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EXISTENCE RESULT FOR VARIATIONAL DEGENERATED
PARABOLIC PROBLEMS VIA PSEUDO-MONOTONICITY

LAHSEN AHAROUCH, ELHOUSSINE AZROUL, MOHAMED RHOUDAF

Abstract. In this paper, we study the existence of weak solutions for the
initial-boundary value problems of the nonlinear degenerated parabolic equa-

tion
∂u

∂t
− div a(x, t, u,∇u) + a0(x, t, u,∇u) = f,

where Au = − div a(x, t, u,∇u) is a classical divergence operator of Leray-lions

acting from Lp(0, T, W 1,p
0 (Ω, w)) to its dual. The source term f is assumed to

belong to Lp′ (0, T, W−1,p′ (Ω, w∗)).

1. Introduction

Let Ω be a bounded open subset of RN and let Q be the cylinder Ω× (0, T ) with
some given T > 0. Consider the parabolic initial-boundary value problem

∂u

∂t
+ A(u) = f in Q

u(x, t) = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω,

(1.1)

where Au = −div a(x, t, u,∇u) is a classical divergence operator of Leray-lions
form with respect to the Sobolev space Lp(0, T, W 1,p

0 (Ω)) for some 1 < p < ∞. The
right-hand side f is supposed lying in Lp′(0, T, W−1,p′

0 (Ω)).
We consider, first, the case where A satisfies the classical Leray-lions conditions,

in particular the classical coercivity

a(x, t, s, ξ)ξ ≥ α|ξ|p. (1.2)

Then A is a bounded pseudo-monotone and coercive operator from the space
Lp(0, T, W 1,p

0 (Ω)) into its dual Lp′(0, T, W−1,p′

0 (Ω)). In this setting, problems of
the form (1.1) were solved by Lions [16] and Breszis-Browder [7] in the case p ≥ 2
and by Landes [12] and Landes-Mustonen [13] when 1 < p < 2 (see also [5],[6],[8]
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for related topics ). When the classical coercivity (1.2) is replaced by the more
general condition

a(x, t, s, ξ)ξ ≥ c
N∑

i=1

wi(x)|ξi|p, (1.3)

where now w(x) = {wi(x), 1 ≤ i ≤ N} is a family of weight functions on Ω, the
problem (1.1) can not be solved in the classical Sobolev settings Lp(0, T, W 1,p

0 (Ω)).
However, to do this, we must to change this classical setting by the general one
Lp(0, T, W 1,p

0 (Ω, w)) related to the so-called weighted Sobolev space W 1,p
0 (Ω, w).

In this direction, we list in particular the work [17] where the authors have studied
the existence of weak solution of the variational parabolic boundary-value problems

∂u

∂t
+ A(u) + A0(x, t, u,∇u) = f in Q

u(x, t) = u0(x) on ∂Ω× (0, T )

u(x, t) = 0 in Ω,

(1.4)

but under more restrictions on the weight family w (compare with Remark 2.1).
Note that, little information is known for the degenerate parabolic. Similar

problems for degenerate nonlinear elliptic equations have been studied in [9] and
[2]. Our aim of this paper is to study the same variational degenerate parabolic
problems (1.1) in some general case of weight. For that some important lemmas is
firstly proved and the approach of pseudo-monotonicity is used. A simple model of
our problem is as follows

∂u

∂t
− div(|x|s|Du|p−2Du) + σ(x)|u|p−2u = f in Q

u(x, t) = u0(x) on ∂Ω× (0, T )

u(x, t) = 0 in Ω.

The present paper is organized as follows: We start with the introduction of a
basic assumptions and main result in section 2, which is proved in section 3. Finally,
we give an example in section 4.

