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NONTRIVIAL SOLUTIONS FOR NONLINEAR ELLIPTIC
PROBLEMS VIA MORSE THEORY

ABDESSLEM AYOUJIL, ABDEL R. EL AMROUSS

Abstract. We prove the existence of nontrivial solutions for perturbations of

p-Laplacian. Our approach combine minimax arguments and Morse Theory,
under the conditions on the behaviors of the perturbed function f(x, t) or its

primitive F (x, t) near infinity and near zero.

1. Introduction

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω, and let f :
Ω × R → R be a Carathéodory function, with some appropriate growth condition
to be specified later. We consider the Dirichlet problem

−∆pu = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where ∆pu := div(|∇u|p−2∇u), 1 < p < ∞, is the p-Laplacian operator.
Observe that, if f(x, 0) ≡ 0, then the constant function u ≡ 0 is a trivial solution

of the problem (1.1). We are going to seek nontrivial solutions of (1.1) in the usual
Sobolev space W 1,p

0 (Ω), equipped with the norm

‖u‖ =
( ∫

Ω

|∇u|p
) 1

p

.

It is known that the p-homogeneous boundary problem

−∆pu = λ|u|p−2u in Ω,

u = 0 on ∂Ω,
(1.2)

has the first eigenvalue λ1 > 0 that is simple and has an associated normalized
eigenfunction ϕ1 which is positive in Ω. It is also known, (see [1]), that there
exists a second eigenvalue λ2 such that σ(−∆p)∩]λ1, λ2[= ∅. Here, σ(−∆p) is the
spectrum of −∆p on W 1,p

0 (Ω), which contains at least an increasing eigenvalue
sequence obtained by the Lusternik-Schnirelaman theory.
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The existence of nontrivial solutions for (1.1) has been widely treated by many
authors, under various assumptions on nonlinearity f and its primitive F , see [5,
8, 10] and the references therein.

Throughout this paper, we assume that f satisfies the subcritical growth
(F0) for some q ∈ (1, p∗), there exists a constant c > 0, such that

|f(x, t)| ≤ c(1 + |t|q−1), ∀t ∈ R, a.e x ∈ Ω,

where p∗ = Np
N−p if 1 < p < N and p∗ = +∞ if N ≤ p.

Recall that, under (F0), the weak solutions of (1.1)) correspond to the critical
points of his energy functional Φ, given by

Φ(u) =
1
p

∫
Ω

|∇u|pdx−
∫

Ω

F (x, u)dx, u ∈ W 1,p
0 (Ω),

where F (x, t) =
∫ t

0
f(x, s)ds.

It will be seen that critical groups and Morse Theory, developed by Chang [6] or
Mawhin and willem [11], are the main tools used to solve our problem. The main
point in this theory is to introduce the critical groups of an isolated critical point.
With this aim, we need to suppose a conditions that give us information about the
behavior of the perturbed function f(x, t) or its primitive F (x, t) near infinity and
near zero. More precisely, the following conditions are assumed.

(F1) lim|t|→∞[tf(x, t)− pF (x, t)] = ∞ uniformly for a.e. x ∈ Ω,
(F2) lim|t|→∞[tf(x, t)− pF (x, t)] = −∞ uniformly for a.e. x ∈ Ω,

(F3) lim sup|t|→∞
pF (x,t)
|t|p < λ2 uniformly for a.e. x ∈ Ω,

(F4) lim|t|→∞[
∫
Ω

F (x, tϕ1)dx− 1
p |t|

p] = ∞,

(F5) For some µ ∈ (0, p), there are τ, Cτ > 0 such that

F (x, t) ≥ Cτ |t|µ, for a.e. x ∈ Ω, 0 < |t| ≤ τ, (1.3)

lim inf
|t|→0

µF (x, t)− tf(x, t)
|t|q

≥ α, uniformly for a.e.x ∈ Ω, (1.4)

for some q ∈ (p, p∗) and α be a constant non positive.
Now, we may state the main result.

Theorem 1.1. Assume (F0), (F3)–(F5) and (F1) or (F2). Then the problem (1.1)
has at least one nontrivial solution.

For finding critical points of Φ, by applying minimax methods, we will use the
following compactness condition, introduced by Cerami [3], which is a generalization
of the classical Plais-Smale type (PS).

Definition 1.2. Given c ∈ R, we say that Φ ∈ C1(X, R) satisfies condition (Cc), if
(i) Every bounded sequence (un) ⊂ X such that Φ(un) → c and Φ′(un) → 0

has a convergent subsequence,
(ii) There is constants δ,R, α > 0 such that

‖Φ′(u)‖X′‖u‖X ≥ α, ∀u ∈ Φ−1([c− δ, c + δ]) with ‖u‖X ≥ R.

