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EXACT CONTROLLABILITY OF A NON-LINEAR
GENERALIZED DAMPED WAVE EQUATION: APPLICATION
TO THE SINE-GORDON EQUATION

HUGO LEIVA

ABSTRACT. In this paper, we give a sufficient conditions for the exact control-
lability of the non-linear generalized damped wave equation
i + i + ¥ APw = u(t) + £(t,w, u(t)),

on a Hilbert space. The distributed control v € L? and the operator A is
positive definite self-adjoint unbounded with compact resolvent. The non-
linear term f is a continuous function on ¢t and globally Lipschitz in the other
variables. We prove that the linear system and the non-linear system are both
exactly controllable; that is to say, the controllability of the linear system is
preserved under the non-linear perturbation f. As an application of this result
one can prove the exact controllability of the Sine-Gordon equation.

1. INTRODUCTION

In this paper, we give sufficient conditions for the exact controllability of the
following non-linear generalized damped wave equation on a Hilbert space X,

W 4 mb + yAPw = u(t) + f(t,w,u(t)), t>0, (1.1)

where v > 0, n > 0, 8 > 0, the distributed control u is in L2(0,¢;; X), and
A: D(A) C X — X is a positive definite self-adjoint unbounded linear operator
in X with compact resolvent. This implies the following spectral decomposition of
the operator A:

[e'e] Yn e}
Az =Y A (@, Gnk)bnk = D AnEnz, z € D(A).
n=1 k=1 n=1

The non-linear term f : [0,#1] x X x X — X is a continuous function on ¢ and
globally Lipschitz in the other variables. i.e., there exists a constant { > 0 such
that for all x1, 2o, u1,us € X we have

”f(twr?,uQ)_f(t7x17u1)” Sl{”$2_$1”"’_HUQ_UIH}” le [Oﬂtl]' (1‘2)
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We consider the operator

A= [_fAﬁ _I;I} (1.3)

which corresponds to the equation 1w + mir + yA%w = 0 written as a first order
system in the space D(Aﬁ/ 2) x X. Then we prove the following statements:
(I) A generates a strongly continuous group {T'(t)}scr on D(A%/?) x X such
that |T(t)]| < M(n,7)e™#", t>0.
(IT) The linear system (f = 0) is exactly controllable on [0, ¢;].
(III) The non-linear system is also exactly controllable on [0, 4]

Moreover, each of the following statements are equivalent to the exact controllability
of the linear system

W+ mi + yAPw = u(t) t >0, (1.4)
(a) Each of the following finite dimensional systems is controllable on [0, ¢1],
y' = A;Pjy+ PjBu, yeR(P); j=12,...,00. (1.5)
(b) B*PfeA;ty =0, for all t € [0,¢], implies y = 0
(c) Rank [P,B A,P;B A3P,B - ATV DBl =2y,

(d) The operator W;(t1) : R(P;) — R(FP;) given by
ty
W;(t1) = / e s BB*e~4i%ds, (1.6)
0

is invertible, where \; are the eigenvalues of A, { P;} are the projections on
the corresponding eigenspace,

0 0 1 )
= . = . > 1.
B {IX] A [—wf —77} fir 721

The operator, W;(t1), allows us to compute explicitly the control u € L(0,¢1; X)
steering an initial state zy to a final state z; in time ¢; > 0 for the linear system
(1.4). This control is given by the formula

u(t) = B*T" (1) Z Wi (1) By (T(—t1) 21 — 20). (1.7)

We use this formula to construct a sequence of controls w, that converges to a
control u that steers an initial state zo to a final state z; for the non-linear system
(1.1). That is to say, we proved the exact controllability of this system.

As an application of this result we can prove the exact controllability of The
Sine-Gordon Equation

wy + cwy — dwy, + ksinw = p(t,z), 0<z <1, teR,

w(t,0) =w(t,1) =0, teR (1.8)

whered > 0,¢ >0,k > 0and p: Rx[0,1] — R is continuous and bounded function
acting as an external force.