2. Assumptions and Main results

Hypotheses. Let Ω be a bounded open set of RN , p be a real number such that
2 < p < ∞ and w = {wi(x) : 1 ≤ i ≤ N} be a vector of weight functions, i.e.,
every component wi(x) is a measurable function which is strictly positive a.e. in
Ω. Further, we suppose in all our considerations that,

wi ∈ L1
loc(Ω), (2.1)

w
−1

p−1
i ∈ L1

loc(Ω), (2.2)

for any 0 ≤ i ≤ N . We denote by W 1,p(Ω, w) the space of all real-valued functions
u ∈ Lp(Ω, w0) such that the derivatives in the sense of distributions fulfill

∂u

∂xi
∈ Lp(Ω, wi) for i = 1, . . . , N.
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This is a Banach space under the norm

‖u‖1,p,w =
[ ∫

Ω

|u(x)|pw0 dx +
N∑

i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
]1/p

. (2.3)

The condition (2.1) implies that C∞0 (Ω) is a subset of W 1,p(Ω, w) and conse-
quently, we can introduce the subspace W 1,p

0 (Ω, w) of W 1,p(Ω, w) as the closure of
C∞0 (Ω) with respect to the norm (2.3). Moreover, the condition (2.2) implies that
W 1,p(Ω, w) as well as W 1,p

0 (Ω, w) are reflexive Banach spaces. We recall that the
dual space of weighted Sobolev spaces W 1,p

0 (Ω, w) is equivalent to W−1,p′(Ω, w∗),
where w∗ = {w∗i = w1−p′

i , i = 0, . . . , N} and where p′ is the conjugate of p i.e.
p′ = p

p−1 . For more details, we refer the reader to [10].
Now we state the some assumptions.

(H1) For 2 ≤ p < ∞, the expression

‖|u‖| =
( N∑

i=1

∫
Ω

| ∂u

∂xi
|pwi(x) dx

)1/p

(2.4)

is a norm on W 1,p
0 (Ω, w) and it’s equivalent to (2.3). There exists a weight

function σ on Ω such that

σ ∈ L1(Ω) and σ
−1

p−1 ∈ L1
loc(Ω). (2.5)

The Hardy inequality(∫
Ω

|u(x)|pσ dx
)1/p

≤ c
( N∑

i=1

∫
Ω

| ∂u

∂xi
|pwi(x) dx

)1/p

, (2.6)

holds for every u ∈ W 1,p
0 (Ω, w) with a constant c > 0 independent of u.

Moreover, the imbedding

W 1,p
0 (Ω, w) ↪→ Lp(Ω, σ) (2.7)

expressed by the inequality (2.6) is compact.

Note that (W 1,p
0 (Ω, w), ‖|.‖|) is a uniformly convex (and thus reflexive) Banach

space.

Remark 2.1. Assume that w0(x) ≡ 1 and there exists ν ∈]N
P ,+∞[∩[ 1

P−1 ,+∞[
such that

w−ν
i ∈ L1(Ω) for all i = 1, . . . , N. (2.8)

Note that the assumptions (2.1) and (2.8) imply that,

‖|u‖| =
( N∑

i=1

∫
Ω

| ∂u

∂xi
|pwi(x) dx

)1/p

(2.9)

is a norm defined on W 1,p
0 (Ω, w) and it’s equivalent to (2.3) and that, the imbedding

W 1,p
0 (Ω, w) ↪→ Lp(Ω) (2.10)

is compact [10, pp 46]. Thus the hypothesis (H1) is satisfied for σ ≡ 1.
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(H2) For i = 1, . . . , N ,

|a0(x, t, s, ξ)| ≤ βσ1/p(x) [c0(x, t) + σ
1
p′ |s|p−1 +

N∑
j=1

w
1
p′

j (x)|ξj |p−1], (2.11)

|ai(x, t, s, ξ)| ≤ βw
1/p
i (x) [c1(x, t) + σ

1
p′ |s|p−1 +

N∑
j=1

w
1
p′

j (x)|ξj |p−1], (2.12)

N∑
i=1

[ai(x, t, s, ξ)− ai(x, t, s, η)](ξi − ηi) > 0 ∀ξ 6= η ∈ RN , (2.13)

a0(x, t, s, ξ).s +
N∑

i=1

ai(x, t, s, ξ).ξi ≥ α
N∑

i=1

wi|ξi|p, (2.14)

where c0(x, t) and c1(x, t) are some positive functions in Lp′(Q), and α and
β are some strictly positive constants.

