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MODELLING OF A COLLAGE PROBLEM

ABDELAZIZ AÏT MOUSSA, LOUBNA ZLAÏJI

Abstract. In this paper we study the behavior of elastic adherents connected

with an adhesive. We use the Γ-convergence method to approximate the prob-

lem modelling the assemblage with density energies assumed to be quasiconvex.
In particular for the adhesive problem, we assume periodic density energy and

some growth conditions with respect to the spherical and deviational compo-

nents of the gradient. We obtain a problem depending on small parameters
linked to the thickness and the stiffness of the adhesive.

1. Introduction

The problem under investigation arises in the study of adhesive bonding of elas-
tic bodies, and the question is how to model the behavior of the adhesive material
interposed between the adherents. Such problems find their applications for exam-
ple in aeronautics, in the study of composites, and in other fields of engineering. In
general, the computation of the solution using numerical methods is very difficult.
In one hand, this is because the thickness of the adhesive requires a fine mesh,
which in turn implies an increase of the degrees of freedom of the system, and in
the other, the adhesive is usually more flexible than the adherents, and this pro-
duces numerical instabilities in the stiffness matrix. To overcome this difficulties,
thanks to Goland and Reissner [12], it is usual to find a limit problem in which the
adhesive is treated as a material surface; it disappears from a geometrical point of
view, but it is represented by the energy of adhesion. In this framework, we find
many works investigated on this theoretical approach; see for example Moussa [19],
Suquet [20], Ganghoffer, Brillard and Schultz [10], Geymonat, Krasucki and Lenci
[11], Licht and MiChaille [15], Brezis, Caffarelli and Friedman [4], Acerbi, Buttazo
and Percivale [1], Klarbring [14], Caillerie [5].

This work is specially interested in approximating a minimization problem (Pr),
where r is a small parameter linked to the thickness and the stiffness of the ad-
hesive. In particular, we associate to each component of gradient (spherical or
deviational) an independent stiffness parameter. We use the method described in
[15] to find a certain limit problem denoted (P). Precisely, by the Γ-convergence
method (introduced in a paper by De Giorgi and Franzoni in 1975 [9]), we look for
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a weak limit of a (Pr)-minimizing sequence which is a solution of (P). The outline
of the paper is the following.

Section 2 contains some notation and a brief summary of results related to no-
tions of Γ-convergence, quasiconvexity and subadditivity . Section 3 is devoted to
Problem statement, hypothesis which we assume on his different components and
existence of solutions. In section 4, we discuss topology that we shall consider for
limit problem study, we compute Γ-limit of the stored strain energies represented
by the functionals (Fr)r and we deduce the limit problem.

2. Notation and preliminaries

We begin by introducing some notation which is used throughout the paper.
First, let O1 and O2 be two open subsets of RN with interface S. For a function
v defined on O1 ∪ O2, we call the jump of v across S the function defined on S by
[v]S = v/O1 −v/O2 . Let MN be the space of N ×N real matrices endowed with the
Hilbert-Schmidt scalar product A : A′ = trace(AtA′). For a given A ∈MN , we call
spherical part of A the matrix As = trace A

N IN , where IN is the unit matrix of RN .
The deviational part will be Ad = A− As. In mechanics, the spherical part of the
deformation tensor changes the volume without changing the shape whereas the
deviational tensor changes the shape preserving the same volume (the trace is void,
therefore there is no relative variation of volume). On the space MN , operators
A 7→ As and A 7→ Ad are linear continuous for matrix norm |A| = Σ1≤i,j≤N |Ai j |,
where A = (Ai j)1≤i,j≤N .
Definition. A a Carathéodory function f : RN ×MN → R satisfies condition (Cp)
if there exists αp, βp, c ∈ RN , such that for x ∈ RN and all (A,A′) ∈ (MN )2, we
have

αp|A|p ≤ f(x,A) ≤ βp(1 + |A|p)
|f(x,A)− f(x,A′)| ≤ c|A−A′|(1 + |A|p−1 + |A′|p−1).

(2.1)

As we have already mentioned, our method will be based on the notion of Γ-
convergence. Let (X, τ) be a metrisable topological space, and for every n ∈ N let
Fn, F : X → R be functions defined on X. For every x ∈ X, the Γ(τ)-liminf Fn

(respectively, Γ(τ)-limsup Fn ) are defined as:

Γ(τ)− lim inf Fn(x) = inf{lim inf Fn(xn) : xn
τ→ x}

Γ(τ)− lim inf Fn(x) = inf{lim supFn(xn) : xn
τ→ x}

If the two expressions are equal to F (x), then we say that the sequence (Fn) Γ(τ)-
converges to F on X and we write F = Γ(τ)-limFn. An other way to define
F=Γ-limFn is the following:
(∀x ∈ X)(∃x0,n ∈ X) such that x0,n

τ→ x and lim supn→+∞ Fn(x0,n) ≤ F (x)
(∀x ∈ X)(∀xn ∈ X) such that xn

τ→ x, lim infn→+∞ Fn(xn) ≥ F (x)
The Γ-convergence method is made precise in item (1) below.

Proposition 2.1. Suppose that (Fn)n Γ-converges to F .
(1) [2, Theorem 2.11]. Let xn ∈ X be such that Fn(xn) ≤ inf{Fn(x) : x ∈ X}+ εn,
where εn > 0, εn → 0. We assume furthermore that {xn, n ∈ N} is τ -relatively
compact, then any cluster point x of {xn, n ∈ N} is a minimizer of F and

lim inf
n→+∞

{Fn(x) : x ∈ X} = F (x).
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(2) [2, Theorem 2.15]. If L : X → R is continuous, then (Fn + L)n Γ-converges to
F+L.