The existence of an attractor for the Sine-Gordon equation is proved in [9] where
we can find a study of this equation, and the existence of bounded solutions for this
model and others similar one has been carried out recently in [5], [6] and [3].
To our knowledge, the exact controllability of this model under non-linear action
of the control has not been studied before. So, in this paper we give a sufficient
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conditions for the exact controllability of the system (L.1)) that can be applied to
the following controlled Sine-Gordon equation
Wyt + cwy — dwg, + ksinw = p(t, z) + u(t, ) + g(t, w,u(t,x)), 0<x<1

w(t,0) = w(t,1) =0, teR (1.9)

where g : [0,#1] Xx R x R — R is a continuous function on ¢ and globally Lips-
chitz in the other variables. i.e., there exists a constant m > 0 such that for all
T1,To,ut, Uz € R we have

lg(t, x2,u2) — g(t, m1, wr)l| < mA{llze — 1l + [luz —wall}, t€[0,42].  (1.10)
This system can be written in the form of system (1.1 if we choose X = L?[0, 1],
A¢p = —ys, with domain D(A) = H?> N H} and f(t,w,u) = —ksinw + p(t,-) +
g(t,w,u). Moreover, the exact controllability of (1.9) does not depend on the
bounded function p(t, -).

Also, in [4] the authors study the exact null controllability of the second order
linear equation

1
W+ pATw 4+ Aw = u(t), p>0,§§r§1,t20, (1.11)

where the distributed control u € L?(0,#1; X) and A : D(A) C X — X is a positive
definite self-adjoint unbounded linear operator in X with compact resolvent. They
prove that if % < r < 1, then the system is exactly null controllable on
[0,t1]. However, if a = 1, the system is not exactly null controllable. In [2
Example 3.27] it is shown that exact null controllability of an infinite dimensional
system does not imply exact controllability of the system.

2. NOTATION AND PRELIMINARIES

The fact that A : D(A) C X — X is a positive definite self-adjoint unbounded
linear operator in X with compact resolvent implies the following:

(a) The spectrum of A consists of only eigenvalues
D<A <A< <A, — 00,
Each A; has finite multiplicity, 7,, equal to the dimension of the corre-
sponding eigenspace.

(b) There exists a complete orthonormal set {¢,, 1} of eigenvectors of A.
(c) For all x € D(A) we have

oo In (oo}
Az =AY (@, Gn)bnk = AnEna, (2.1)
n=1 k=1 n=1

where (-, -) is the inner product in X and
Tn

E,x = Z<I’ ¢n,k>¢n,k- (22)

k=1
So, {E,} is a family of complete orthogonal projections in X and z =
oo Epx,x € X,
(d) —A generates an analytic semigroup {e~4?} given by

oo
e~ Ay = Z e B, . (2.3)
n=1
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(e) The fractional powered spaces X" are given by
X' =DA) ={zeX: i(An)”nEan? <o}, >0,
n=1
with the norm

r s r 1/2 r
zllr = [|A2]| = { Y N Baz]?} 7, we X7,
n=1

and

Az = Z A B (2.4)
n=1

Also, for r > 0 we define Z, = X" x X, which is a Hilbert Space endow with the

norm
wl |I? _ 2 2
21, = ot o

Using the change of variables w’ = v, the second order equation (1.1) can be
written as a first order system of ordinary differential equations in the Hilbert
space Zgjo = D(AP/?) x X = XP/? x X as

7' =Az+ Bu+ F(t,z,u(t)) z€ Zgs, t >0, (2.5)

[ e[ [ ) e

is an unbounded linear operator with domain D(A) = D(A4%) x X and

F(t, 2, u) = {f( 0 ] (2.7)

t,w, u)

where

is a function F': [0,41] x Zg/o x X — Z. Since XP/? is continuously included in X
we obtain for all 21,22 € Zg/» and uy,uz € X that

| F(t, z2,u2) — F(t, z1,u1)| 25, < L{llz2 — 21| + |luz —wa |}, t€[0,t1]. (2.8)
In this paper, without lose of generality we shall assume the following condition

n? < 4’y)\f.

