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MODELLING OF A COLLAGE PROBLEM

ABDELAZIZ AIT MOUSSA, LOUBNA ZLAIJI

ABSTRACT. In this paper we study the behavior of elastic adherents connected
with an adhesive. We use the I'-convergence method to approximate the prob-
lem modelling the assemblage with density energies assumed to be quasiconvex.
In particular for the adhesive problem, we assume periodic density energy and
some growth conditions with respect to the spherical and deviational compo-
nents of the gradient. We obtain a problem depending on small parameters
linked to the thickness and the stiffness of the adhesive.

1. INTRODUCTION

The problem under investigation arises in the study of adhesive bonding of elas-
tic bodies, and the question is how to model the behavior of the adhesive material
interposed between the adherents. Such problems find their applications for exam-
ple in aeronautics, in the study of composites, and in other fields of engineering. In
general, the computation of the solution using numerical methods is very difficult.
In one hand, this is because the thickness of the adhesive requires a fine mesh,
which in turn implies an increase of the degrees of freedom of the system, and in
the other, the adhesive is usually more flexible than the adherents, and this pro-
duces numerical instabilities in the stiffness matrix. To overcome this difficulties,
thanks to Goland and Reissner [12], it is usual to find a limit problem in which the
adhesive is treated as a material surface; it disappears from a geometrical point of
view, but it is represented by the energy of adhesion. In this framework, we find
many works investigated on this theoretical approach; see for example Moussa [19],
Suquet [20], Ganghoffer, Brillard and Schultz [10], Geymonat, Krasucki and Lenci
[11], Licht and MiChaille [15], Brezis, Caffarelli and Friedman [4], Acerbi, Buttazo
and Percivale [I], Klarbring [14], Caillerie [5].

This work is specially interested in approximating a minimization problem (P,.),
where r is a small parameter linked to the thickness and the stiffness of the ad-
hesive. In particular, we associate to each component of gradient (spherical or
deviational) an independent stiffness parameter. We use the method described in
[15] to find a certain limit problem denoted (P). Precisely, by the I'-convergence
method (introduced in a paper by De Giorgi and Franzoni in 1975 [9]), we look for
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a weak limit of a (P,)-minimizing sequence which is a solution of (P). The outline
of the paper is the following.

Section 2 contains some notation and a brief summary of results related to no-
tions of I'-convergence, quasiconvexity and subadditivity . Section 3 is devoted to
Problem statement, hypothesis which we assume on his different components and
existence of solutions. In section 4, we discuss topology that we shall consider for
limit problem study, we compute I'-limit of the stored strain energies represented
by the functionals (F.), and we deduce the limit problem.

2. NOTATION AND PRELIMINARIES

We begin by introducing some notation which is used throughout the paper.
First, let O; and Oy be two open subsets of RY with interface S. For a function
v defined on O1 U Oy, we call the jump of v across S the function defined on S by
[v]s = v/0, —v/0,. Let MV be the space of N x N real matrices endowed with the
Hilbert-Schmidt scalar product A : A’ = trace(A'A’). For a given A € M, we call
spherical part of A the matrix A, = %I ~, where Iy is the unit matrix of RY.
The deviational part will be A; = A — A;. In mechanics, the spherical part of the
deformation tensor changes the volume without changing the shape whereas the
deviational tensor changes the shape preserving the same volume (the trace is void,
therefore there is no relative variation of volume). On the space MY, operators
A A and A — Ay are linear continuous for matrix norm |[A| = X1<; j<n|4i;l,
where A = (Aij)lgi,jgN~
Definition. A a Carathéodory function f : RY x MY — R satisfies condition (C})
if there exists y, 8y, ¢ € RY, such that for z € RY and all (A, A") € (M™)2, we
have

aplAlP < f(z, A) < Bp(1+ A7)
£ A) = S, A < el A= A1+ AP+ 4],

As we have already mentioned, our method will be based on the notion of T'-
convergence. Let (X, 7) be a metrisable topological space, and for every n € N let
F,,F : X — R be functions defined on X. For every z € X, the I'()-liminf F,
(respectively, T'(7)-limsup F,, ) are defined as:

(2.1)

['(7) — liminf F,,(z) = inf{liminf F},(2,,) : , — 2}
['(7) — liminf F,(z) = inf{limsup F,,(z,) : 2, — x}

If the two expressions are equal to F'(x), then we say that the sequence (F,,) T'(7)-
converges to F' on X and we write FF = ['(7)-limF,,. An other way to define
F=I"-limF,, is the following:
(Vz € X)(3xo,, € X) such that g, — x and limsup,,_, . Fy(z0,,) < F(2)
(Vx € X)(Va, € X) such that z,, = x, iminf, . F,(2z,) > F(x)

The I'-convergence method is made precise in item (1) below.