For details about Γ-convergence, we refer the reader to [2, 7]. To establish
existence of solutions for our initial problem, it will be useful to consider quasiconvex
energy densities. So if f is a Borel measurable and locally integrable function
defined on MN , we say that f is quasiconvex if

f(A) ≤ 1
measD

∫
D

f(A+∇ϕ)dx

where D is a bounded domain of RN , A ∈ MN and ϕ ∈ W 1,∞
0 (D,RN ). If f is not

quasiconvex, his quasiconvex envelope is given as

Qf = sup{g ≤ f : g is quasiconvex }
If f is locally bounded, then the definition of Qf can be expressed as [6, Page 201]

Qf(A) = inf{ 1
measD

∫
D

f(A+∇ϕ)dx : ϕ ∈W 1,∞
0 (D,RN )}

The following proposition establish sufficiency of quasiconvexity to obtain weak
lower semicontinuity in W 1,p

Proposition 2.2. Let O be an open bounded subset of RN and f : O ×MN → R
a continuous quasiconvex function satisfying condition (2.1), for p ≥ 1. Then,
the functional F : u →

∫
O f(x,∇u(x))) dx is weakly lower semicontinuous on

W 1,p(O,RN ).

For the proof of the above proposition, see [6, Theorem 2.4 and Remark iv].
To describe a global subadditive theorem, we consider Bb(Rd) the family of

Borel bounded subsets of Rd and δ Euclidean distance in Rd. for every A ∈ Bb(Rd),
ρ(A) = sup{r ≥ 0 : ∃Br(x) ⊂ A}, where Br(x) = {y ∈ Rd : δ(x, y) ≤ r}. A
sequence (Bn)n∈N ⊂ Bb(Rd) is called regular if there exist an increasing sequence
of intervals (In)n ⊂ Zd and a constant C independent of n such that Bn ⊂ In and
meas(In) ≤ Cmeas(Bn), ∀n. The global subadditive theorem is essentially based
on subadditive Zd-periodic functions . A function S : A ∈ Bb(Rd) → SA ∈ R is
called subadditive Zd-periodic if it satisfy the following conditions:

(i) For all A,B ∈ Bb(Rd) such that A ∩B = ∅, SA∪B ≤ SA + SB .
(ii) For all A ∈ Bb(Rd), all z ∈ Zd, SA+z = SA.

Now, we shall see the global subadditive theorem, firstly used in the setting of the
calculus of variation by Dal Maso and Modica [8], and generalized to sequences
indexed by convex sets by Licht and Michaille [15]

Theorem 2.3. Let S be a subadditive Zd-periodic function such that

γ(S) = inf{ SI

meas I
: I = [a, b[, a, b ∈ Zd and ai < bi ∀1 ≤ i ≤ d} > −∞

In addition, we suppose that S satisfies the dominant property: There exists C(S),
for every Borel convex subset A ⊂ [0, 1[d, |SA| ≤ C(S). Let (An)n be a regular
sequence of Borel convex subsets of Bb(Rd) with limn→+∞ ρ(An) = +∞. Then
limn→+∞

SAn

meas An
exists and is equal to

lim
n→+∞

SAn

measAn
= inf

m∈N∗
{
S[0,m[d

md
} = γ(S)

For the proof of the above theorem see [16, page 24].
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3. Statement of the problem

Let O be a domain of RN with Lipschitz boundary, divided in two parts O± by
the plane {xN = 0}. The common interface is noted S. The structure under study
contains two adherents filling Oε = O+

ε ∪ O−ε , glued perfectly with an adhesive
occupying Bε = {x = (x̃, xN ) ∈ O : ±xN ≤ ε γ±( ex

ε )} = O \ Oε, along the common
surfaces S±ε = {x ∈ O : ±xN = εγ±( ex

ε )}, where ε is a small parameter intended to
tend toward 0, γ± : RN−1 −→ R+ are two C1 Ỹ -periodic functions, Ỹ =]0, 1[N−1.
The maximum (respectively Minimum) of γ± on Ỹ is noted γ±M (respectively γ±m).
Surface forces are applied on a portion Γ1 of ∂O with surface measure supposed to
be positive, and the structure is clamped on his complementary Γ0. The illustration
of the domain is shown in Figure 1.

Bε→

O+
ε

O−ε

S+
ε

S−ε

Γ1

←S

O+

O−

Γ1

Figure 1. Initial problem (left). Limit problem (right)

Our study is focused on the minimization problem (Pr): Find u ∈ Vε such that:

Ir(u) = min
v∈Vε

Ir(v) = min
v∈Vε

Fr(v)− L(v) (3.1)

where

• r = (ε, µ, η), the three parameters are positive intended to tend to 0. The
first concern the thickness of adhesive and the others the stiffness connected
respectively to spherical and deviational components of ∇.
• Vε = {v ∈ W 1,q(Oε) × W 1,p(Bε) : ∇s v ∈ Lps(Bε,M

N ) and ∇d v ∈
Lpd(Bε,M

N ), [v]S±ε = 0, v = 0 sur Γ0}, ∇s and ∇d are respectively spher-
ical and deviational components of ∇. ps, pd and q are constants with
1 < ps, pd ≤ q and p = min(ps, pd).

