R
(1.8)

where d > 0, c > 0, k > 0 and p : R× [0, 1] → R is continuous and bounded function
acting as an external force.

The existence of an attractor for the Sine-Gordon equation is proved in [9] where
we can find a study of this equation, and the existence of bounded solutions for this
model (1.8) and others similar one has been carried out recently in [5], [6] and [3].
To our knowledge, the exact controllability of this model under non-linear action
of the control has not been studied before. So, in this paper we give a sufficient
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conditions for the exact controllability of the system (1.1) that can be applied to
the following controlled Sine-Gordon equation

wtt + cwt − dwxx + k sinw = p(t, x) + u(t, x) + g(t, w, u(t, x)), 0 < x < 1

w(t, 0) = w(t, 1) = 0, t ∈ R
(1.9)

where g : [0, t1] × R × R → R is a continuous function on t and globally Lips-
chitz in the other variables. i.e., there exists a constant m > 0 such that for all
x1, x2, u1, u2 ∈ R we have

‖g(t, x2, u2)− g(t, x1, u1)‖ ≤ m {‖x2 − x1‖+ ‖u2 − u1‖} , t ∈ [0, t1]. (1.10)

This system can be written in the form of system (1.1) if we choose X = L2[0, 1],
Aφ = −φxx, with domain D(A) = H2 ∩ H1

0 and f(t, w, u) = −k sinw + p(t, ·) +
g(t, w, u). Moreover, the exact controllability of (1.9) does not depend on the
bounded function p(t, ·).

Also, in [4] the authors study the exact null controllability of the second order
linear equation

ẅ + ρArẇ + Aw = u(t), ρ > 0,
1
2
≤ r ≤ 1, t ≥ 0, (1.11)

where the distributed control u ∈ L2(0, t1;X) and A : D(A) ⊂ X → X is a positive
definite self-adjoint unbounded linear operator in X with compact resolvent. They
prove that if 1

2 ≤ r < 1, then the system (1.11) is exactly null controllable on
[0, t1]. However, if α = 1, the system (1.11) is not exactly null controllable. In [2,
Example 3.27] it is shown that exact null controllability of an infinite dimensional
system does not imply exact controllability of the system.

2. Notation and Preliminaries

The fact that A : D(A) ⊂ X → X is a positive definite self-adjoint unbounded
linear operator in X with compact resolvent implies the following:

(a) The spectrum of A consists of only eigenvalues

0 < λ1 < λ2 < · · · < λn →∞,

Each λj has finite multiplicity, γn, equal to the dimension of the corre-
sponding eigenspace.

(b) There exists a complete orthonormal set {φn,k} of eigenvectors of A.
(c) For all x ∈ D(A) we have

Ax =
∞∑

n=1

λn

γn∑
k=1

〈x, φn,k〉φn,k =
∞∑

n=1

λnEnx, (2.1)

where 〈·, ·〉 is the inner product in X and

Enx =
γn∑

k=1

〈x, φn,k〉φn,k. (2.2)

So, {En} is a family of complete orthogonal projections in X and x =∑∞
n=1 Enx, x ∈ X.

(d) −A generates an analytic semigroup {e−At} given by

e−Atx =
∞∑

n=1

e−λntEnx. (2.3)
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(e) The fractional powered spaces Xr are given by

Xr = D(Ar) = {x ∈ X :
∞∑

n=1

(λn)2r‖Enx‖2 < ∞}, r ≥ 0,

with the norm

‖x‖r = ‖Arx‖ =
{ ∞∑

n=1

λ2r
n ‖Enx‖2

}1/2
, x ∈ Xr,

and

Arx =
∞∑

n=1

λr
nEnx. (2.4)

Also, for r ≥ 0 we define Zr = Xr ×X, which is a Hilbert Space endow with the
norm ∥∥∥ [

w
v

] ∥∥∥2

Zr

= ‖w‖2r + ‖v‖2.