If Φ satisfies condition (Cc) for every c ∈ R, we simply say that Φ satisfies (C).

The present paper is organized as follows. In section 2, we will compute the
critical groups at zero and at a mountain pass point. In section 3, we give the proof
of theorem 1.1.
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2. Critical groups

In this section, we investigate the critical groups at zero and at a mountain pass
type. To proceed, some concepts are needed. Let X be a Banach space, given a
Φ ∈ C1(X, R). For β ∈ R and c ∈ R, we set

Φβ = {u ∈ X : Φ(u) ≤ β},

K = {u ∈ X : Φ
′
(u) = 0},

Kc = {u ∈ X : Φ(u) = c,Φ
′
(u) = 0}.

Denote by Hq(A,B) the q-th homology group of the topological pair (A,B) with
integer coefficient. The critical groups of Φ at an isolated critical point u ∈ Kc are
defined by

Cq(Φ, u) = Hq(Φc ∩ U,Φc ∩ U \ {u}), q ∈ Z,

where U is a neighborhood of u.
Moreover, it is known that Cq(Φ, u) is independent of the choice of U due to the

excision property of homology. We refer the readers to [6, 11] for more information.
Let denote by Bρ the closed ball in W 1,p

0 (Ω) of radius ρ > 0 which is to be chosen
later , with the center at the origin. We will show that the critical groups of Φ at
zero are trivial.

Theorem 2.1. Assume (F0) and (F5). Then,

Cq(Φ, 0) ∼= 0, ∀q ∈ Z.

This result will be proved by constructing a retraction of Bρ\{0} to Bρ∩Φ0\{0}
and by proving that Bρ∩Φ0 is contractible in itself. For this purpose, some technical
lemmas must be proved.

Note that the following lemma has been proved in case p = 2 [12, Lemma 1.1]).

Lemma 2.2. Under (F0) and (F5), zero is a local maximum for the functional
Φ(su), s ∈ R, for u 6= 0.

Proof. Using (F0) and the hypothesis (1.3), we get

F (x, t) ≥ Cτ |t|µ − C1|t|q, x ∈ Ω, t ∈ R, (2.1)

for some q ∈ (p, p∗) and C1 > 0. For u ∈ W 1,p
0 (Ω), u 6= 0 and s > 0, we have

Φ(su) =
1
p
sp

∫
Ω

|∇u|pdx−
∫

Ω

F (x, su)dx

≤ sp

p
‖u‖p −

∫
Ω

(Cτ |su|µ − C1|su|q)dx

≤ sp

p
‖u‖p − Cτsµ‖u‖µ

µ + C1s
q‖u‖q

q.

(2.2)

Since µ < p < q, there exists a s0 = s0(u) > 0 such that

Φ(su) < 0, for all 0 < s < s0. (2.3)

�

Lemma 2.3. Assume (F0) and (F5). Then, there exists ρ > 0 such that for all
u ∈ W 1,p

0 (Ω) with Φ(u) = 0 and 0 < ‖u‖ ≤ ρ, we have
d

ds
Φ(su)|s=1 > 0. (2.4)
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Proof. For u ∈ W 1,p
0 (Ω) be such that Φ(u) = 0. From (F0) and ((1.4)), we have

µF (x, u)− f(x, u)u ≥ −c|u|q, a.e. x ∈ Ω,

for some q ∈ (p, p∗) and c > 0.
Denote by 〈., .〉 the duality pairing between W 1,p

0 (Ω) and W−1,p′(Ω). Then, since
Φ(u) = 0, we have

〈Φ
′
(su), u〉|s=1 =

∫
Ω

|∇u|pdx−
∫

Ω

f(x, u)udx,

= (1− µ

p
)
∫

Ω

|∇u|pdx +
∫

Ω

(µF (x, u)− f(x, u)u)dx.