• For v ∈ Vε,

Fr(v) =
∫
Oε

h(x,∇v) dx+
∫

Bε

µ bs(
x

ε
,∇s v) + η bd(

x

ε
,∇d v) dx

L(v) =
∫
O
f(x) v(x) dx+

∫
Γ1

g(x) v(x) dσ(x)

In the following, we denote w = s or w = d, and we make the hypotheses:

(H1) bw and h are Carathéodory functions defined on RN ×MN . In particular,
bw is Ỹ -periodic with respect to first variable and satisfies the condition
(Cw): There exists αw, βw, cw ∈ R+

∗ such that for all x ∈ RN and all
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(Q,Q′) ∈ (MN )2 we have

αw|Qw|pw ≤ bw(x,Qw) ≤ βw(1 + |Qw|pw)

|bw(x,Qw)− bw(x,Q′w)| ≤ cw|Qw −Q′w|(1 + |Qw|pw−1 + |Q′w|pw−1).
(3.2)

The function h satisfies the conditions Cq (2.1).
(H2) There exist a function b∞,w such that Q 7→ b∞,w(x,Q) is positively pw-

homogeneous, a positive constant c′w and 0 < mw < pw so that for all
(x,Q) ∈ RN ×MN4,

|b∞,w(x,Qw)− bw(x,Qw)| ≤ c′w(1 + |Qw|pw−mw)

(H3) (f, g) ∈ Lq′(O,RN )×Lq′(Γ1,RN ), where q′ is the conjugate exponent of q,
and there exists ε0 > 0 such that for all ε ≤ ε0 : (supp f ∪ Γ1) ∩Bε = ∅.

To lighten notation, we shall often use const to designate different constants
(independent of r) in a same proof.

Remark 3.1. (1) If we consider the following norm on Vε,

‖v‖Vε
= ‖v‖W 1,q(Oε,RN ) + ‖∇sv‖Lps (Bε,MN ) + ‖∇dv‖Lpd (Bε,MN ).

Then Vε will be a reflexive Banach space (because 1 < ps, pd), and L is a linear
continuous mapping on (Vε, ‖·‖Vε

). (2) Hypothesis (H2) implies that for all (x,Q) ∈
RN ×MN , limt→+∞

bw(x,tQw)
tpw = b∞,w(x,Qw).

Proposition 3.2. Let bw and h be quasiconvex, and in particular bw is continuous
on RN × MN . Then, under (H1) and (H3), problem (3.1) admits at least one
solution.

Proof. (Vε, ‖ · ‖Vε
) is a reflexive Banach space (Remark 3.1), then using the well

known theorem [13, Page 135], it suffices to establish that Ir is weakly lower
semicontinuous and coercive on (Vε, ‖ · ‖Vε). So let v ∈ Vε, in one hand we
are Vε ↪→ W 1,q(Oε) which implies by Proposition 2.2 that functional v ∈ Vε 7→∫
Oε
h(x,∇v) dx is weakly lower semicontinuous on Vε. It is the same for functional

v 7→
∫

Bε
bw(x,∇wv) dx. Indeed, using embedding Vε ↪→ Lpw(Bε), the fact that op-

erators Q ∈ MN 7→ Qw are linear continuous (section 2), then it suffices to adapt
proof of [6, Theorem 2.4] by replacing ∇ with ∇w. We Conclude using linearity
and continuity of L on Vε. For coercivity, it’s easily seen according to (H1) and
(H3) that on Vε, lim‖v‖Vε→+∞ Ir(v) = +∞. �

Remark 3.3. In general, if a function f : RN ×MN 7→ R satisfying condition (2.1)
is not quasiconvex, then for an open bounded subset O of RN , inf F (u)W 1,p(O) =
inf

∫
Ω
f(x,∇u)dx can be not existent. In return, if we take his quasiconvex envelope

Qf we can study existence of solutions of the problem infQF = inf
∫
Ω
Qf(x,∇.)dx

noticing that infF = infQF (in the sense described in [6, Corollary 2.3], and that
QF is weakly lower semicontinuous on W 1,p(O).

4. Limit Problem

In order to determine the limit problem, we first identify the topological space
that we shall consider in the following. In one hand, the space must be big enough
not depending on the parameter r to include the spaces Vε defined in section 3.
In the other, topology must provide the relative compactness of a (3.1)-minimizers
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sequence. Let X = W 1,q
loc (O \ S) and τ his weak topology. Let us consider the

subset
V = {v ∈ X : v ∈W 1,q(O \ S), v = 0 on Γ0}

Proposition 4.1. If (vr)r is a sequence in X verifying Fr(vr) ≤ C, then there
exist v ∈ V and a subsequence such that vr

τ→ v in X. Moreover,
(1) XOε∇vr ⇀ ∇v in Lq(O).
(2)

∫
RN−1 |vr(x̃,±εγ( ex

ε ))− v±(x̃)|qdx̃ r→ 0.
For the proof of the above proposition see [15, page 9].

Remark 4.2. (1) Let (ur)r be a (3.1)-minimizer sequence, i.e.

lim
r→0

Ir(ur)− inf{Ir(v) : v ∈ Vε} = 0,

then (ur)r is relatively compact in (X, τ). It suffices to show lim infr→0 Ir(ur) <
+∞, which implies according to conditions (3.2) and (3.2) with w replaced by q
that lim infr→0 Fr(ur) < +∞, and we apply Proposition 4.1.

(2) Let p = min(ps, pd). In accordance with results of [15], we obtain (X, τ) so
that:
• If lim sup(ε,µ)

ε
µ1/ps

and lim sup(ε,η)
ε

η1/pd
< +∞, then X = Lα(O) and τ is his

strong topology for any α ∈ [1, p[.
• If lim sup(ε,µ)

ε
µ1/ps

= lim sup(ε,η)
ε

η1/pd
= 0, then X = Lp(O) and τ is his strong

topology.

Now, we look for the Γ-limit of functionals Ir. First we have to remark that
The functional L is linear continuous on (X, τ) (for the proof, is a straightforward
consequence of (H3) and the compact embedding W 1,q

loc (O \ S,RN ) ↪→ Lq(S)), then
according to Proposition 2.1, it suffices to study Γ-limit for functionals Fr. To this
end, we extend Fr on the space (X, τ) as

Fr(v) =

{∫
Oε
h(x,∇v) dx+

∫
Bε
µbs(x

ε ,∇s v) + η bd(x
ε ,∇d v) dx if v ∈ Vε

+∞ if v 6∈ Vε

we recall that Vε = {v ∈ W 1,q(Oε) ×W 1,p(Bε) : ∇s v ∈ Lps(Bε,M
N ) and ∇d v ∈

Lpd(Bε,M
N ), [v]S±ε = 0, v = 0 on Γ0}. Let

ls = lim
(ε,µ)

µ

2(2ε)ps−1
and ld = lim

(ε,η)

η

2(2ε)pd−1
.