Using the change of variables w′ = v, the second order equation (1.1) can be
written as a first order system of ordinary differential equations in the Hilbert
space Zβ/2 = D(Aβ/2)×X = Xβ/2 ×X as

z′ = Az + Bu + F (t, z, u(t)) z ∈ Zβ/2, t ≥ 0, (2.5)

where

z =
[
w
v

]
, B =

[
0

IX

]
, A =

[
0 IX

−γAβ −ηIX

]
. (2.6)

is an unbounded linear operator with domain D(A) = D(Aβ)×X and

F (t, z, u) =
[

0
f(t, w, u)

]
, (2.7)

is a function F : [0, t1]×Zβ/2 ×X → Z. Since Xβ/2 is continuously included in X
we obtain for all z1, z2 ∈ Zβ/2 and u1, u2 ∈ X that

‖F (t, z2, u2)− F (t, z1, u1)‖Zβ/2 ≤ L {‖z2 − z1‖+ ‖u2 − u1‖} , t ∈ [0, t1]. (2.8)

In this paper, without lose of generality we shall assume the following condition

η2 < 4γλβ
1 .

3. The Uncontrolled Linear Equation

In this section we shall study the well-posedness of the abstract linear Cauchy
initial-value problem

z′ = Az, (t ∈ R)

z(0) = z0 ∈ D(A),
(3.1)

which is equivalent to prove that the operator A generates a strongly continuous
group. To this end, we shall use the following Lema from [7].

Lemma 3.1. Let Z be a separable Hilbert space and {An}n≥1, {Pn}n≥1 two families
of bounded linear operators in Z with {Pn}n≥1 being a complete family of orthogonal
projections such that

AnPn = PnAn, n = 1, 2, 3, . . . (3.2)
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Define the family of linear operators

T (t)z =
∞∑

n=1

eAntPnz, t ≥ 0. (3.3)

Then
(a) T (t) is a linear bounded operator if

‖eAnt‖ ≤ g(t), n = 1, 2, 3, . . . (3.4)

for some continuous real-valued function g(t).
(b) Under the condition (3.4) {T (t)}t≥0 is a C0-semigroup in the Hilbert space

Z whose infinitesimal generator A is given by

Az =
∞∑

n=1

AnPnz, z ∈ D(A) (3.5)

with D(A) = {z ∈ Z :
∑∞

n=1 ‖AnPnz‖2 < ∞}
(c) the spectrum σ(A) of A is given by

σ(A) =
∞⋃

n=1

σ(Ān), (3.6)

where Ān = AnPn.

Theorem 3.2. The operator A given by (2.6), is the infinitesimal generator of a
strongly continuous group {T (t)}tR given by

T (t)z =
∞∑

n=1

eAntPnz, z ∈ Zβ/2, t ≥ 0 (3.7)

where {Pn}n≥0 is a complete family of orthogonal projections in the Hilbert space
Zβ/2: Pn = diag[En, En], n ≥ 1, and

An = BnPn, Bn =
[

0 1
−γλβ

n −η

]
, n ≥ 1. (3.8)

This group decays exponentially to zero. In fact, we have the estimate ‖T (t)‖ ≤
M(η, γ)e−

η
2 t, t ≥ 0, where

M(η, γ)
2
√

2
= sup

n≥1

{
2
∣∣∣η ±

√
4γλβ

n − η2√
η2 − 4γλβ

n

∣∣∣, ∣∣∣(2 + γ)

√
λβ

n

4γλβ
n − η2

∣∣∣}.

Proof. Computing Az yields,

Az =
[

0 I
−γAβ −η

] [
w
v

]
=

[
v

−γAβw − ηv

]
=

[ ∑∞
n=1 Env

−γ
∑∞

n=1 λβ
nEnw − η

∑∞
n=1 Env

]
=

∞∑
n=1

[
Env

−γλβ
nEnw − ηEnv

]
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=
∞∑

n=1

[
0 1

−γλβ
n −η

] [
En 0
0 En

] [
w
v

]

=
∞∑

n=1

AnPnz.

It is clear that AnPn = PnAn. Now, we need to check condition (3.4) from Lemma
3.1. To this end, compute the spectrum of the matrix Bn. The characteristic
equation of Bn is given by

λ2 + ηλ + γλβ
n = 0,

and the eigenvalues σ1(n), σ2(n) of the matrix Bn are given by

σ1(n) = −c + iln, σ2(n) = −c− iln,

where,

c =
η

2
and ln =

1
2

√
4γλβ

n − η2.