Proposition 2.1. Suppose that (F),), I'-converges to F.

(1) 2, Theorem 2.11]. Let x,, € X be such that F,,(x,) < inf{F,(z):2x € X} +¢e,,
where €, > 0, e, — 0. We assume furthermore that {x,,n € N} is T-relatively
compact, then any cluster point T of {x,,n € N} is a minimizer of F' and

hmJirnf{Fn(x) rx € X} = F(T).
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(2) [2, Theorem 2.15]. If L : X — R is continuous, then (F,, + L), T'-converges to
F+L.

For details about I'-convergence, we refer the reader to [2 [7]. To establish
existence of solutions for our initial problem, it will be useful to consider quasiconvex
energy densities. So if f is a Borel measurable and locally integrable function
defined on MY, we say that f is quasiconvex if

fA) < — /D f(A+ Vo)da

meas D
where D is a bounded domain of RN, A € MY and ¢ € Wy *°(D,RN). If f is not
quasiconvex, his quasiconvex envelope is given as

Qf =sup{g < f: gis quasiconvex }
If { is locally bounded, then the definition of @ f can be expressed as [0, Page 201]

QF(A) = inf{— /D f(A+ Ve - o € WE(D,R)}

measD
The following proposition establish sufficiency of quasiconvexity to obtain weak
lower semicontinuity in W7

Proposition 2.2. Let O be an open bounded subset of RY and f: O x MN — R
a continuous quasiconvexr function satisfying condition , for p > 1. Then,
the functional F : v — [, f(z,Vu(x)))dz is weakly lower semicontinuous on
Whr(O,RN).

For the proof of the above proposition, see [0, Theorem 2.4 and Remark iv].

To describe a global subadditive theorem, we consider B,(R?) the family of
Borel bounded subsets of R? and ¢ Euclidean distance in R%. for every A € By (R?),
p(A) = sup{r > 0 : 3B,(z) C A}, where B,(z) = {y € R? : §(x,y) < r}. A
sequence (B )nen C By(R?) is called regular if there exist an increasing sequence
of intervals (I,), C 7% and a constant C independent of n such that B,, C I,, and
meas([,) < C'meas(By,), Vn. The global subadditive theorem is essentially based
on subadditive Z%-periodic functions . A function S : A € By(R?) — S4 € R is
called subadditive Z?-periodic if it satisfy the following conditions:

(i) For all A, B € Bb(Rd) such that ANB =0, Sau < Sa+ SB.

(ii) For all A € By(R%), all z € Z4, S4,, = Sa.
Now, we shall see the global subadditive theorem, firstly used in the setting of the
calculus of variation by Dal Maso and Modica [8], and generalized to sequences
indexed by convex sets by Licht and Michaille [15]

Theorem 2.3. Let S be a subadditive Z%-periodic function such that
S
(S) = inf{—1

meas [
In addition, we suppose that S satisfies the dominant property: There exists C(S),
for every Borel convex subset A C [0,1[¢, |Sa| < C(S). Let (An)n be a regular
sequence of Borel convex subsets of By(R?) with lim,,_, 1o p(An) = +oo. Then

1 =a,b[,a,b € Z% and a; < b; V1 <i < d} > —oc0

. s . .
limy, 4 o0 mea‘;"An exists and is equal to

Sjo,m
lim A, _ inf { [O’d[d}zv(S’)

n—+oo meas A,, meN*  m

For the proof of the above theorem see [16] page 24].
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3. STATEMENT OF THE PROBLEM

Let O be a domain of RY with Lipschitz boundary, divided in two parts O* by
the plane {zx = 0}. The common interface is noted S. The structure under study
contains two adherents filling O, = OF U OZ, glued perfectly with an adhesive
occupying B. = {z = (Z,zy) € O : oy < evF(£)} = O\ O., along the common
surfaces ST = {z € O : +ay = sfyi(g)}, where ¢ is a small parameter intended to
tend toward 0, 4% : R¥N=! — R* are two C! Y-periodic functions, ¥ =0, 1[N =1,
The maximum (respectively Minimum) of 4& on Y is noted v (respectively 7).
Surface forces are applied on a portion I'; of 9O with surface measure supposed to
be positive, and the structure is clamped on his complementary I'g. The illustration
of the domain is shown in Figure