We define functional F on X as follows:
(i) If ls, ld ∈ [0,+∞[:

F (v) =

{∫
O Qh(x,∇v) dx+

∫
S
{ls (b∞,s)hom + ld (b∞,d)hom}[v]dx̃ if v ∈ V

+∞ if v 6∈ V

we recall that V = {v ∈ X : v ∈W 1,q(O \ S,RN ) and v = 0 on Γ0}.
(ii) If ls = +∞ and ld < +∞:

F (v) =

{∫
O Qh(x,∇v) dx+ ld

∫
S
(b∞,d)hom[vT ]dx̃ if v ∈ V0,N

+∞ if v 6∈ V0,N

where V0,N = {v ∈ V : [vN ] = 0}, vN = (v.eN ) and vT = v − vNeN .
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(iii) If ld = +∞:

F (v) =

{∫
O Qh(x,∇v) dx if v ∈ V0

+∞ if v 6∈ V0,

where V0 = {v ∈ V : [v] = 0}. For the three functionals, Qh is the quasiconvex
envelope of h, [v] the jump of v across S and (b∞,w)hom is the function defined on
RN as

(b∞,w)hom(a) = inf
k

1
kN−1

inf{
∫

Bk

b∞,w(y,∇wϕ)dy : ϕ ∈ Ψγa+W 1,pw

0 (Bk,RN )}

where w = s or w = d, Bk = {x ∈ RN : x̃ ∈ kỸ ,±xN ≤ γ±(x̃)}, for x ∈ RN

Ψγ(x) = sign(xN )Ψ(
|xN |
γ±(x̃)

)

with

Ψ(t) =


0 if t < 0
t if 0 ≤ t < 1
1 if t ≥ 1

Without loss of generality, we suppose in the following that bs(., 0) = 0 on Bε. The
principal result of this section is in the following proposition

Proposition 4.3. Γ(τ)− limFr = F

To establish this result, we need some lemmas. Let Ã ∈ Bb(RN−1), a ∈ RN and
we take p = pw. We define

S eA(a) = inf{
∫

A

b∞,w(y,∇wϕ)dy : ϕ ∈ Ψγa+W 1,p
0 (A,RN )} (4.1)

where
A = {x ∈ RN : x̃ ∈ Ã,±xN ≤ γ±(x̃)} (4.2)

Lemma 4.4. Let Ã be a convex open bounded subset of RN−1. Then for a sequence
(εn)n of real positive, εn → 0 we have

lim
n→+∞

S 1
εn

eA(a)

meas( 1
εn
Ã)

= (b∞,w)hom(a)

Proof. Let Ã ∈ Bb(RN−1), and the function S : Ã 7→ S eA. Then S is a subadditive
ZN−1-periodic function:
(i) Let Ã, B̃ ∈ Bb(RN−1) such that Ã∩ B̃ = ∅, then S eA∪ eB ≤ S eA +S eB . To establish
this, we take ϕA ∈ Ψγ(a) + W 1,p

0 (A,RN ) and ϕB ∈ Ψγ(a) + W 1,p
0 (B,RN ), where

A and B ( in (4.2) we replace Ã by B̃ ) are defined from Ã and B̃ by (4.2).
Let us take

Φ =

{
ϕA on A
ϕB on B

Since Ã ∩ B̃ = ∅, A ∩B = ∅. Thus Φ ∈ Ψγa+W 1,p
0 (A ∪B), and

S eA∪ eB ≤
∫

A∪B

b∞,w(y,∇wΦ)dy =
∫

A

b∞,w(y,∇wϕA)dy +
∫

B

b∞,w(y,∇wϕB)dy

for all ϕA and ϕB . Thus
S eA∪ eB ≤ S eA + S eB
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(ii) Let Ã ∈ Bb(RN−1) and z ∈ ZN−1. Let A and Az subsets associated respec-
tively to Ã and Ã+ z by relation (4.2), and ϕ ∈W 1,p

0 (Az). Since bw is Ỹ -periodic,
it’s the same for b∞, w. Thus∫

Az

b∞, w(x,∇wϕ)dx =
∫

eA+z

∫
{xN :±xN≤γ±(ex)}

b∞, w(x,∇wϕ)dxN dx̃

=
∫

eA
∫
{xN :±xN≤γ±(ex+z)}

b∞, w(x̃+ z, xN ,∇wϕ)dxN dx̃

=
∫

A

b∞, w(x,∇wϕ)dxN dx̃

Subadditivity and ZN−1-periodicity being proved for S, we have to show dominant
property (Theorem 2.3). So, let Ã ∈ Bb(RN−1) be a convex included in [0, 1[N−1,
and A, B subsets associated respectively with Ã and [0, 1[N−1 by (4.2), A ⊂ B. Let
Φ0 ∈ W 1,p

0 (B,RN ) and Φ = Ψγa + Φ0. We take ϕ = Ψγa + ϕ0, where ϕ0 = ηΦ0

and η ∈ D(A), then ϕ ∈ Ψγa+W 1,p
0 (A). If we use Remark 3.1 and condition (3.2),

S eA ≤
∫

A

b∞,w(y,∇wϕ)dy ≤
∫

B

b∞,w(y,∇wϕ)dy ≤ βw

∫
B

|∇wϕ|pdy

And we have

|∇wϕ|p = |(∇Ψγ ⊗ a)w +∇wϕ0|p ≤ const(|(∇Ψγ ⊗ a)w|p + |∇wϕ0|p)

By the fact that |∇Ψγ | ≤ 1 + const
γ±m

and η ∈ D(A), we have

|∇wϕ|p ≤ const(1 + |∇wΦ0|p + |Φ0|p).