3. THE UNCONTROLLED LINEAR EQUATION

In this section we shall study the well-posedness of the abstract linear Cauchy
initial-value problem
2=Az, (teR)
z(0) = z0 € D(A),
which is equivalent to prove that the operator A generates a strongly continuous
group. To this end, we shall use the following Lema from [7].

(3.1)

Lemma 3.1. Let Z be a separable Hilbert space and { Ay }n>1, {Pntn>1 two families
of bounded linear operators in Z with { P, }n>1 being a complete family of orthogonal
projections such that

AP, = P,A,, n=1,23,... (3.2)
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Define the family of linear operators

o
= Z eAtPz, t>0. (3.3)
=1
Then
(a) T'(t) is a linear bounded operator if
le*l < g(t), n=1,23,... (34)

for some continuous real-valued function g(t).
(b) Under the condition (3.4) {T'(¢)}i>0 is a Co-semigroup in the Hilbert space
Z whose infinitesimal generator A is given by

Az = Z A P,z, z¢€ D(A) (3.5)

n=1

with D(A) ={z€ Z: Y ;7| |[AnPpz|]* < oo}
(c) the spectrum o(A) of A is given by

o(A) = [J o(4n), (3.6)

where A,, = A, P,.
Theorem 3.2. The operator A given by (2.6), is the infinitesimal generator of a
strongly continuous group {T(t)}x given by
o0
t)z = Z e Pz, 2 € Zgp, t>0 (3.7)

where { P, }n>0 is a complete family of orthogonal projections in the Hilbert space
Zg/2: Py = diag|Ey, Ey], n>1, and

0o 1
A, = B,P,, B, — >l 3.8
{—Mﬁ —77] (38)

This group decays exponentially to zero. In fact, we have the estimate |T(t)] <

M(n,~)e"2t, t > 0, where
\/ 4’y)\6 —n? ‘

M(n,7) _ sup{?’ni 4’?)\n
—4 AE

2\/5 n>1

Proof. Computing Az yields,
[0 I | |w
A= | —n} M

[ v

T | —vAPw =

_ [ 220:1 Env }
7> 1)‘BE w—n3 .2 Eav

_Z[ 7>\Ew nEv]
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[ -ﬂ o )L

MS |P”18

3
—

It is clear that A, P, = P,A,. Now, we need to check condition from Lemma
To this end, compute the spectrum of the matrix B,. The characteristic
equation of B, is given by

/\2+77)\+7)\'2 =0,

and the eigenvalues o1(n), o2(n) of the matrix B,, are given by

o1(n) = —c+il,, o3(n)=—c—il,,
where,
1
c= g and [, = 5\/47)@ —n2.
Therefore,

i(Bn +cl)}

o |cOslnt + - sinlyt %l"t
—_— 6 n
f’yS(n))\g/b sinlnt  coslyt — 5= sinlyt

ePrt = e L coslntl +

From the above formulas, we obtain

—S(m)A%e(n)  d(n)

where

a(n) = coslyt + % sinlyt, b(n) = sinl,t,

n

77 X
c(n) =sinlyt, d(n) =cosl,t — ——sinlyt, S(n) = —
2, Ay \p, — n?

Now, consider z = (z1,22)" € Zg/5 such that [|z| z,, = 1. Then

ol = D A IEzl? <1 and lz2fk = Y 1Bzl < 1.
j=1 j=1

Therefore, /\?/QHE]‘Zl” <1, ||Ejz| <1,j=1,2,.... and so,
a(n)Ey, zl + ( )E 29 2
—’yS(n)c(n)/\n Enzl +d(n)Enz2