By the above inequality and the Poincaré’s inequality, we write

d

ds
Φ(su)|s=1 = 〈Φ

′
(su), u〉|s=1,

≥ (1− µ

p
)‖u‖p − c

∫
Ω

|u|qdx,

≥ (1− µ

p
)‖u‖p − C‖u‖q,

for some C > 0. Since µ < p < q, the inequality (2.4) is verified. �

Lemma 2.4. For all u ∈ W 1,p
0 (Ω) with Φ(u) ≤ 0 and ‖u‖ ≤ ρ, we have

Φ(su) ≤ 0, for all s ∈ (0, 1). (2.5)

Proof. Let ‖u‖ ≤ ρ with Φ(u) ≤ 0 and assume by contradiction that there exists
some s0 ∈ (0, 1] such that Φ(s0u) > 0. Thus, by the continuity of Φ, there exists
an s1 ∈ (s0, 1] such that Φ(s1u) = 0. Choose s2 ∈ (s0, 1] such that s2 = min{s ∈
[s0, 1] : Φ(su) = 0}. It is easy to see that Φ(su) ≥ 0 for each s ∈ [s0, s2]. Taking
u1 = s2u, one deduces

Φ(su)− Φ(s2u) ≥ 0 implies that
d

ds
Φ(su)|s=s2 =

d

ds
Φ(su1)|s=1 ≤ 0.

However, by (2.4)
d

ds
Φ(su1)|s=1 > 0.

This contradiction shows that (2.5) holds. �

Proof of theorem 2.1. Let us fix ρ > 0 such that zero is the unique critical point of
Φ in Bρ. First, by taking the mapping h : [0, 1]× (Bρ ∩ Φ0) → Bρ ∩ Φ0 as

h(s, u) = (1− s)u,

Bρ ∩ Φ0 is contractible in itself.
Now, we prove that (Bρ∩Φ0)\{0} is contractible in itself too. For this purpose,

define a mapping T : Bρ \ {0} → (0, 1] by

T (u) = 1, for u ∈ (Bρ ∩ Φ0) \ {0},
T (u) = s, for u ∈ Bρ \ Φ0 with Φ(su) = 0, s < 1.
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¿From the relations (2.3), (2.4) and (2.5), the mapping T is well defined and if
Φ(u) > 0 then there exists an unique T (u) ∈ (0, 1) such that

Φ(su) < 0, ∀s ∈ (0, T (u)),

Φ(T (u)u) = 0,

Φ(su) > 0, ∀s ∈ (T (u), 1).
(2.6)

Thus, using (2.4), (2.6) and the Implicit Function Theorem to get that the mapping
T is continuous.

Next, we define a mapping η : Bρ \ {0} → (Bρ ∩ Φ0) \ {0} by

η(u) = T (u)u, u ∈ Bρ \ {0} with Φ(u) ≥ 0,

η(u) = u, u ∈ Bρ \ {0} with Φ(u) < 0.
(2.7)

Since T (u) = 1 as Φ(u) = 0, the continuity of η follows from the continuity of T.
Obviously, η(u) = u for u ∈ (Bρ ∩ Φ0) \ {0}. Thus, η is retraction of Bρ \ {0}

to (Bρ ∩ Φ0) \ {0}. Since W 1,p
0 (Ω) is infinite-dimensional, Bρ \ {0} is contractible

in itself. By the fact that retracts of contractible space are also contractible, (Bρ ∩
Φ0) \ {0} is contractible in itself.

From the homology exact sequence, one deduces

Hq(Bρ ∩ Φ0, (Bρ ∩ Φ0) \ {0}) = 0, ∀q ∈ Z.

Hence
Cq(Φ, 0) = Hq(Bρ ∩ Φ0, (Bρ ∩ Φ0) \ {0}) = 0, ∀q ∈ Z.

The proof of theorem 2.1 is completed. �

Recall that we have the following Morse relation between the critical groups
and homological characterization of sublevel sets. For details of the proof, we refer
readers to [7, 13] for example.

Theorem 2.5. Suppose Φ ∈ C1(X, R) and satisfies (C) condition. If c ∈ R is an
isolated critical value of Φ, with Kc = {uj}n

j=1, then, for every ε > 0 sufficiently
small, we have

Hq(Φc+ε,Φc−ε) = ⊕1≤j≤nCq(Φ, uj).

Remark 2.6. ¿From theorem 2.5 follows that if Hq(Φc+ε,Φc−ε) is nontrivial for
some q, then there exists a critical point u ∈ Kc with Cq(Φ, u) � 0. Furthermore,
when Cq(Φ, 0) ∼= 0 for all q, we get that u 6= 0.

We will use the following theorem, which is proved with (PS) condition see for
example [11].

Theorem 2.7. Assume that Φ ∈ C1(X, R), there exists u1 ∈ X, u2 ∈ X and a
bounded open neighborhood Ω of u0 such that u1 ∈ X\Ω and

inf
∂Ω

Φ > max(Φ(u0),Φ(u1)).

Let Γ = {g ∈ C([0, 1], X) : g(0) = u0, g(1) = u1} and

c = inf
g∈Γ

max
s∈[0,1]

Φ(g(s)).