According to Poincaré inequality, we obtain

S eA ≤ const(measB +
∫

B

|∇wΦ0|p +
∫

B

|Φ0|p)

≤ const(measB + ‖Φ0‖pW 1,p
0 (B)

) ,∀Φ0 ∈W 1,p
0 (B)

≤ const(measB + inf
W 1,p

0 (B)
‖Φ0‖pW 1,p

0 (B)
)

which establish the dominant property. In the other hand, b∞,w ≥ 0 ⇒ γ(S) ≥
0 > −∞ (see Theorem 2.3 for γ(S) definition). Let Ã be a convex open bounded
subset of RN−1, and Ãn = 1

εn
Ã. (Ãn)n is a regular sequence. Indeed, since Ã is

a bounded subset, we can find a cube Ĩ ⊂ ZN−1 such that Ã ⊂ Ĩ and α small
enough so that αĨ ⊂ Ã. If we take Ĩn = 1

εn
Ĩ we obtain regularity. Now, let

Bm(x) = {y ∈ RN−1 : δ(x, y) ≤ m} where m ≥ 0, δ euclidian distance in RN−1

and t ≥ 0. Since tBm(x) = Btm(tx), then for A ⊂ RN−1 we have ρ(tA) = tρ(A)
where ρ(A) = sup{m ≥ 0 : ∃Bm(x) ⊂ A}. Thus

ρ(Ãn) = ρ(
1
εn
Ã) =

1
ε
ρ(Ã) n→ +∞

Conditions of Theorem 2.3 are then satisfied for Ãn, which prove lemma. �
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Lemma 4.5. If a sequence (vr)r ⊂ X satisfies Fr(vr) ≤ c, then

µ

∫
Bε

|∇svr|psdx ≤ C1 (4.3)

η

∫
Bε

|∇dvr|pddx ≤ C2 (4.4)∫
Oε

|∇vr|qdx ≤ C3 (4.5)

The proof of the above lemma is a straightforward consequence of (H1). Now,
we consider the following regularity condition.

(H4) ls and ld ∈ [0,+∞[, u ∈ V ′, vr → u in (X, τ) and lim inf Fr(vr) < +∞.
where V ′ = {v ∈ V : v± = v/O± ∈ C1(O±,RN )}. We define on V , the application

Rεu(x) =
u(|xN |)− u(−|xN |)

2
Ψε(x) +

u(|xN |) + u(−|xN |)
2

, (4.6)

where Ψε(x) = Ψγ(x
ε ). We take θ = ∇Ψγ ∈ L∞(RN ). We also consider

t±(ε) = (
∫

RN−1
| (vr − u)(x̃,±εγ±(

x̃

ε
)) |pdx̃)

1
p

B′ε = {x ∈ O : ±xN ≤ (1 + t±(ε))εγ±(
x̃

ε
)}

ϕε(x̃,±xN ) = 1−Ψ(

|xN |
εγ±( ex

ε )
− 1

t±(ε)
)

(4.7)

Let α > 0 such that α→ 0. Let (Si)i∈I(α) be a family of open bounded disconnected
cubes of RN−1 with diameter α so that meas(RN−1 \ ∪i∈I(α)Si) = 0, and B′ε,i =
B′ε ∩ (Si × R). we denote by (λ,w) pair (µ, s) or (η, d) and b = bw.

Lemma 4.6. With condition (H4), for ωr = ϕε(vr −Rεu) we have

lim inf
r→0

λ

∫
B′

ε,i

b(
x

ε
,

1
2ε

([u](ai)⊗ θ(
x

ε
))w +∇wωr)dx

≥ lim inf
r→0

λ

∫
B′

ε,i

b(
x

ε
,

1
2ε

([u](ai)⊗ θ(
x

ε
))w)dx− o(α)

Proof. We have B′ε,i = B′ε ∩ (Si × R), then

meas(B′ε,i) ≤ αN−1ε(1 + t±(ε))γ±M (± in sense of maximum ) (4.8)

If we take p = min(ps, pd)

t±(ε)p =
∫

RN−1
| (vr − u)(x̃,±εγ±(

x̃

ε
)) |pdx̃

≤ const(
∫

RN−1
| vr(x̃,±εγ±(

x̃

ε
)) − u(x̃, 0)|pdx̃

+
∫

RN−1
| u(x̃,±εγ±(

x̃

ε
)) − u(x̃, 0)|pdx̃).

Since vr ⇀ u in W 1,q
loc (O \ S), vr → u in Lq

loc(O \ S). According to Proposition 4.1,
embedding Lq ↪→ Lp (p ≤ q) and regularity of u, t±(ε) r→ 0. Applying this result
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on (4.8),
meas(B′ε,i) ≤ constαN−1ε. (4.9)

Since b satisfies condition (3.2) and using (4.9),

λ

∫
B′

ε,i

b(
x

ε
,

1
2ε

([u](ai)⊗ θ(
x

ε
))w)dx ≤ constλ(1 +

1
(2ε)p

) meas(B′ε,i)

≤ const(ελ+
λ

(2ε)p−1
)αN−1

Thus

lim inf
r→0

λ

∫
B′

ε,i

b(
x

ε
,

1
2ε

([u](ai)⊗ θ(
x

ε
))w)dx ≤ const l αN−1 = o(α)

Since b ≥ 0,

lim inf
r→0

λ

∫
B′

ε,i

b(
x

ε
,

1
2ε

([u](ai)⊗ θ(
x

ε
))w +∇wωr)dx

≥ 0 ≥ lim inf
r→0

λ

∫
B′

ε,i

b(
x

ε
,

1
2ε

([u](ai)⊗ θ(
x

ε
))w)dx

−o(α)

�

Now we are ready to establish Proposition 4.3

Proposition 4.7. For every sequence (vr)r ⊂ X and every u ∈ X such that vr
τ→ u

in X, we have
F (u) ≤ lim inf

r→0
Fr(vr).