Therefore,

eBnt = e−ct
{

cos lntI +
1
ln

(Bn + cI)
}

= e−ct

[
cos lnt + η

2ln
sin lnt sin lnt

ln

−γS(n)λβ/2
n sin lnt cos lnt− η

2ln
sin lnt

]
,

From the above formulas, we obtain

eBnt = e−ct

[
a(n) b(n)

ln

−γS(n)λβ/2
n c(n) d(n)

]
where

a(n) = cos lnt +
η

2ln
sin lnt, b(n) = sin lnt,

c(n) = sin lnt, d(n) = cos lnt− η

2ln
sin lnt, S(n) =

√
λβ

n

4γλβ
n − η2

.

Now, consider z = (z1, z2)T ∈ Zβ/2 such that ‖z‖Zβ/2 = 1. Then

‖z1‖2β/2 =
∞∑

j=1

λβ
j ‖Ejz1‖2 ≤ 1 and ‖z2‖2X =

∞∑
j=1

‖Ejz2‖2 ≤ 1.

Therefore, λ
β/2
j ‖Ejz1‖ ≤ 1, ‖Ejz2‖ ≤ 1, j = 1, 2, . . . . and so,

‖eAntz‖2Zβ/2
= e−2ct

∥∥∥[
a(n)Enz1 + b(n)

ln
Enz2

−γS(n)c(n)λ
β
2
n Enz1 + d(n)Enz2

] ∥∥∥2

Zβ/2

= e−2ct‖a(n)Enz1 +
b(n)
ln

Enz2‖2β
2

+ e−2ct‖

− γS(n)c(n)λ
β
2
n Enz1 + d(n)Enz2‖2X

= e−2ct
∞∑

j=1

λβ
j ‖Ej

(
a(n)Enz1 +

b(n)
ln

Enz2

)
‖2
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+ e−2ct
∞∑

j=1

‖Ej

(
− γS(n)c(n)λ

β
2
n Enz1 + d(n)Enz2

)
‖2

= e−2ctλβ
n‖a(n)Enz1 +

b(n)
ln

Enz2‖2 + e−2ct‖

− γS(n)c(n)λ
β
2
n Enz1 + d(n)Enz2‖2

≤ e−2ct(|a(n)|+ |λ
β
2

λα
n

b(n)|)2 + e−2ct(|γS(n)c(n)|+ |d(n)|)2,

where

|λ
β
2
n

ln
b(n)| =

∣∣∣
√

λβ
n

η2 − 4γλβ
n

∣∣∣.
If we set,

M(η, γ)
2
√

2
= sup

n≥1

{
2
∣∣∣η ±

√
4γλβ

n − η2√
η2 − 4γλβ

n

∣∣∣, ∣∣∣(2 + γ)

√
λβ

n

4γλβ
n − η2

∣∣∣},

we have,
‖eAnt‖ ≤ M(η, γ)e−ct, t ≥ 0, n = 1, 2, . . . .

Hence, applying Lemma 3.1 we obtain that A generates a strongly continuous group
given by (3.7). Next, we will prove this group decays exponentially to zero. In fact,

‖T (t)z‖2 ≤
∞∑

n=1

‖eAntPnz‖2

≤
∞∑

n=1

‖eAnt‖2‖Pnz‖2

≤ M2(η, γ)e−2ct
∞∑

n=1

‖Pnz‖2

= M2(η, γ)e−2ct‖z‖2.

Therefore, ‖T (t)‖ ≤ M(η, γ)e−ct, t ≥ 0. �

4. Exact Controllability of the Linear System

Now, we shall give the definition of controllability in terms of the linear systems

z′ = Az + Bu z ∈ Zβ/2, t ≥ 0, (4.1)

where

z =
[
w
v

]
, B =

[
0

IX

]
, A =

[
0 IX

−γAβ −ηIX

]
. (4.2)

For all z0 ∈ Zβ/2 equation (4.1) has a unique mild solution given by

z(t) = T (t)z0 +
∫ t

0

T (t− s)Bu(s)ds, 0 ≤ t ≤ t1. (4.3)

The following definition of exact controllability can be found in [2].
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Definition 4.1. We say that system (4.1) is exactly controllable on [0, t1], t1 > 0,
if for all z0, z1 ∈ Zβ/2 there exists a control u ∈ L2(0, t1;X) such that the solution
z(t) of (4.3) corresponding to u, satisfies z(t1) = z1.