If Φ satisfies the (C) condition over X and if each critical point of Φ in Kc is
isolated in X, then there exists u ∈ Kc such that dim C1(Φ, u) ≥ 1.
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Proof. Let ε > 0 be such that c− ε > max(Φ(u0),Φ(u1)) and c is the only critical
value of Φ in [c− ε, c + ε]. Consider the exact sequence

· · · → H1(Φc+ε,Φc−ε) ∂→ H0(Φc−ε, ∅) i∗→ H0(Φc+ε, ∅) → . . .

where ∂ is the boundary homomorphism and i∗ is induced by the inclusion mapping
i : (Φc−ε, ∅) → (Φc+ε, ∅). The definition of c implies that u0 and u1 are path
connected in Φc+ε but not in Φc−ε. Thus, ker i∗ 6= {0} [6, 11] and, by exactness,
H1(Φc+ε,Φc−ε) 6= {0}. It follows from theorem 2.5 that dim C1(Φ, u) ≥ 1. �

3. Proof of main result

The proof is based on the following minimax theorem due to the second author
[9, Theorem 3.5] ), with Cerami condition. For this, we recall the Krasnoselskii
genus.

Define the class of closed symmetric subsets of X as

Σ = {A ⊂ X : A is closed and A = −A}.

Definition 3.1. For a non empty set A in Σ, following Coffman [4], we define the
Krasnoselskii genus as

γ(A) =

{
inf{m : ∃h ∈ C(A, Rm\{0});h(−x) = −h(x)},
∞, if {. . . } is empty, in particular if 0 ∈ A.

For A empty we define γ(A) = 0.

Note that Ak = {C ∈ Σ : C is compact , γ(C) ≥ k}.

Theorem 3.2. Let Φ be a C1 functional on X satisfying (C), let Q be a closed
connected subset of X such that ∂Q ∩ ∂(−Q) 6= ∅ and β ∈ R. Assume that

(1) for every K ∈ A2, there exists vK such that Φ(vK) ≥ β and Φ(−vK) ≥ β,
(2) a = sup

∂Q
Φ < β,

(3) sup
∂Q

Φ < ∞.

Then Φ has a critical value c ≥ β given by

c = inf
h∈Γ

sup
x∈Q

Φ(h(x)),

where Γ = {h ∈ C(X, X) : h(x) = xfor every x ∈ ∂Q}.

We will establish the compactness condition under the conditions (F0), (F3)
and (F1). The proof is similar for (F0), (F3) and (F2).

Lemma 3.3. Assume (F0), (F3) and (F1). Then Φ satisfies the condition(C).

Proof. (i) First, we verify that the Palais- Small condition is satisfied on the
bounded subsets of W 1,p

0 (Ω). Let (un) ⊂ W 1,p
0 (Ω) be bounded such that

Φ′(un) → 0 and Φ(un) → c, c ∈ R. (3.1)

Passing if necessary to a subsequence, we may assume that

un ⇀ u weakly in W 1,p
0 (Ω),

un → u strongly in Lp(Ω),

un(x) → u(x) a.e.in Ω.

(3.2)
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From (3.1) and (3.2), we have 〈Φ′(un), un − u〉 → 0, or equivalently∫
Ω

|∇u|p∇un∇(un − u)dx−
∫

Ω

f(x, un)(un − u)dx → 0. (3.3)

Applying the Hölder inequality, we deduce that∫
Ω

f(x, un)(un − u)dx → 0. (3.4)

Thus, it follows from (3.3) and (3.4) that 〈−∆pun, un − u〉 → 0. Since, −∆p is of
type S+ (see [2]), we conclude that

un → u strongly in W 1,p
0 (Ω).

Now, by contradiction, we will show that (ii) is satisfied for every c ∈ R. Let c ∈ R
and (un) ⊂ W 1,p

0 (Ω) such that

Φ(un) → c, 〈Φ′(un), un〉 → 0 and ‖un‖ → +∞. (3.5)

Therefore,

lim
n

∫
Ω

g(x, un)dx = pc, (3.6)

where g(x, un) = unf(x, un)− pF (x, un).
Taking vn = un

‖un‖ , clearly vn is bounded in W 1,p
0 (Ω). So, there is a function

v ∈ W 1,p
0 (Ω) and a subsequence still denote by (un) such that

vn ⇀ v weakly in W 1,p
0 (Ω),

vn → v strongly in Lp(Ω),

vn(x) → v(x) a.e.in Ω.