Proof. Let (vr)r be a sequence in X and u ∈ X so that vr
τ→ u in X. If

lim infr→0 Fr(vr) = +∞, then proposition is proved. If not, by Proposition 4.1
u ∈ V .
(i) Case ls and ld are finite. We begin by treating regular case; i.e., when
condition (H4) is satisfied. Then, by adaptation of [15, Lemmas 4.4, 4.5, 4.6, 4.9]
and by application of Lemma 4.6, we have for ωr = ϕε(vr −Rεu),

lim inf
r→0

λ

∫
Bε

b(
x

ε
,∇wvr)dx

= lim inf
r→0

λ

∫
B′

ε

b(
x

ε
,

1
2ε

((u(|xN |)− u(−|xN |))⊗ θ(
x

ε
) )w +∇wωr)dx

≥ lim inf
r→0

λ
∑

i∈I(α)

∫
B′

ε,i

b(
x

ε
,

1
2ε

([u](ai)⊗ θ(
x

ε
))w +∇wωr)dx− o(α)

≥ lim inf
r→0

λ
∑

i∈I(α)

∫
B′

ε,i

b(
x

ε
,

1
2ε

([u](ai)⊗ θ(
x

ε
))w)− o(α)

≥ lw
∑

i∈I(α)

meas(Si)(b∞,w)hom([u](ai))− o(α).

As α→ 0, we obtain

lim inf
r→0

λ

∫
Bε

b(
x

ε
,∇wvr)dx ≥ lw

∫
S

(b∞,w)hom([u])dx̃. (4.10)
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By the characterization of quasiconvex envelope (see section 2), we have

Qh(x,∇vr(x)) = inf{ 1
meas D

∫
D

h(x,∇vr(x) +∇ϕ(y)) : ϕ ∈W 1,∞
0 (D)}

where D is a bounded domain of RN . If we take ϕ = 0, then

Qh(x,∇vr(x)) ≤
1

meas D

∫
D

h(x,∇vr(x))dy = h(x,∇vr(x))

Let δ be a fixed real less than 1. For a given ε small enough, Oδ ⊂ Oε. Thus∫
Oδ

Qh(x,∇vr(x))dx ≤
∫
Oε

h(x,∇vr(x))dx

Since the sequence (Fr(vr))r is bounded, and according to (4.5), the fact that
Oδ ⊂ Oε, then vr ⇀ u in W 1,q(Oδ,RN ). Qh being quasiconvex, by Proposition 2.2
the functional I(v) =

∫
Oδ
Qh(x,∇v(x))dx is then weakly lower semicontinuous on

W 1,q(Oδ,RN ). Thus

lim inf
r→0

∫
Oε

h(x,∇vr(x))dx ≥
∫
Oδ

Qh(x,∇u(x))dx

tending δ toward 0

lim inf
r→0

∫
Oε

h(x,∇vr(x))dx ≥
∫
O
Qh(x,∇u(x))dx (4.11)

According to (4.10) and (4.11)

lim inf
r→0

Fr(vr) ≥ F (u), for u regular (4.12)

If u is not regular, we consider a regular vector valued function uδ so that ‖u −
uδ‖W 1,q(O\S,RN ) ≤ δ and we take vδ,r = vr − Rεu + Rεuδ. Now, let us verify
that Rεu

τ→ u. Since Rεu = u on Oε (see (4.6)) and ψε ≤ 1, it follows that for
p = min(ps, pd),∫

O
|Rεu− u|pdx =

∫
Bε

|Rεu− u|pdx

≤ const{
∫

Bε

|Rεu|pdx+
∫

Bε

|u|pdx}

≤ const
∫

Bε

|u|pdx

ε→ 0

(4.13)

So we have the result for u and uδ, thus vδ,r
τ→ uδ. Using (4.12),

lim inf
r→0

Fr(vδ,r) ≥ F (uδ) (4.14)

According to conditions (3.2) and (3.2) with w replaced by q, we have

Fr(vr) = Fr(vδ,r +Rεu−Rεuδ)

≥ Fr(vδ,r)− const {
∫
Oε

|∇ (uδ − u)|(1 + |∇vr|q−1 + |∇vδ,r|q−1 )

+
∑
(λ,w)

λ

∫
Bε

|∇w Rε(uδ − u)|(1 + |∇wvr|pw−1 + |∇wvδ,r|pw−1 )}

(4.15)
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Let vδ = uδ − u, vε
δ = Rε(vδ) and

A1 =
∫
Oε

|∇ vδ|(1 + |∇vr|q−1 + |∇vδ,r|q−1)

A2 =
∑
(λ,w)

λ

∫
Bε

|∇wv
ε
δ |(1 + |∇wvr|pw−1 + |∇wvδ,r|pw−1 )dx .

By Holder inequality

A1 ≤ (
∫
Oε

|∇vδ|q)
1
q (

∫
Oε

(1 + |∇vr|q−1 + |∇vδ,r|q−1)q′dx)1/q′

≤ const‖vδ‖W 1,q(O\S).(
∫
Oε

1 + |∇vr|q + |∇u|q + |∇uδ|qdx)1/q′

(q′ is the conjugate exponent of q). We have∫
Oε

|∇uδ|qdx ≤ ‖uδ‖qW 1,q(O\S)

≤ const (‖vδ|q|W 1,q(O\S) + ‖u‖qW 1,q(O\S))

≤ const (1 + ‖u‖qW 1,q(O\S)).