—S

FIGURE 1. Initial problem (left). Limit problem (right)

Our study is focused on the minimization problem (P, ): Find u € V, such that:

I.(u) = 51611‘2 I.(v) = Hél\z F.(v) — L(v) (3.1)

where

e 7 = (g, ,7n), the three parameters are positive intended to tend to 0. The
first concern the thickness of adhesive and the others the stiffness connected
respectively to spherical and deviational components of V.

o V. = {v € Wh(O.) x WhP(B,) : Vyv € LPs(B.,,M")and Vqv €
LPa(B., MN), [v]ss: =0,v =0sur I'g}, Vs and V, are respectively spher-
ical and deviational components of V. p,, pg and q are constants with

1 < ps,pa < q and p = min(ps, pq)-
e For v e V,

mwwzé)Mavwdx+A;u@@éVu»+nw§;vNow

szljmmmw+£gmwmwm

In the following, we denote w = s or w = d, and we make the hypotheses:

(H1) b, and h are Carathéodory functions defined on RY x M. In particular,

by is Y-periodic with respect to first variable and satisfies the condition
(Cy): There exists au, Bw,cw € RY such that for all z € RY and all
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(Q,Q") € (MN)? we have
| Qul™ < bu (7, Qu) < Bu(l +[Qu™™)
6w (7, Qu) = bu (2, Q1) < Cw|Qu — Q| (1 + |Qu [P~ + @1,

The function h satisfies the conditions C, (2.1).

(H2) There exist a function 5% such that Q — % (x, Q) is positively p,-
homogeneous, a positive constant ¢}, and 0 < m,, < p, so that for all
(7,Q) € RN x MN4,

|b°o,w(x’Qw) — bw(‘T’Qwﬂ < c’/w(l + ‘lepw—mw)

(H3) (f,g) € LY (O,RN) x LI (I';,RN), where ¢ is the conjugate exponent of g,
and there exists €9 > 0 such that for all ¢ < gq : (supp fUT1) N B. = 0.
To lighten notation, we shall often use const to designate different constants
(independent of r) in a same proof.

bty 32

Remark 3.1. (1) If we consider the following norm on Vg,

[vllv. = lvllwrao. zyy + IVsvllpes (B, mny + I VavllLea s avy -

Then V. will be a reflexive Banach space (because 1 < ps, pqa), and L is a linear
continuous mapping on (Ve ||-|[v.). (2) Hypothesis (H2) implies that for all (z,Q) €
RY « MN, limt—»—i—oo b (2,tQw) — boo,w(x’Qw)'

tPw

Proposition 3.2. Let b, and h be quasiconvex, and in particular by, is continuous
on RN x MN. Then, under (H1) and (H3), problem (3.1) admits at least one
solution.

Proof. (Ve,| - [lv.) is a reflexive Banach space (Remark [3.1)), then using the well
known theorem [I3, Page 135], it suffices to establish that I, is weakly lower
semicontinuous and coercive on (V.|| - [[v.). So let v € V., in one hand we
are V. — WH4(0,.) which implies by Proposition that functional v € V, —
/. o. h(z, Vv) dz is weakly lower semicontinuous on V. It is the same for functional
v fBE by (2, Vo) dz. Indeed, using embedding V. < LP»(B.), the fact that op-
erators Q € M — @, are linear continuous (section 2), then it suffices to adapt
proof of [6, Theorem 2.4] by replacing V with V,,. We Conclude using linearity
and continuity of L on V.. For coercivity, it’s easily seen according to (H1) and
(H3) that on VZ, limy ), 400 Ir(v) = +o00. O

Remark 3.3. In general, if a function f : RY x MY — R satisfying condition
is not quasiconvex, then for an open bounded subset @ of RV inf F(u)Wl,p(o) =
inf [, f(x, Vu)dz can be not existent. In return, if we take his quasiconvex envelope
Qf we can study existence of solutions of the problem inf QF = inf [, Qf(z, V.)dz
noticing that infF = infQF (in the sense described in [6, Corollary 2.3], and that
QF is weakly lower semicontinuous on W1?(0).