Consider the bounded linear operator

G : L2(0, t1;U) → Zβ/2, Gu =
∫ t1

0

T (−s)B(s)u(s)ds. (4.4)

Then the following proposition is a characterization of the exact controllability of
system (4.1).

Proposition 4.2. The system (4.1) is exactly controllable on [0, t1] if and only if,
the operator G is surjective, that is to say

GL2(0, t1;X) = Range(G) = Zβ/2.

Now, consider the family of finite dimensional systems

y′ = AjPjy + PjBu, y ∈ R(Pj); j = 1, 2, . . . ,∞. (4.5)

Then the following proposition can be shown as in [8, Lemma 1].

Proposition 4.3. The following statements are equivalent:
(a) System (4.5) is controllable on [0, t1]
(b) B∗P ∗j eA∗

j ty = 0, for all t ∈ [0, t1], implies y = 0

(c) Rank
[
PjB AjPjB A2

jPjB · · · A
2γj−1
j PjB

]
= 2γj

(d) The operator Wj(t1) : R(Pj) → R(Pj) given by

Wj(t1) =
∫ t1

0

e−AjsBB∗e−A∗
j sds, (4.6)

is invertible.

Now, we are ready to formulate the main result on exact controllability of the
linear system (4.1).

Theorem 4.4. The system (4.1) is exactly controllable on [0, t1]. Moreover, the
control u ∈ L2(0, t1;X) that steers an initial state z0 to a final state z1 at time
t1 > 0 is given by the formula

u(t) = B∗T ∗(−t)
∞∑

j=1

W−1
j (t1)Pj(T (−t1)z1 − z0). (4.7)

Proof. Since {T (t)}t≥0 is a group, the operator G in (5) can be replaced by

G : L2(0, t1;X) → Zβ/2, Gu =
∫ t1

0

T (−s)B(s)u(s)ds. (4.8)

Then system (4.1) is exactly controllable on [0, t1] if and only if, the operator G is
surjective, that is to say

GL2(0, t1;X) = Range(G) = Zβ/2.

First, we shall prove that each of the following finite dimensional systems is con-
trollable on [0, t1]

y′ = AjPjy + PjBu, y ∈ R(Pj); j = 1, 2, . . . ,∞. (4.9)
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In fact, we can check the condition for controllability of this systems,

B∗P ∗j eA∗
j ty = 0, ∀t ∈ [0, t1], ⇒ y = 0.

In this case the operators Aj = BjPj and A are given by

Bj =
[

0 1
−γλβ

j −η

]
, A =

[
0 IX

−γAβ −ηI

]
,

and the eigenvalues σ1(j), σ2(j) of the matrix Bj are given by σ1(j) = −c+ ilj and
σ2(j) = −c− ilj , where

c =
η

2
and lj =

1
2

√
4γλβ

j − η2.

Therefore, A∗j = B∗j Pj with B∗j =
[

0 −1
γλβ

j −η

]
and

eBjt = e−ct
{

cos ljtI +
1
lj

(Bj + cI)
}

= e−ct

[
cos ljt + η

2lj
sin ljt

sin ljt
lj

−γS(j)λβ/2
j sin ljt cos ljt− η

2lj
sin ljt

]
,

eB∗
j t = e−ct

{
cos ljtI +

1
lj

(B∗j + cI)
}

= e−ct

[
cos ljt + η

2lj
sin ljt − sin ljt

lj

γS(j)λβ/2
j sin ljt cos ljt− η

2lj
sin ljt

]
,

B =
[

0
IX

]
, B∗ = [0, IX ] and BB∗ =

[
0 0
0 IX

]
.

Now, let y = (y1, y2)T be in R(Pj) such that B∗P ∗j eA∗
j ty = 0 for all t ∈ [0, t1].