(n)
ln

8
—vS(n)e(n)A\3 Enz + d(n)En22||§(

_2CtZAﬁIIE Wz + B P

—2ct

ey, , =

Zg/2

b
= efQCtHa(n)Enzl + —~F 22H 5 + 672Ct||
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720152”E n)e(m)AR Bnzi + d(n) Enzo) |2

bgn)En22”2+6_2Ct”
—3S(MemA Euzr + d(n) Bz

< =)+ 13T b))? + e (7Sn)etn)] + )

’fl

= e 2\ la(n)

where
| = ’ 5
n? — 4’y)\
If we set,
M(Uﬁ)zsu 2 )”i\/‘”)‘ — -
we have,

||6Ant S M(na’}/)e_m&a t Z 07 n= 1727 et

Hence, applying Lemma we obtain that 4 generates a strongly continuous group
given by (3.7). Next, we will prove this group decays exponentially to zero. In fact,

IT(t)=]* < Z le?* P2

n=1

9]
< llet P Pazl?
n=1

< MP(n,y)e "> [Pzl
n=1

= M>(n,7)e” |||,
Therefore, ||T(t)|| < M(n,v)e=°, t > 0. O

4. EXACT CONTROLLABILITY OF THE LINEAR SYSTEM

Now, we shall give the definition of controllability in terms of the linear systems

Z=Az+Bu z€Zgs, t>0, (4.1)

f)o) af B) e

For all 2y € Zg/, equation (4.1)) has a unique mild solution given by

where

z(t) =T(t)z0 + /Ot T(t — s)Bu(s)ds, 0<t<t1. (4.3)

The following definition of exact controllability can be found in [2].
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Definition 4.1. We say that system (4.1]) is exactly controllable on [0,¢1], t; > 0,
if for all 29,21 € Z/o there exists a control u € L?(0,t1; X) such that the solution
z(t) of (4.3)) corresponding to u, satisfies z(t1) = 2.

Consider the bounded linear operator
t1
G:L2(0,1;U) — Zyj, Gu= / T(—8)B(s)u(s)ds. (4.4)
0
Then the following proposition is a characterization of the exact controllability of

system (4.1)).

Proposition 4.2. The system is exactly controllable on [0,t1] if and only if,
the operator G is surjective, that is to say

GL*(0,t1; X) = Range(G) = Zg)».
Now, consider the family of finite dimensional systems
y' = A;jPjy+ PjBu, ye€R(P); j=12,...,00. (4.5)
Then the following proposition can be shown as in [8, Lemma 1].

Proposition 4.3. The following statements are equivalent:
(a) System is controllable on [0, t1]
(b) B*P;eAJ*'ty =0, for allt € [0,t1], implies y =0
(c) Rank [P,B - A;PB A3P,B - AT'PB| =2,
(d) The operator W;(t1) : R(P;) — R(P;) given by

t1
Wj(ty) = / e~ BB*e 4% ds, (4.6)
0

1s invertible.

Now, we are ready to formulate the main result on exact controllability of the

linear system (4.1)).

Theorem 4.4. The system (4.1) is exactly controllable on [0,t1]. Moreover, the
control u € L2(0,t1;X) that steers an initial state zg to a final state z, at time
t1 > 0 is given by the formula

u(t) = B*T*(—t) Z Wj_l(tl)Pj(T(—tl)Zl - Zo). (47)

Jj=1

Proof. Since {T'(t)}+>0 is a group, the operator G in can be replaced by
t1
G:L*0,t1;X) = Zg/s, Gu= / T(—s)B(s)u(s)ds. (4.8)
0

Then system (4.1)) is exactly controllable on [0,¢1] if and only if, the operator G is
surjective, that is to say
GL*(0,t1; X) = Range(G) = Zg/2-

First, we shall prove that each of the following finite dimensional systems is con-
trollable on [0, t1]

y' = A;Pjy+ PjBu, ye€R(P;);j=12,...,00. (4.9)
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In fact, we can check the condition for controllability of this systems,
B*Pretily=0, Vte[0,t1], =y=0.