4. LiMIT PROBLEM

In order to determine the limit problem, we first identify the topological space
that we shall consider in the following. In one hand, the space must be big enough
not depending on the parameter r to include the spaces V. defined in section 3.
In the other, topology must provide the relative compactness of a —minimizers
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sequence. Let X = Wlicq (O\S8) and 7 his weak topology. Let us consider the
subset

V={veX:veWh(0\S),v=0onTy}

Proposition 4.1. If (v.), is a sequence in X wverifying F.(v.) < C, then there
exist v € V and a subsequence such that v, — v in X. Moreover,
(1) Xo_Vv, = Vv in L1(0O).
(2) Saw-r |on (T, £ev(2)) — v*(@)|%dT - 0.
For the proof of the above proposition see [15], page 9].

Remark 4.2. (1) Let (@, ), be a (3.1)-minimizer sequence, i.e.
lir% I.(u,) — inf{I.(v) ;v € V.} =0,

then (u,), is relatively compact in (X, 7). It suffices to show liminf, ¢ I-(u,) <
+00, which implies according to conditions (3.2)) and (3.2]) with w replaced by ¢
that liminf, .o F,.(@,) < 400, and we apply Proposition [4.1

(2) Let p = min(ps,pq). In accordance with results of [15], we obtain (X, 7) so
that:
e If limsup. ,) 7775 and limsup. 7]1%‘1 < +00, then X = L*(O) and 7 is his
strong topology for any « € [1, p|.
o If limsup, , ﬁ = limsup, , WL’” =0, then X = LP(O) and 7 is his strong
topology.

Now, we look for the I'-limit of functionals I.. First we have to remark that
The functional L is linear continuous on (X, 7) (for the proof, is a straightforward
consequence of (H3) and the compact embedding VVl(l)Cq(O \ S,RY) — LI(S5)), then
according to Proposition[2-1), it suffices to study T-limit for functionals F,.. To this
end, we extend F, on the space (X,T) as

By (o) — { Jo. M0V 4 [ pba(.9.0) 4 b2, Vav)deifv € V.
o0 ifog V.
we recall that Vo = {v € Wh4(O.) x WIP(B.) : Vyv € LP:(B., M) and V4v €
LP4(B., MN), [v]g =0,0=0 on I'o}. Let

. p . U
l,=lim —2 — and Iy=lim ——
(e 2(2eype—t MM T O 9 (2e)pat

We define functional F' on X as follows:
(i) If Ly, 14 € [0, +00]:
Fv) = Jo Qh(x, V) da + [o{ls (b°5)hom 4 [y (b D)rom}[v]dz ifveV
RS ifodV
we recall that V ={v € X :v € WhH4(O\ S,RY) and v =0 on I'y}.
(i) If ls = +o00 and lg < 4o0:
F(v) = [0 Qn(x, V) dx + 14 [ (54O [ur]dz v € Vo
+00 if v Von

where Vo y ={v €V : [un] =0}, vy = (v.en) and vp = v — vyen.
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(iii) If g = +o00:
Flv) = fO Qh(z,Vv)dx zfv el
+00 if v & Vo,
where Vo = {v € V : [v] = 0}. For the three functionals, Qh is the quasiconvexr

envelope of h, [v] the jump of v across S and (b>)P°™ s the function defined on
RN as
1
(b)Y a) = inf p inf{ [ 6y, Vup)dy ¢ € W+ Wo (B, RY)}
By,
where w =5 orw=d, B, ={zr e RN : T € kY, day < yE (@)}, for x € RN
. £
U (z) = sign(en) V(=)
(a) = s W
with
0 ift<O
U(t) =4t ifo<t<l
1 ift>1

Without loss of generality, we suppose in the following that bs(.,0) =0 on B.. The
principal result of this section is in the following proposition

Proposition 4.3. I'(7) —lim F,. = F
To establish this result, we need some lemmas. Let A € By(RN=1), a € RN and
we take p = py,. We define
Sila) = inf{/ b (y, Vp)dy : p € Wa + WyP(A,RY)} (4.1)
A
where B
A={z e RN : 7€ A +an <~H (@)} (4.2)
Lemma 4.4. Let A be a convex open bounded subset of RN=1. Then for a sequence
(en)n of real positive, £, — 0 we have
Sig(a)
lim r

n—-+oo meas(-L A)

En

_ (boo,w)hom(a)

Proof. Let A € By(RN~1), and the function S : A — Sz. Then S is a subadditive
ZN~'_periodic function:

(i) Let A, B € By(RY~1) such that ANB = (), then Siu5 < S5+ Sg. To establish
this, we take p4 € UV (a) + Wy P (A,RY) and ¢p € ¥V (a) + W, *(B,R"N), where
A and B (in we replace A by B ) are defined from A and B by .