Then

e−ct

[
γS(j)λβ/2

j sin ljty1 +
(
cos ljt−

η

2lj
sin ljt

)
y2

]
= 0, ∀t ∈ [0, t1],

which implies y = 0. From Proposition 4.3 the operator Wj(t1) : R(Pj) → R(Pj)
given by

Wj(t1) =
∫ t1

0

e−AjsBB∗e−A∗
j sds = Pj

∫ t1

0

e−BjsBB∗e−B∗
j sdsPj = PjW j(t1)Pj

is invertible. Since

‖e−Ajt‖ ≤ M(η, γ)ect, ‖e−A∗
j t‖ ≤ M(η, γ)ect,

‖e−AjtBB∗e−A∗
j t‖ ≤ M2(η, γ)‖BB∗‖e2ct,

we have

‖Wj(t1)‖ ≤ M2(η, γ)‖BB∗‖e2ct1 ≤ L(η, γ), j = 1, 2, . . . .

Now, we shall prove that the family of linear operators,

W−1
j (t1) = W

−1

j (t1)Pj : Zβ/2 → Zβ/2
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is bounded and ‖W−1
j (t1)‖ is uniformly bounded. To this end, we shall compute

explicitly the matrix W
−1

j (t1). From the above formulas we obtain that

eBjt = e−ct

[
a(j) b(j)
−a(j) c(j)

]
, eB∗

j t = e−ct

[
a(j) −b(j)
d(j) c(j)

]
,

where

a(j) = cos ljt +
η

2lj
sin ljt, b(j) =

sin ljt

lj
,

c(j) = γS(j)λβ/2
j sin ljt, d(j) = cos ljt−

η

2lj
sin ljt, S(j) =

√√√√ λβ
j

4γλβ
j − η2

.

Then

e−BjsBB∗e−B∗
j s =

[
b(j)c(j)λβ/2

j I −b(j)d(j)I
−d(j)c(j)λβ/2

j I d2(j)I

]
.

Therefore,

W j(t1) =

 γS(j)λ
β/2
j

lj
k11(j) 1

lj
k12(j)

−γS(j)λβ/2
j k21(j) k22(j)

 ,

where

k11(j) =
∫ t1

0

e2cs sin2 ljsds

k12(j) = −
∫ t1

0

e2cs
[
sin ljs cos ljs−

η sin2 ljs

2lj

]
ds

k21(j) =
∫ t1

0

e2cs
[
sin ljs cos ljs−

η sin2 ljs

2lj

]
ds

k22(j) =
∫ t1

0

e2cs
[
cos ljs−

η sin ljs

2lj

]2
ds.

The determinant ∆(j) of the matrix W j(t1) is

∆(j) =
γS(j)λβ/2

j

lj
[k11(j)k22(j)− k12(j)k21(j)]

=
γS(j)λβ/2

j

lj

{( ∫ t1

0

e2cs sin2 ljsds
)( ∫ t1

0

e2cs
[
cos ljs−

η sin ljs

2lj

]2
ds

)
−

( ∫ t1

0

e2cs
[
sin ljs cos ljs−

η sin2 ljs

2lj

]
ds

)2}
.

Passing to the limit as j approaches ∞, we obtain

lim
j→∞

∆(j) =
(e2ct1 − 1)(1− 2ect1 + e2ct1)

24c3
.

Therefore, there exist constants R1, R2 > 0 such that 0 < R1 < |∆(j)| < R2,
j = 1, 2, 3, . . . . Hence,

W
−1

(j) =
1

∆(j)

[
k22(j) − 1

lj
k12(j)

γS(j)λβ/2
j k21(j)

γS(j)λ
β/2
j

lj
k11(j)

]
=

[
b11(j) b12(j)

b21(j)λ
β/2
j b22(j)

]
,
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where bn,m(j) are bounded for n = 1, 2; m = 1, 2; j = 1, 2, . . . . Using the same
computation as in Theorem 3.2 we can prove the existence of a constant L2(η, γ)
such that

‖W−1
j (t1)‖Zβ/2 ≤ L2(η, γ), j = 1, 2, . . . .

Now, we define the linear bounded operators W (t1) : Zβ/2 → Zβ/2, W−1(t1) :
Zβ/2 → Zβ/2, by

W (t1)z =
∞∑

j=1

Wj(t1)Pjz, W−1(t1)z =
∞∑

j=1

W−1
j (t1)Pjz.

Using these definitions we see that W (t1)W−1(t1)z = z and

W (t1)z =
∫ t1

0

T (−s)BB∗T ∗(−s)zds.