In this case the operators A; = B;P; and A are given by

0 1 0 Iy ]
B, = , A= ,
: {—%? —77] {—vAﬁ —nl

and the eigenvalues o1 (), 02(j) of the matrix B; are given by 01(j) = —c+il; and
02(j) = —c —il;, where

n 1

c=3 and [; = 3 47)\5 —n?

Therefore, A7 = B} P; with B} = ’Y)\f - and

1
eBit = e ““{cosltl + T(Bj +cl)}

J
: inl;t
R cosljt—i—%smljt SY‘TJ
_'YS(j)/\? 2Sinljt cosl;t — % sinl;t|’
Bt —ct 1 %
eit=e {coslth—i— Z—(Bj +cI)}
J
: sinl;t
. |coslit+ % sini;t S
WS(j))\f/Q sinljt  cosljt — of-sinljt|’

Ix 0 Ix

Now, let y = (y1,92)7 be in R(P;) such that B*Pfetity = 0 for all t € [0,t].
Then

B=|"|, B ={0.1x] and BB =" °|
) - b 7]

e—ct |:’yS(j))\f/2 sin ljtyl + (COS ljt - % sin l]t)y2:| = O7 YVt € [07t1],
J

which implies y = 0. From Proposition the operator W;(t1) : R(P;) — R(P;)
given by
ty t1
W;(t) = / e A BB*e Ai%ds = Pj/ e BisBB*e~BisdsP; = P;W (1) P;
0 0

is invertible. Since
le= 4 < M(n,y)e,  [le™ | < M(n,7)e,
le=4* BB e 45| < M?(n,7)[|BB*[|€*”,
we have
IW;(t)]| < M?(n, y)IIBB*[|e*"™* < L(n,7), j=12,....
Now, we shall prove that the family of linear operators,

_ ——1
Wj l(tl) = Wj (t1)Pj : Z,@/z — Zﬁ/g
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is bounded and HWj_l(tl)H is uniformly bounded. To this end, we shall compute

explicitly the matrix Wj_l(tl). From the above formulas we obtain that

ijt:e_ct[acf) b(j)} Bt _ e {dm —b<j>},

—a(j) <)) () <)
where
inl;t
a(j) = cosl;t + % sinl;t, b(j) = Sm%,
J j
8/2 0 A
c(j) = vS(H)A; “sinljt, d(j) = cosl;t — isinljt, S(j) = m
J Y
Then
N vy B2 N g
o—Bis gp*e—Bjs _ b(J)C(J))\?;/g —b(G)d(G)I |
—d(j)e()X;" T d*()I
Therefore,
SN2 , .
Wi = | o nl)  he()
SN ka1 () kaa(j)
where

t1
ku(j):/ €% sin” 1 sds
0

t1 . 2[4
ki2(j) = —/ e®°*[sinl;scosljs — m]ds
0 20,
ty . 2l.
ka1(j) = / e’ [sinljscosljs — M}ds
0 21,

¢ .
1 l:
koa(j) = / eQCs[cos ljs — M]Qd&
0 21;

The determinant A(j) of the matrix W;(t1) is
_¥SG)A] /2
=7

S ~)\@/2 t t 7
= W{(/ 1ezcssin2 ljsds)(/ lezcs[cosljsf nsml]s]zds)
lj 0 0 2L

t1 027
- (/ e’ [sinljscosljs — ns;nibljs]dsy}.
0 j

Passing to the limit as j approaches co, we obtain
) ) (6201&1 _ 1)(1 _ QeCtl + €2ct1)
i a0 = (DR
Therefore, there exist constants Ry, Re > 0 such that 0 < R; < |A(j)] < Ra,
7=1,2,3,.... Hence,

A(j) [k11(5)k22(5) — k12(5)ka21(5)]