Some lemmas. In this subsection we establish some imbedding and compactness
results in weighted Sobolev Spaces which allow in particular to extend in the settings
of weighted Sobolev spaces.
Let V = W 1,p

0 (Ω, w), H = L2(Ω, σ) and let V ∗ = W−1,p′(Ω, w∗), with (2 ≤ p < ∞).
Let X = Lp(0, T, V ). The dual space of X is X∗ = Lp′(0, T, V ∗) where 1

p′ + 1
p = 1

and denoting the space W 1
p (0, T, V, H) = {v ∈ X : v′ ∈ X∗} endowed with the

norm
‖u‖w1

p
= ‖u‖X + ‖u′‖X∗ , (2.15)

is a Banach space. Here u′ stands for the generalized derivative of u; i.e.,∫ T

0

u′(t)ϕ(t) dt = −
∫ T

0

u(t)ϕ′(t) dt for all ϕ ∈ C∞0 (0, T ).

Lemma 2.2. The Banach space H is an Hilbert space and its dual H ′ can be
identified with him self; i.e.,H ′ ' H

Lemma 2.3. The evolution triple V ⊆ H ⊆ V ∗ is verified.

Lemma 2.4. Let g ∈ Lr(Q, γ) and let gn ∈ Lr(Q, γ), with ‖gn‖Lr(Q,γ) ≤ c, 1 <
r < ∞. If gn(x) → g(x) a.e in Q, then gn ⇀ g in Lr(Q, γ), where ⇀ denotes weak
convergence and γ is a weight function on Q.

Lemma 2.5. Assume that (H1) and (H2) are satisfied and let (un) be a sequence
in Lp(0, T, W 1,p

0 (Ω, w)) such that un ⇀ u weakly in Lp(0, T, W 1,p
0 (Ω, w)) and∫

Q

[a(x, t, un,∇un)− a(x, t, un,∇u)][∇un −∇u] dt dx → 0. (2.16)

Then un → u in Lp(0, T, W 1,p
0 (Ω, w)).

Now we recall the well-known general Sobolev imbedding theorems for evolution
equations.

Lemma 2.6 ([18]). Let V ⊆ H ⊆ V ∗ be an evolution triple. Then the imbedding

W 1
p (0, T, V, H) ⊆ C([0, T ]),H)

is continuous.
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Lemma 2.7 ([18]). Let Z1, Y, Z2 be real reflexive Banach spaces. Assume that the
imbeddings Z1 ⊆ Y ⊆ Z2 are continuous, and the imbedding Z1 ⊆ Y is compact,
0 < T < ∞, 1 < p, q < ∞. Then W = {u ∈ Lp(0, T, Z1) : u′ ∈ Lq(0, T, Z2)}
equipped with the norm

‖u‖w = ‖u‖Lp(0,T,Z1) + ‖u′‖Lq(0,T,Z2)

is a Banach space and the imbedding W ⊆ Lp(0, T, Y ) is compact.

Existence results.

Definition 2.8. A monotone map T : D(T ) → X∗ is called maximal monotone if
its graph

G(T ) = {(u, T (u)) ∈ X ×X∗for all u ∈ D(T )}
is not a proper subset of any monotone set in X ×X∗.

Let us consider the operator ∂
∂t which induces a linear map L from the subset

D(L) = {v ∈ X : v′ ∈ X∗, v(0) = 0} of X into X∗ by

〈Lu, v〉X =
∫ T

0

〈u′(t), v(t)〉V dt u ∈ D(L), v ∈ X. (2.17)

Lemma 2.9 ([18]). L is a closed linear maximal monotone map.

In our study we deal with mappings of the form F = L + S where L is a given
linear densely defined maximal monotone map from D(L) ⊂ X to X∗ and S is a
bounded demicontinuous map of monotone type from X to X∗.