Let us take
P — {SOA on A
yp on B

Since ANB =0, ANB ={. Thus ® € ¥a + W} ?(AU B), and

Sius S/ b"“’w(yvvw@)dy=/b°°’w(y, szoA)der/ b (y, Vwen)dy
AUB A B

for all p4 and ¢p. Thus
Siup <S5i+ 55
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(i) Let A € By(RV1) and z € ZN¥~!. Let A and A, subsets associated respec-
tively to A and A + z by relation ([@.2)), and ¢ € Wy (A.). Since b, is Y-periodic,
it’s the same for 5>>*. Thus

/b"c’w(m,vw@)dx: B /
A, Atz J{zn:tzny<yE(@)}

:/~/ b (F + 2, Vep)day dF
A J{znFon<yE(T+2)}

= / b (x, Vyp)da y dT
A

b Y (x, Vyp)den dT

Subadditivity and Z~ ~!-periodicity being proved for S, we have to show dominant
property (Theorem . So, let A € By(RNV~1) be a convex included in [0, 1[N,
and A, B subsets associated respectively with A and [0,1[N~! by (4.2), A C B. Let
Py € Wol’p(B,RN) and & = U7a 4+ &y. We take ¢ = UVa + g, where ¢y = n®q
and 1) € D(A), then ¢ € Wa+W,P(A). If we use Remark 3.1/ and condition (3-2),

Si< / b (y, Vwp)dy < / b>> (y, Vwp)dy < ﬁw/ IVuweplPdy
A B B
And we have
[Vwel? = (VI @ a)w + Vupol? < const([(VE? @ a)w|” + [Vwpol”)

By the fact that [VU7| <1+ C‘;T““ and 1 € D(A), we have
[VwplP < const(l + |V, ®olP + [Po]P).

According to Poincaré inequality, we obtain

Sggconst(measB+/ |qu’o|p+/ |Po[?)
B B

< const(meas B + || || Y@y € WyP(B)

v )
Wy'”(B)
; P
< const(meas B + W[)II’I;EB) Hq)O”WO“J(B))
which establish the dominant property. In the other hand, % > 0 = ~(S) >
0 > —oo (see Theorem for (S) definition). Let A be a convex open bounded
subset of RV—1 and A4, = iA. (A,)n is a regular sequence. Indeed, since A is
a bounded subset, we can find a cube;f - ZN:1 such that A C I and o small
enough so that af C A. If we take I, = E%LI we obtain regularity. Now, let
Bu(z) = {y € RN71 : §(z,y) < m} where m > 0, § euclidian distance in RV~!
and ¢t > 0. Since tB,, () = Byn(tx), then for A C RN¥~! we have p(tA) = tp(A)
where p(A) = sup{m > 0:3B,,(x) C A}. Thus
~ 1 ~ 1

p(An) = P(aA) = gp(g) = 400

Conditions of Theorem are then satisfied for gn, which prove lemma. O
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Lemma 4.5. If a sequence (v.), C X satisfies F.(v,) < ¢, then

,u/ Vv [Pode < Cy (4.3)

B.

n / |Vavy|Ptdz < Cy (4.4)
/ Vo |9de < Cs (4.5)

€

The proof of the above lemma is a straightforward consequence of (H1). Now,
we consider the following regularity condition.

(H4) Is and 4 € [0, +o0[, w € V', v, — win (X, 7) and liminf F,.(v,) < 400.
where V' = {v € V : v¥ = 0,0+ € C1(O*,RY)}. We define on V, the application

_ u(lzn]) —u(=|zn]) u(lzn]) +u(=lzn|)

Reu(z) = . UL(a) + s . e
where W, (z) = U7(£). We take § = V¥ € L>*(R"). We also consider

- z 1

@ = (1 = 0@ ey (D) pa)
Be={zc0:+zy<(1 +ti(a))mi(§)} (@.7)

s -1
~ ev=E(2
@E($7:|:'TN) = 1_\1’( ti(&:) )

Let a > O such that o — 0. Let (S;);cr(a) be a family of open bounded disconnected
cubes of RV~! with diameter a so that meas(RN ™1\ Ujer(a)Si) = 0, and B, =
B! N (S; x R). we denote by (A, w) pair (u,s) or (n,d) and b = by,.