—1, . 1

G- k22(j) — - k2(5) _ [ bii(j)  b12(4)
EAG) ®)

j [.3/2 . 2 . )
VSN Pk () Ry, b1 (1)A]"? baa(h)
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where b, ,,(j) are bounded for n = 1,2; m = 1,2; j = 1,2,.... Using the same
computation as in Theorem we can prove the existence of a constant Lo(7), )
such that

HWJ’_l(tl)”ZB/z < La(n,v), j=1,2,....
Now, we define the linear bounded operators W(t;) : Zgja — Zgja, Wl(ty) :
Zg/2 = Zg/2, by

W(tl)z = Z Wj(tl)sz, W_l(tl)z = Z W;l(tl)sz.
j=1 j=1
Using these definitions we see that W (t;)W ~1(¢;)z = z and
t1
W(t1)z = / T(—s)BB*T*(—s)zds.
0

Finally, we show that given 2z € Z3/, there exists a control u € L?(0,t1; X) such
that Gu = z. In fact, let u be the control

u(t) = B*T*(—t)W ™ (t1)z, t€[0,ty].
Then

Gu:/o T(—s)Bu(s)ds
:/1T(—s)BB*T*(—s)W_l(tl)zds
0

= </0t1 T(—s)BB*T*(—S)dS) W (t1)z
= W(tl)Wfl(tl)z = z.

Then the control steering an initial state zy to a final state z; in time ¢; > 0 is
given by

u(t) = B*T*(—t)W_l(tl)(T(—tl)Zl — ZO)

= B*T*(—t) > W; ! (t1) Pj(T(—t1)z1 — 20).
j=1

5. ExacT CONTROLLABILITY OF THE NON-LINEAR SYSTEM

Now, we give the definition of controllability in terms of the non-linear systems

7' =Az4 Bu+ F(t,z,u(t)) z€ Zg, t >0,

5.1
z(0) = 2. (5.1)
For all 2y € Zg/2, equation (5.1) has a unique mild solution
t
2(t) =T(t)z0 +/ T()T(—s)[Bu(s) + F(s, z(s),u(s))]ds. (5.2)
0

Definition 5.1. We say that system (5.1]) is exactly controllable on [0,¢1], t; > 0,
if for all 29,21 € Z3/ there exists a control u € L?(0,t1; X) such that the solution
z(t) of (5.2]) corresponding to u, verifies: z(t1) = 2.
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Consider the non-linear operator Gp : L*(0,t1;U) — Zg /2, given by

Gru = /0 1 T(—s)B(s)u(s)ds + /0 1 T(—s)F(s,z(s),u(s))ds, (5.3)

where 2(t) = z(t; zo,u) is the corresponding solution of (5.2)). Then the following
proposition is a characterization of the exact controllability of the non-linear system

(F1).

Proposition 5.2. The system (5.1) is exactly controllable on [0,t1] if and only if,
the operator G is surjective, that is to say

GrL?*(0,t1; X) = Range(Gr) = Zg)».

Lemma 5.3. Let uy,us € L?(0,t1;X), 2z € Zg/o and z1(t; 20, u1), 22(t; 20, uz) the
corresponding solutions of . Then

121(8) = 22(8)] 25, < MBI + LleM* V1 lur — sl L2(0,4,:) (5.4)
where 0 <t <t; and
M= sup {|TOIIT(—s)[}- (5.5)
0 <t

7'57 =

Proof. Let z1, zo be solutions of (5.2)) corresponding to u;, us respectively. Then

I (6) — 2a(0)]) < / ITONIT )1 Blllus(s) — ua(s)]
+ / IT@NIT (=) (5, 21(), ua(5)) — F(5, 22(s), us(5)) |ds
< M|B| + L / lur (s) — us(s) | + ML / 2 (s) — z2(s)llds

< M||B|| + LIVti|lus — ue|l + ML /Ot1 [121(s) — 22(s)|ds.
Using Gronwall’s inequality, we obtain
I22() = z2(t) 25, < MBI + LM Vit [Jur — uall 220,40, );
for 0 <t <t;. O
Now, we are ready to formulate and prove the main Theorem of this section.
Theorem 5.4. If in addition of condition ,
IBIMLIW= ()| K (t)t <1, (5.6)

where K (t1) = M[||B| + LleMEt1t; + 1, then the non-linear system (5.1) is ezactly
controllable on [0,1].