Definition 2.10. A mapping S is pseudomonotone with respect to D(L), if for any
sequence {un} in D(L) with un ⇀ u, Lun ⇀ Lu and limn→∞ sup〈S(un), un−u〉 ≤
0, we have limn→∞〈S(un), un − u〉 = 0 and S(un) ⇀ S(u) as n →∞.

Consider the non linear parabolic problem
∂u

∂t
+ A(u) + A0(x, t, u,∇u) = f in Q

u(x, t) = 0 on ∂Ω× (0, T )

u(x, 0) = u0 in Ω.

Definition 2.11. A function u is said to be a weak solution of the initial-boundary
value problem (1.4) if u ∈ C([0, T ],H) ∩ Lp(0, T, V ), ∂u

∂t ∈ Lp′(0, T, V ∗) and u
satisfies the equation

∂u

∂t
+ Au + A0u = f 0 < t < T, u(0) = u0,

where the operator A + A0 : X → X∗ is defined by

〈(A + A0)(u), v〉 =
∫

Q

a(x, t, u,∇u)∇v dx dt +
∫

Q

a0(x, t, u,∇u)v dx dt

Proposition 2.12. The operator A + A0 : X → X∗ is :
(a) bounded and demicontinuous;
(b) pseudomonotone with respect to D(L)
(c) strongly coercive, i.e.,

〈(A + A0)(u), u〉X
‖u‖X

→ +∞, as ‖u‖X → +∞.



14 L. AHAROUCH, E. AZROUL, M. RHOUDAF EJDE/CONF/14

We first consider the Zero-initial value problem,

∂u

∂t
+ A(u) + A0(x, t, u,∇u) = f in Q

u(x, t) = 0 on ∂Ω× (0, T )

u(x, 0) = 0 in Ω,

(2.18)

Theorem 2.13. Assume that the conditions (H1)-(H2) hold, then problem (2.18)
admits a weak solution for any f ∈ X∗.

Theorem 2.14. Assume that the conditions (H1)-(H2) hold and u0 ∈ W 1,p
0 (Ω, w),

then the initial-boundary value problem (1.4) admits a weak solution for any f ∈
X∗.

3. Proofs of Main results

Proof of lemma 2.2. Let the map F : H ×H → R be defined by

F (f, g) =
∫

Ω

fgσ dx.

Note that F is a symmetric bilinear form, which is also continuous and defined
positively, since∫

Ω

fgσ dx =
∫

Ω

fσ1/2gσ1/2 dx ≤
( ∫

Ω

|f |2σ dx
)1/2( ∫

Ω

|g|2σ dx
)1/2

.

Then the Banach space H is an Hilbert space. Finally by a standard argument, we
can identify H with its dual H ′; i.e., H ′ ' H. �

Proof of lemma 2.3. By the imbedding (2.7) and the fact that 2 ≤ p < ∞, and
σ ∈ L1(Ω), we can write

W 1,p
0 (Ω, w) ↪→↪→ Lp(Ω, σ) ↪→ H ' H ′ ↪→ W−1,p′(Ω, w∗).

�

Proof of lemma 2.4. Since gnγ1/r is bounded in Lr(Q) and gn(x)γ1/r(x) → gγ1/r,
a.e. in Q, then by [15, lemma 3.2], we have

gnγ1/r ⇀ gγ1/r in Lr(Q).

Moreover, for all ϕ ∈ Lr′(Q, γ1−r′), we have ϕγ
−1
r ∈ Lr′(Q). Then∫

Q

gnϕ dx →
∫

Q

gϕ dx, i.e. gn ⇀ g in Lr(Q, γ).