(3.7)

On the other hand, in view (F0) and (F3), it follows that

F (x, s) ≤ λ2

p
|s|p + b, ∀s ∈ R, b ∈ Lp(Ω). (3.8)

Combining relations (3.5) and (3.8), we obtain

1
p
‖un‖p − λ2

p
‖un‖p

Lp − b ≤ C, C ∈ R.

Dividing by ‖un‖ and passing to the limit, we conclude

1
p
− λ2

p
‖v‖p

Lp ≤ 0,

and consequently v 6= 0. Let Ω0 = {x ∈ Ω : v(x) 6= 0}, via the result above we have
|Ω0| > 0 and

|un(x)| → +∞, a.e. x ∈ Ω0. (3.9)

Furthermore, (F0) and (F1) implies that there exist M > 0 and d ∈ L1(Ω) such
that

sf(x, s)− pF (x, s) ≥ −M + d(x), ∀s ∈ R, a.e. x ∈ Ω.

Hence, ∫
Ω

g(x, un)dx ≥
∫

Ω0

g(x, un)dx−M |Ω \ Ω0| − ‖d‖L1 .
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Using (3.9) and Fatou’s lemma, one deduces

lim
n

∫
Ω

g(x, un)d = +∞.

This contradicts (3.6). �

Now, we will prove the geometric conditions of Theorem 3.2. Let denote E(λ1)
the eigenspace associated to the eigenvalue λ1.

Lemma 3.4. Under the hypothesis (F0), (F3) and (F4), we have:
(i) Φ is anticoercive on E(λ1).
(ii) For all K ∈ A2, there exists vK ∈ K and β ∈ R such that Φ(vK) ≥ β and

Φ(−vK) ≥ β.

Proof. (i) For each v ∈ E(λ1), there exist t ∈ R such that v = tϕ1. Therefore,
using (F4), we write

Φ(v) =
|t|p

p

∫
Ω

|∇ϕ1|pdx−
∫

Ω

F (x, tϕ1)dx

= −[
∫

Ω

F (x, tϕ1)dx− |t|p

p
] → −∞, as |t| → ∞.

ii) By the Lusternik-Schnirelaman theory, we write

λ2 = inf
K∈A2

sup{
∫

Ω

|∇u|pdx,

∫
Ω

|u|pdx = 1 and u ∈ K}.

Then, for all K ∈ A2, and all ε > 0, there exists vK ∈ K such that

(λ2 − ε)
∫

Ω

|vK |pdx ≤
∫

Ω

|∇vK |pdx. (3.10)

Indeed, if 0 ∈ K, we take vK = 0.
Otherwise, we consider the odd mapping

g : K → K ′, v 7→ v

‖v‖Lp

.

By the genus properties, we have γ(g(K)) ≥ 2, and by the definition of λ2, there
exist wK ∈ K ′ such that∫

|wK |pdx = 1 and (λ2 − ε) ≤
∫

Ω

|∇wK |pdx.

Thus (3.10) is satisfied by setting vK = g−1(wK).
On the other hand, the two assumptions (F0) and (F4) implies

F (x, s) ≤ (
λ2 − 2ε

p
)|s|p + C, ∀s ∈ R, (3.11)

for some constant C > 0. Consequently, one deduces from (3.10) and (3.11) that

Φ(wK) ≥ 1
p

∫
Ω

|∇wK |pdx− (
λ2 − 2ε

p
)
∫

Ω

|wK |pdx− C|Ω|

≥ 1
p
(1− λ2 − 2ε

λ2 − ε
)
∫

Ω

|∇wK |pdx− C|Ω|.
(3.12)

The argument is similar for

Φ(−wK) ≥ 1
p
(1− λ2 − 2ε

λ2 − ε
)
∫

Ω

|∇wK |pdx− C|Ω|. (3.13)
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Finally, for every K ∈ A2, we have Φ(±wK) ≥ β := −C|Ω|, which completes the
proof. �

Proof of theorem 1.1. Putting Q = {tϕ1 : |t| ≤ R} for R > 0, clearly, Q is closed
and compact. In view of lemma 3.3, we can find t0 > 0 such that Φ(±t0ϕ1) < β.
In return for lemma 3.4, we may apply Theorem 3.2 to get that Φ has a critical
value given by

c = inf
h∈Γ

sup
x∈Q

Φ(h(x)) ≥ β,

where Γ = {h ∈ C([0, 1],W 1,p
0 (Ω)) : h(0) = −t0ϕ1, h(1) = t0ϕ1}. Therefore, there

exists at least one critical point u∗ of Φ. More precisely, u∗ is a Mountain Pass
type. However, by theorem 2.7, we have C1(Φ, u∗) � 0. Using theorem 2.1, one
deduces u∗ 6= 0. �
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