Proof. Given the initial state 2o and the final state z;, and u; € L?(0,t1; X), there
exists ug € L?(0,t1; X) such that

0=2 — /0 1 T(—s)F(s,z1(8),u1(s))ds — /0 1 T (—s)Busy(s)ds,

where 21(t) = z(t; 20, u1) is the corresponding solution of (5.2]). Moreover, us can
be chosen as

ua(t) = BT (=)W (1) (= —/O1T(—s)F(s,zl(s)7ul(s))ds).
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For such usy there exists ug € L%(0,t1; X) such that

0=2 — /0 1 T(—s)F(s,22(8),ua(s))ds — /0 1 T (—s)Bus(s)ds,

where z3(t) = 2(t; 20, u2) is the corresponding solution of (5.2), and us can be taken
as follows:

ty
us(t) = B*T*(—t)W‘l(t1)<z1 —/ T(—s)F(s,22(5),@(5))(13).
0
Following this process we obtain two sequences
{un} CLQ(Oatl;X)7 {Zn} CL2(07t1;Zﬁ/2)7 (Zn(t) :Z(t;ZO,un))n: 1727-‘-7
such that

Up41(t) = B*T*(—t)Wfl(tl)(m — /0 1 T(—s)F(s,zn(s),un(s))ds> (5.7)

0=z —/O1T(—S)F(s,zn(s),un(s))ds—/01T(—S)Bun+1(s)d8. (5.8)

Now, we shall prove that {z,} is a Cauchy sequence in L?(0,t; Zg/2). In fact, from
formula (5.7]) we obtain that

un-i-l(t) — Un (t)

_ B*T*(ft)W’l(t1)</ T(—5)(F(3, 2n1(5), un_1(s)) — F(s,zn(s),un(s)))ds).

0
Hence, using lemma [5.3| we obtain

[tnt1(t) = un @)

< HBIIMLHW_l(tl)II/OJ (Izn(8) = 201 ()l + l[un(s) = un-1(s)) ds
< HBIIMLHW’I(M)II/0 " MBI + LI /F un(5) — tnr(5) | ds

t1
BIMEIW ) [ () = s (9.

Using Hdéder’s inequality, we obtain

[unt1 = unllL2(0,05x) < IBIMLIW ()| K (t1)t w1 — unllzz0,00:%)- (5.9)
Since || B||ML||W=L(t1)|| K (t1)t1 < 1, it follows that {u,} is a Cauchy sequence in
L?(0,t1; X). Therefore, there exists u € L?(0,#1; X) such that lim, .., u, = u in
LQ(O,tng).

Let z(t) = z(t; z0,u) the corresponding solution of (5.2). Then we shall prove

that
lim 1 T(=9)F (s, zn(s),un(s))ds = /0 1 T(—s)F(s,z(s),u(s))ds.

n—oo 0

In fact, using lemma [5.3] we obtain that
t1
| / T(=5)[F (5, 20(s), un(s)) — F(s, 2(s), uls))Jds|
t

= ML{lza(s) — 2] + () — u(s)1ds
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t1

< | MLIM[IB| + Ll " Vi llun — ullr20,6,x) + lun(s) — u(s)]]1ds
0

<MLK (t1)Vt |[un — ul £2(0,4,:x) -

From here we obtain the result. Finally, passing to the limit in (5.8]) as n approaches

o

i.e

[
[2
3
4
5
6
7
8

[9

, we obtain
t1 ty
0=2 — / T(—s)F(s,z(s),u(s))ds — / T(—s)Bu(s)ds.
0 0
. GFU = Z21. |
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