�

Proof of lemma 2.5. Let Dn = [a(x, t, un,∇un)−a(x, t, un,∇u)][∇un−∇u]. Then
by (2.13), Dn is a positive function and by (2.16), Dn → 0 in L1(Q). Extracting a
subsequence, still denoted by un, and using (2.7) we can write

un → u a.e. in Q, Dn → 0 a.e. in Q.
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Then, there exists a subset B of Q, of zero measure such that for (t, x) ∈ Q \
B, |un(x, t)| < ∞, |∇u(x, t)| < ∞, |c1(x, t)| < ∞, wi(x) > 0 and un(x, t) →
u(x, t), Dn(x, t) → 0. We set εn = ∇un(x, t) and ε = ∇u(x, t). Then

Dn(x, t) = [a(x, t, un, εn)− a(x, t, un, ε)](εn − ε)

≥ α
N∑

i=1

wi|εi
n|p + α

N∑
i=1

wi|εi|p

−
N∑

i=1

βw
1/p
i

[
c1(x, t) + σ

1
p′ |un|p−1 +

N∑
j=1

w
1
p′

j |εj
n|p−1

]
|εi|

−
N∑

i=1

βw
1/p
i

[
c1(x, t) + σ

1
p′ |un|p−1 +

N∑
j=1

w
1
p′

j |εj |p−1
]
|εi

n|;

i.e,

Dn(x, t) ≥ α
N∑

i=1

wi|εi
n|p − cx,t

[
1 +

N∑
j=1

w
1
p′

j |εj
n|p−1 +

N∑
i=1

w
1/p
i |εi

n|
]
, (3.1)

where cx,t is a constant which depends on x, but does not depend on n. Since
un(x, t) → u(x, t), we have |un(x, t)| ≤ Mx,t, where Mx,t is some positive constant.
Then by a standard argument |εn| is bounded uniformly with respect to n. Indeed,
(3.1) becomes

Dn(x, t) ≥
N∑

i=1

|εi
n|p

(
αwi −

cx,t

N |εi
n|p

− cx,tw
1
p′

i

|εi
n|

− cx,tw
1/p
i

|εi
n|p−1

)
.

If |εn| → ∞ (for a subsequence) there exists at least one i0 such that |εi0
n | → ∞,

which implies that Dn(x, t) →∞ which gives a contradiction.
Let now ε∗ be a cluster point of εn. We have |ε∗| < ∞ and by the continuity of

a with respect to the two last variables we obtain

(a(x, t, u(x, t), ε∗)− a(x, t, u(x, t), ε))(ε∗ − ε) = 0.

In view of (2.13) we have ε∗ = ε. The uniqueness of the cluster point implies

∇un(x, t) → ∇u(x, t) a.e. in Q.

Since the sequence a(x, t, un,∇un) is bounded in the space
∏N

i=1 Lp′(Q,w∗i ) and
a(x, t, un,∇un) → a(x, t, u,∇u) a.e. in Q, Lemma 2.4 implies

a(x, t, un,∇un) ⇀ a(x, t, u,∇u) in
N∏

i=1

Lp′(Q,w∗i ) and a.e. in Q.

We set ȳn = a(x, t, un,∇un)∇un and ȳ = a(x, t, u,∇u)∇u. As in [4, lemma lemma
5] we can write ȳn → ȳ in L1(Q). By (2.14), we have

α
N∑

i=1

wi|
∂un

∂xi
| ≤ a(x, t, un,∇un)∇un.
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Let

zn =
N∑

i=1

wi|
∂un

∂xi
|p, z =

N∑
i=1

wi|
∂u

∂xi
|p,

yn =
ȳn

α
, y =

ȳ

α
.

Then, by Fatou’s lemma we obtain∫
Q

2y dxdt ≤ lim
n→∞

inf
∫

Q

y + yn − |zn − z| dx dt;

i.e., 0 ≤ limn→∞ sup
∫

Q
|zn − z| dxdt, hence

0 ≤ lim
n→∞

inf
∫

Q

|zn − z| dxdt ≤ lim
n→∞

sup
∫

Q

|zn − z| dxdt ≤ 0.

This implies

∇un → ∇u in
N∏

i=1

Lp(Q,wi),

which with (2.4) completes the present proof. �

Proof of proposition 2.12. (a) We set B = A+A0. Using (2.11), (2.12) and Hölder’s
inequality we can show that B is bounded. For showing that B is demicontinuous,
let vε → v in X as ε → 0, and prove that,

〈B(vε), ϕ〉 → 〈B(v), ϕ〉 for all ϕ ∈ X.