Finally, we show that given z ∈ Zβ/2 there exists a control u ∈ L2(0, t1;X) such
that Gu = z. In fact, let u be the control

u(t) = B∗T ∗(−t)W−1(t1)z, t ∈ [0, t1].

Then

Gu =
∫ t1

0

T (−s)Bu(s)ds

=
∫ t1

0

T (−s)BB∗T ∗(−s)W−1(t1)zds

=
( ∫ t1

0

T (−s)BB∗T ∗(−s)ds
)
W−1(t1)z

= W (t1)W−1(t1)z = z.

Then the control steering an initial state z0 to a final state z1 in time t1 > 0 is
given by

u(t) = B∗T ∗(−t)W−1(t1)(T (−t1)z1 − z0)

= B∗T ∗(−t)
∞∑

j=1

W−1
j (t1)Pj(T (−t1)z1 − z0).

�

5. Exact Controllability of the Non-Linear System

Now, we give the definition of controllability in terms of the non-linear systems

z′ = Az + Bu + F (t, z, u(t)) z ∈ Zβ/2, t > 0,

z(0) = z0.
(5.1)

For all z0 ∈ Zβ/2, equation (5.1) has a unique mild solution

z(t) = T (t)z0 +
∫ t

0

T (t)T (−s)[Bu(s) + F (s, z(s), u(s))]ds. (5.2)

Definition 5.1. We say that system (5.1) is exactly controllable on [0, t1], t1 > 0,
if for all z0, z1 ∈ Zβ/2 there exists a control u ∈ L2(0, t1;X) such that the solution
z(t) of (5.2) corresponding to u, verifies: z(t1) = z1.
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Consider the non-linear operator GF : L2(0, t1;U) → Zβ/2, given by

GF u =
∫ t1

0

T (−s)B(s)u(s)ds +
∫ t1

0

T (−s)F (s, z(s), u(s))ds, (5.3)

where z(t) = z(t; z0, u) is the corresponding solution of (5.2). Then the following
proposition is a characterization of the exact controllability of the non-linear system
(5.1).

Proposition 5.2. The system (5.1) is exactly controllable on [0, t1] if and only if,
the operator GF is surjective, that is to say

GF L2(0, t1;X) = Range(GF ) = Zβ/2.

Lemma 5.3. Let u1, u2 ∈ L2(0, t1;X), z0 ∈ Zβ/2 and z1(t; z0, u1), z2(t; z0, u2) the
corresponding solutions of (5.2). Then

‖z1(t)− z2(t)‖Zβ/2 ≤ M [‖B‖+ L]eMLt1
√

t1‖u1 − u2‖L2(0,t1;X), (5.4)

where 0 ≤ t ≤ t1 and

M = sup
0≤s≤t≤t1

{‖T (t)‖‖T (−s)‖}. (5.5)

Proof. Let z1, z2 be solutions of (5.2) corresponding to u1, u2 respectively. Then

‖z1(t)− z2(t)‖ ≤
∫ t

0

‖T (t)‖‖T (−s)‖‖B‖‖u1(s)− u2(s)‖

+
∫ t

0

‖T (t)‖‖T (−s)‖‖F (s, z1(s), u1(s))− F (s, z2(s), u2(s))‖ds

≤ M [‖B‖+ L]
∫ t

0

‖u1(s)− u2(s)‖+ ML

∫ t

0

‖z1(s)− z2(s)‖ds

≤ M [‖B‖+ L]
√

t1‖u1 − u2‖+ ML

∫ t1

0

‖z1(s)− z2(s)‖ds.

Using Gronwall’s inequality, we obtain

‖z1(t)− z2(t)‖Zβ/2 ≤ M [‖B‖+ L]eMLt1
√

t1‖u1 − u2‖L2(0,t1;X),

for 0 ≤ t ≤ t1. �

Now, we are ready to formulate and prove the main Theorem of this section.

Theorem 5.4. If in addition of condition (2.8),

‖B‖ML‖W−1(t1)‖K(t1)t1 < 1, (5.6)

where K(t1) = M [‖B‖+ L]eMLt1t1 + 1, then the non-linear system (5.1) is exactly
controllable on [0, t1].