Using this result and (4.5)

A1 ≤ const ‖vδ‖W 1,q(O\S)(1 + ‖u‖qW 1,q(O\S))
1/q′ . (4.16)

On the other hand, by Holder inequality,

A2 ≤ const
∑
(λ,w)

λ(
∫

Bε

|∇vε
δ |pw)

1
pw (

∫
Bε

1 + |∇wvr|pw + |∇vε
δ |pwdx)

pw−1
pw .

We have ∫
Bε

|∇vε
δ |pwdx =

∫
Bε

|∇Rεvδ|pwdx

=
∫

Bε

| 1
2ε

(vδ|xN | − vδ(−|xN |))⊗ θ(
x

ε
)

+
1
2
(∇vδ|xN | − ∇vδ(−|xN |))ψε(x)|pwdx .

Using θ ∈ L∞(RN ), ψε ≤ 1 and a change of variable,∫
Bε

|∇uε
δ|pwdx ≤ const(

1
(2ε)pw

∫
Bε

|vδ|pw +
∫

Bε

|∇vδ|pwdx). (4.17)

Since vδ ∈ V , by [15, Lemma 3.1],

λ

(2ε)pw

∫
Bε

|vδ|pwdx ≤ const(λ
∫

Bε

|∇vδ|pwdx+
λ

εpw−1
‖vδ‖pw

W 1,q(O\S))

≤ const(o(r) +
λ

εpw−1
‖vδ‖pw

W 1,q(O\S)).

By (4.17), we have

λ

∫
Bε

|∇uε
δ|pw ≤ const(o(r) +

λ

εpw−1
‖vδ‖pw

W 1,q(O\S)).
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Using this result, (4.3) and (4.4),

A2

≤ const
∑
(λ,w)

(o(r) +
λ

εpw−1
‖vδ‖pw

W 1,q(O\S))
1

pw (1 + o(r) +
λ

εpw−1
‖vδ‖pw

W 1,q(O\S))
pw−1

pw

(4.18)
Applying (4.14), (4.15), (4.16) and (4.18), we obtain

lim inf
r→0

Fr(vr) ≥ F (uδ)− C(u)‖vδ‖W 1,q(O\S) (4.19)

where C(u) is a constant depending on u. On the other hand, since b∞,w and h
satisfies respectively conditions (3.2) and (3.2) with w replaced by q, (b∞,w)hom and
Qh are lipshitz functions (the proof is an adaptation of the proof of [18, Proposition
2.1]). Then

F (uδ) ≥ F (u)− const{
∫
O
|∇vδ|(1 + |∇u|q−1 + |∇uδ|q−1)

+
∫

S

|[vδ]|(1 + |[u]|pw−1 + |[uδ]|pw−1)dx̃}.

Using the fact that pw ≤ q, Holder inequality, continuity of the jump, the compact
embeding W 1,q(O \ S) ↪→ Lq(S) and that ‖uδ‖W 1,q(O\S) ≤ ‖u‖W 1,q(O\S) + 1, we
have

F (uδ) ≥ F (u)− C(u)‖vδ‖W 1,q(O\S).

We then use this result and (4.19), and we let δ approach 0. Thus

lim inf
r→0

Fr(vr) ≥ F (u)

(ii) Case ls = +∞ and ld < +∞: We have [uN ] = 0. Indeed, let σ ∈ D(O,MN ).
By Green formula and Proposition 4.1∫

Bε

σ : ∇vr dx =
∫
O
σ : ∇vr dx−

∫
O
σ : (XOε∇vr) dx

= −
∫
O
divσ : vr dx−

∫
O
σ : (XOε∇vr) dx

r→
∫

S

σn.[u] dx̃,

where n is the unit vector normal exterior to O+ . If we take σ = φ.IN , where IN
is the unit matrix of RN and φ ∈ D(O), we have

lim
r

∫
Bε

φdivvr dx =
∫

S

φ.[uN ] dx̃ (4.20)

According to (4.5) and that ls = +∞∣∣ ∫
Bε

φdivvr dx
∣∣ ≤ ‖φ‖

Lp′s (Bε)
‖divvr‖Lps (Bε)

≤ const(
εps−1

µ
)

1
ps

r→ 0

where p′s is the conjugate exponent of ps. By (4.20), we obtain [uN ] = 0. Thus,
u ∈ V0,N . And we have (b∞,s)hom[u] = 0. Indeed let us take (b∞,s)hom(a) =
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(b∞,s)hom(a, γ). According to [15, Proposition 3.8], we have

(b∞,s)hom([u]) ≤ (b∞,s)hom([u], γm).

Let k ∈ N and ϕ = Ψγm .[u], where for a given y ∈ Bk, Ψγm(y) = sign(yN )Ψ( |yN |
γ±m

) =

± yN

γ±m
. Definition of (b∞,s)hom implies

(b∞,s)hom([u]) ≤ 1
kN−1

∫
Bk

b∞,s(y, ∇sϕ)dy.