Since, ai(x, t, vε,∇vε) → ai(x, t, v,∇v) as ε → 0, for a.e. x ∈ Ω, by the growth
conditions (2.12), (2.11) and lemma 2.4 we get

ai(x, t, vε,∇vε) ⇀ ai(x, t, v,∇v) in Lp′(Q,w1−p′

i ) as ε → 0

for (i = 1, . . . , N) and

a0(x, t, vε,∇vε) ⇀ a0(x, t, v,∇v) in Lp′(Q, σ1−p′) as ε → 0.

Finally for all ϕ ∈ X,

〈B(vε), ϕ〉 → 〈B(v), ϕ〉 as ε → 0

(since ϕ ∈ Lp(Q, σ) for all ϕ ∈ X).
(b) Suppose that {uj} is a sequence in D(L) with

(i) uj ⇀ u weakly in X
(ii) Luj → Lu weakly in X∗,
(iii) lim sup〈A + A0(uj), uj − u〉X ≤ 0.

By the definition of the operator L in (2.17), we obtain that {uj} is a bounded
sequence in W 1

p (0, T, V, H). By virtue of lemma 2.7, we get,

uj → u strongly in Lp(Q, σ).

On the other hand,

〈A0uj , uj − u〉 =
∫

Q

a0(x, t, uj ,∇uj)(uj − u) dx dt
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Thus the Hölder’s inequality and (i) imply

〈A0uj , uj − u〉 ≤
( ∫

Q

|a0|p
′
σ1−p′ dx dt

)1/p′

‖uj − u‖Lp(Q,σ)

≤ ‖a0‖Lp′ (Q,σ∗)‖uj − u‖Lp(Q,σ),

i.e, 〈A0uj , uj − u〉 → 0 as j → ∞. Combining the last convergence with (iii), we
obtain

lim
j→∞

sup〈Auj , uj − u〉 ≤ 0.

And by the pseudo-monotonicity of A (see [9, Proposition 1]), we have

Auj ⇀ Au in X∗ and lim
j→∞

〈Auj , uj − u〉 = 0.

Then
lim

j→∞
〈Auj + A0(uj), uj − u〉 = 0.

On the other hand, limj→∞〈Auj , uj − u〉 = 0, which implies

0 = lim
j→∞

∫
Q

a(x, t, uj ,∇uj)∇(uj − u) dx dt

= lim
j→∞

∫
Q

[a(x, t, uj ,∇uj)− a(x, t, uj ,∇u)][∇uj −∇u] dx dt

+ lim
j→∞

∫
Q

a(x, t, uj ,∇u)(∇uj −∇u) dx dt.

The last integral in the right hand tends to zero, since by the continuity of the
Nemytskii operator, a(x, t, uj ,∇u) → a(x, t, u,∇u) in

∏N
i=1 Lp′(Q,w1−p′

i ) as j →
+∞. So that

lim
j→∞

∫
Q

[a(x, t, uj ,∇uj)− a(x, t, uj ,∇u)][∇uj −∇u] dx dt = 0.

By lemma 2.5 we have
∇uj → ∇u a.e. in Q.

Hence a0(x, t, uj ,∇uj) → a0(x, t, u,∇u) a.e. in Q as j →∞ and since

a0(x, t, uj ,∇uj) ∈ Lp′(Q, σ1−p′)

by Lemma 2.4, we obtain

a0(x, t, uj ,∇uj) ⇀ a0(x, t, u,∇u) in Lp′(Q, σ1−p′).

Finally,
B(uj) ⇀ B(u) in X∗.

(c) The strongly coercivity follows from (2.14) �

Proof of Theorem 2.13. By proposition 2.12 the operator A + A0 : X → X∗ is
pseudomonotone with respect to D(L), and the operator A+A0 satisfies the strong
coercivity condition which implies that both of the conditions (i) and (ii) in [3,
theorem 4] hold. So all the conditions in [3, theorem 4] are met. Therefore, there
exists a solution u ∈ D(L) of the evolution equation

∂u

∂t
+ Au + A0u = f
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for any f ∈ X∗. In order to prove that u is also a weak solution of the problem
(2.18), we have to show that u ∈ C([0, T ],H). By the definition of D(L) and lemma
2.6, we obtain

D(L) ⊆ W 1
p (0, T, V, H) ⊆ C([0, T ],H).