Proof. Given the initial state z0 and the final state z1, and u1 ∈ L2(0, t1;X), there
exists u2 ∈ L2(0, t1;X) such that

0 = z1 −
∫ t1

0

T (−s)F (s, z1(s), u1(s))ds−
∫ t1

0

T (−s)Bu2(s)ds,

where z1(t) = z(t; z0, u1) is the corresponding solution of (5.2). Moreover, u2 can
be chosen as

u2(t) = B∗T ∗(−t)W−1(t1)
(
z1 −

∫ t1

0

T (−s)F (s, z1(s), u1(s))ds
)
.
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For such u2 there exists u3 ∈ L2(0, t1;X) such that

0 = z1 −
∫ t1

0

T (−s)F (s, z2(s), u2(s))ds−
∫ t1

0

T (−s)Bu3(s)ds,

where z2(t) = z(t; z0, u2) is the corresponding solution of (5.2), and u3 can be taken
as follows:

u3(t) = B∗T ∗(−t)W−1(t1)
(
z1 −

∫ t1

0

T (−s)F (s, z2(s), u2(s))ds
)
.

Following this process we obtain two sequences

{un} ⊂ L2(0, t1;X), {zn} ⊂ L2(0, t1;Zβ/2), (zn(t) = z(t; z0, un)) n = 1, 2, . . . ,

such that

un+1(t) = B∗T ∗(−t)W−1(t1)
(
z1 −

∫ t1

0

T (−s)F (s, zn(s), un(s))ds
)

(5.7)

0 = z1 −
∫ t1

0

T (−s)F (s, zn(s), un(s))ds−
∫ t1

0

T (−s)Bun+1(s)ds. (5.8)

Now, we shall prove that {zn} is a Cauchy sequence in L2(0, t1;Zβ/2). In fact, from
formula (5.7) we obtain that

un+1(t)− un(t)

= B∗T ∗(−t)W−1(t1)
( ∫ t1

0

T (−s)(F (s, zn−1(s), un−1(s))− F (s, zn(s), un(s)))ds
)
.

Hence, using lemma 5.3 we obtain

‖un+1(t)− un(t)‖

≤ ‖B‖ML‖W−1(t1)‖
∫ t1

0

(‖zn(s)− zn−1(s)‖+ ‖un(s)− un−1(s)‖) ds

≤ ‖B‖ML‖W−1(t1)‖
∫ t1

0

M [‖B‖+ L]eMLt1
√

t1‖un(s)− un−1(s)‖ds

+ ‖B‖ML‖W−1(t1)
∫ t1

0

‖un(s)− un−1(s)‖ds.

Using Hóder’s inequality, we obtain

‖un+1 − un‖L2(0,t1;X) ≤ ‖B‖ML‖W−1(t1)‖K(t1)t1‖un+1 − un‖L2(0,t1;X). (5.9)

Since ‖B‖ML‖W−1(t1)‖K(t1)t1 < 1, it follows that {un} is a Cauchy sequence in
L2(0, t1;X). Therefore, there exists u ∈ L2(0, t1;X) such that limn→∞ un = u in
L2(0, t1;X).

Let z(t) = z(t; z0, u) the corresponding solution of (5.2). Then we shall prove
that

lim
n→∞

∫ t1

0

T (−s)F (s, zn(s), un(s))ds =
∫ t1

0

T (−s)F (s, z(s), u(s))ds.

In fact, using lemma 5.3 we obtain that∥∥∥∫ t1

0

T (−s)[F (s, zn(s), un(s))− F (s, z(s), u(s))]ds
∥∥∥

≤
∫ t1

0

ML[‖zn(s)− z(s)‖+ ‖un(s)− u(s)‖]ds
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≤
∫ t1

0

ML[M [‖B‖+ L]eMLt1
√

t1‖un − u‖L2(0,t1;X) + ‖un(s)− u(s)‖]ds

≤ MLK(t1)
√

t1‖un − u‖L2(0,t1;X).

From here we obtain the result. Finally, passing to the limit in (5.8) as n approaches
∞, we obtain

0 = z1 −
∫ t1

0

T (−s)F (s, z(s), u(s))ds−
∫ t1

0

T (−s)Bu(s)ds.

i.e., GF u = z1. �
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