Since [uN ] = 0, ∇sϕ(y) = (∇Ψγm(y) ⊗ [u])s = ± 1
γ±m

(eN ⊗ [u])s = 0. By the fact
that bs(x, 0) = 0, we deduce that (b∞,s)hom([u]) = 0 and we conclude using result
of case (i).
(iii) case ld = +∞: In this case, [u] = 0. Indeed, let σ ∈ D(O,MN ). We have

lim
r

∫
Bε

σ : ∇dvrdx =
∫

S

σdn.[u]dx̃

for all σ ∈ D(O,MN ). Thus u ∈ V0, and ϕ = Ψγm .[u] = 0. Consequently

(b∞,w)hom([u]) ≤ 1
kN−1

∫
Bk

b∞,w(y,∇wϕ)dy = 0

for w = s and w = d. The result is then proved. �

Proposition 4.8. If u ∈ X, then there exist a sequence (vr)r ⊂ X such that vr
τ→ u

and
lim sup

r→0
Fr(vr) ≤ F (u)

Proof. (i) Case ls and ld are finite: Let u ∈ X. If u 6∈ V , F (u) = +∞, and the
result is established taking for example vr = u. If not, we first take u regular. Let
(Si) be the family of open bounded disconnected cubes of RN−1 with diameter α
so that meas(RN−1 \ ∪i∈I(α)Si) = 0, and vr = Rεu (4.6). By (4.13), vr

τ→ u. Let
a ∈ RN , for (λ,w) = (µ, s) or (η, d) we have∑

i∈I(α)

lw meas(Si)(b∞,w)hom([u](a)) ≥ lim
r→0

λ

∫
Bε

b(
x

ε
,∇wvr)dx− o(α). (4.21)

Indeed, let uε,i be an ε-minimizer of S 1
ε Si

(a) defined by

S 1
ε Si

(a) = inf{
∫

1
ε Bε,i

b∞,w(y,∇wϕ)dy : ϕ ∈ Ψγa+W 1,pw

0 (
1
ε
Bε,i)},

where Bε,i = Bε ∩ (Si × R). Let θ = ∇Ψγ ∈ L∞(RN ). Using lemma 4.4 and the
change of variable x = εy, we have

lw meas(Si)(b∞,w)hom([u](a))

= lim
r→0

εN−1 λ

2(2ε)pw−1

∫
1
ε Bε,i

b∞,w(y, ([u](a)⊗ θ(x))w +∇wuε,i)dy

= lim
r→0

λ

(2ε)pw

∫
Bε,i

b∞,w(
x

ε
, ([u](a)⊗ θ(x

ε
))w + (∇wuε,i)(

x

ε
))dx

(4.22)

According to (H2) and the inequalities meas(Bε,i) ≤ γ±MαN−1ε and∫
Bε,i

|(∇wuε,i)(
x

ε
)|pwdx ≤ const ε(αN−1 + εN )



EJDE/CONF/14 MODELLING OF A COLLAGE PROBLEM 49

(this last result is obtained using the uε,i definition and condition (3.2) satisfied by
b∞,w), (4.22) becomes

lw meas(Si)(b∞,w)hom([u](a))

= lim
r→0

λ

∫
Bε,i

b(
x

ε
,

1
2ε

([u](a)⊗ θ(x
ε
))w +

1
2ε

(∇wuε,i)(
x

ε
))dx .

(4.23)

By Holder inequality, condition (3.2) and the result |∇Rεu| ≤ const(1 + 1
ε ), we

deduce

lw meas(Si)(b∞,w)hom([u](a))

≥ lim
r→0

λ

∫
Bε,i

b(
x

ε
,∇wRεu+

1
2ε

(∇wuε,i)(
x

ε
))dx− o(α)

≥ lim
r→0

λ

∫
Bε,i

b(
x

ε
,∇wRεu)dx− o(α)

Summing over I(α) and tending α towards 0, we deduce that

lw

∫
S

(b∞,w)hom([u])dx̃ ≥ lim
r→0

λ

∫
Bε

b(
x

ε
,∇wvr)dx .

Since vr = u on Oε,

lim
r→0
{
∫
Oε

h(x,∇vr)dx+
∑
λ,w

λ

∫
Bε

b(
x

ε
,∇wvr)dx}

≤
∫
O
h(x,∇u)dx+

∑
w

lw

∫
S

(b∞,w)hom([u])dx̃

Thus

G(u) = inf{lim sup
r

Fr(vr) : vr
τ→ u}

≤
∫
O
h(x,∇u)dx+

∑
w

lw

∫
S

(b∞,w)hom([u])dx̃

If we take the weak lower semicontinuous envelope on W 1,q(O \ S) denoted Γτ for
the two members, we obtain

ΓτG(u) ≤
∫
O
Qh(x,∇u)dx+

∑
w

lw

∫
S

(b∞,w)hom([u])dx̃

(we use the integral representation of quasiconvex envelope for the first integral
term and compact embeeding W 1,q(O \ S) ↪→ Lpw(S) for the second, noticing that
function (b∞,w)hom is convex [17, Proposition 2.6]. Since G is the Γ-limsup of Fr,
it will be τ -lower semicontinuous [2, Theorem 2.1]; thus

G(u) = ΓτG(u) ≤
∫
O
Qh(x,∇u)dx+

∑
w

lw

∫
S

(b∞,w)hom([u])dx̃ ≤ F (u).

We conclude noticing the infimum in the definition of G is attained. If u is not
regular, we use a density argument like in Proposition 4.7.
(ii) Case ls = +∞ and ld < +∞: If u 6∈ V0,N , F (u) = +∞ and we take for
example vr = u. If not, u ∈ V0,N ⊂ V and it suffice to apply results of case (i)
noticing that (b∞,s)hom([u]) = 0.
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(iii) Case ld = +∞: It is deduced from the fact that (b∞,w)hom([u]) = 0 for w = s
and w = d. �

The proof of Proposition 4.3 is a direct consequence of Propositions 4.7 and 4.8.
Recall the functional Ir = Fr − L is defined on the space (X, τ) and take I =

F − L. Let

W =


V if ls and ld are finite
V0,N if ls = +∞ and ld is finite
V0 if ld = +∞

Corollary 4.9. Let (ur)r be a (3.1)-minimizing sequence. Thus (ur)r is relatively
compact in (X, τ). Moreover, for every cluster point u and a subsequence, we have

lim
r→0

Ir(ur) = I(u) = inf{I(v) : v ∈W}.

The proof of this corollary is a straightforward application of Remark 4.2, propo-
sitions 2.1 and 4.3.
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