Which implies that u ∈ C([0, T ],H). �

Proof of Theorem 2.14. Now we turn to problem (1.4). Assume that (H1)-(H2)
hold and u0 ∈ W 1,p

0 (Ω, w). Let

ai(x, t, u,∇u) = ai(x, t, u + u0,∇u +∇u0)

for all i = 0,. . . ,N. Then it is easy to see that ai also satisfies the conditions (H1)-
(H2). But β , α and the function c0(x, t) and c1(x, t) in (H1)-(H2) may depend on
the function u0. Analogously, A + A0 : X → X∗ is defined by

〈(A + A0)(u), v〉 =
∫

Q

a(x, t, u,∇u)∇v dx dt +
∫

Q

a0(x, t, u,∇u)v dx dt

for u, v ∈ Lp(0, T, V ), where A = −diva(x, t, u,∇u). Then, by Theorem 2.13, we
have Theorem 2.14 �

4. An example

Let Ω be a bounded domain of RN (N ≥ 1), satisfying the cone condition. Let
us consider the Carathéodory functions

ai(x, t, s, ε) = wi|εi|p−1 sgn(εi) for i = 1, . . . , N,

a0(x, t, s, ε) = ρσ(x)s|s|p−2, ρ > 0,

where σ and wi(x) (i =, 1, . . . , N) are given weight functions, strictly positive almost
everywhere in Ω. We shall assume that the weight functions satisfy, wi(x) = w(x),
x ∈ Ω, for all i = 1, . . . , N . Then, we can consider the Hardy inequality (2.6) in
the form ( ∫

Q

|u(x, t)|pσ(x) dx
)1/p

≤ c
( ∫

Q

|∇u(x, t)|pw dx
)1/p

.

It is easy to show that the functions ai(x, t, s, ε) are Carathéodory functions satis-
fying the growth condition (2.12) and the coercivity (2.13). On the other hand, the
monotonicity condition is satisfied, in fact,

N∑
i=1

(ai(x, t, s, ε)− ai(x, t, s, ε̂))(εi − ε̂i)

= w(x)
N∑

i=1

(|εi|p−1 sgn εi − |ε̂i|p−1 sgn ε̂i)(εi − ε̂i) > 0

for almost all (x, t) ∈ Q and for all ε, ε̂ ∈ RN with ε 6= ε̂, since w > 0 a.e. in Ω.
In particular, let us use the special weight functions w and σ expressed in terms of
the distance to the boundary ∂Ω. Denote d(x) = dist(x, ∂Ω) and set

w(x) = dλ(x), σ(x) = dµ(x).

In this case, the Hardy inequality reads( ∫
Q

|u(x, t)|pdµ(x) dx
)1/p

≤
(
c

∫
Q

|∇u(x, t)|pdλ(x) dx
)1/p

.
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For λ < p− 1, µ−λ
p + 1 > 0; See for example [9]

Corollary 4.1. The parabolic initial-boundary value problem∫
Q

∂u(x, t)
∂t

ϕ dx dt +
∫

Q

dλ(x)
N∑

i=1

|∂u(x, t)
∂xi

|p−1 sgn(
∂u

∂xi
)
∂ϕ(x, t)

∂xi
dx dt

+
∫

Q

ρdµ(x)u(x, t)|u(x, t)|p−2ϕ(x, t)

=
∫

Q

fϕ dx dt ∀ϕ ∈ D(Q)

admits at least one solution u in Lp(0, T, W 1,p
0 (Ω, dλ)), for any function f in

Lp′(0, T, W−1,p′(Ω, dλ′)) where λ′ = λ(1− p′) and u0 ∈ W 1,p
0 (Ω, dλ).
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