Lemma 4.6. With condition (Hj), for w, = p:(v, — R.u) we have

liminf/\/B b(g, %([u](ai) ® a(g))w + Vow, )da

r—0 ’
€,1

> lim inf)\/
r—0 B

Proof. We have B, ; = B{ N (S; x R), then

b o (ll(a) © 0(5))w)de — ofa)

’
£,1

meas(BL ;) < o™ le(1+ t£(e))y3; (& in sense of maximum ) (4.8)

If we take p = min(ps, pa)

()P = v, — u) (T, Ly z
EEr = [ 1 -Gy )i
< cons’c(/RAP1 | v (T, igryi(g)) —u(x,0)|Pdz

+ /RN*1 | u(z, i€’yi(§)) — u(Z,0)|PdT).

(O\ S). According to Proposition
embedding L¢ < LP (p < ¢) and regularity of u, t=(¢) = 0. Applying this result

; ; 1.q ; q
Since v, — win W oI (O\ S), v, — uin L]
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on (4.8),
meas(B ;) < const ¥ e, (4.9)

Since b satisfies condition and using ,

2 1) e 0(2)) )i < constA(1 + L) meas(BL,)

A B;ib(a 2e (2¢)P

< const(eA + YoVl

(21
Thus

L. r 1 T N1
hITILl(I)lf)\/I | b(g, 28([u](a1) ® 0(8))w)dx < const ! a o(a)

Since b > 0,

limi(r)lfA/B;ib(i 21 ([ul(a) @ 05 + Vo)

>0>tminfr [ b7, 2—16([u](ai) @ 6())u)dz

—o(a)

Now we are ready to establish Proposition [.3]

Proposition 4.7. For every sequence (v;), C X and every u € X such that v, Zou
i X, we have

F(u) <lim iglf F.(v).

Proof. Let (v,), be a sequence in X and u € X so that v, © w in X. If
liminf, ¢ F-(v;) = 400, then proposition is proved. If not, by Proposition
ueV.

(i) Case l; and l; are finite. We begin by treating regular case; i.e., when
condition (H4) is satisfied. Then, by adaptation of [I5] Lemmas 4.4, 4.5, 4.6, 4.9]
and by application of Lemma we have for w, = ¢ (v, — Rcu),

r—0

lim inf A / b(Z, Vv, )dz
B. €

r—0

= hmlnf)\/ b(f, 2i€(( (lzn]) — u(=|zn]) @ 9(%) Jw + Vwr)dz

> lim inf A Z/ [u](a )@9( Nw + Vew,)dz — o(a)

iel(a)

>l1m1nf/\ Z / (az)®9( Nw) — o(a)

i€l(a)
> lw Z meas(Si)(boo’w)hom([u](ai)) —o(a).
i€l(a)
As a — 0, we obtain

liminf)\/ b(Z, Vuy)ds > lw/(b"o’w)h‘)m([u})di. (4.10)
r—0 B. g S
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By the characterization of quasiconvex envelope (see section 2), we have

o | e Venla) + Vel) s o € W (D))
D

meas

Qh(z,Vu,.(x)) = inf{

where D is a bounded domain of RY. If we take ¢ = 0, then

1
m— /Dh(x, Vo, (z))dy = h(z, Vu,.(z))
Let § be a fixed real less than 1. For a given € small enough, Os C O.. Thus
Qh(z, Vo, (z))dx < / Wz, Vo (z))dz
05 oe

Since the sequence (F(v,)), is bounded, and according to ({.5)), the fact that
Os C O, then v, — u in WH4(Os, RY). Qh being quasiconvex, by Proposition
the functional I(v) = fog Qh(z, Vv(x))dz is then weakly lower semicontinuous on
Whe(Os,RY). Thus

Qh(z, Vo, (z)) <

liminf/ h(z, Vu,(x))dx > Qh(z, Vu(z))dz
Oc

r—0 Oy

tending § toward 0

lim iglf h(z, Vo, (x))dx > / Qh(x, Vu(z))dz (4.11)
T— OE )
According to (4.10) and (4.11))
lim i(r)lf F.(v;) > F(u), for u regular (4.12)

If u is not regular, we consider a regular vector valued function us so that ||ju —
usllwiao\sryy < 0 and we take vs, = v, — Rou + Rcus. Now, let us verify

that R.u — u. Since R.u = u on O, (see ([@.6)) and . < 1, it follows that for
p = min(ps, pa),

/ |Rew — ulPdx = / |Reu — u|Pdx
O BE
< Const{/ |R5u|pdx+/ |ulPdx}
B. B,

(4.13)
< const/ |u|Pdx
50
So we have the result for v and us, thus v, 5 us. Using (4.12),
lim i(glf F,(vs,y) > F(us) (4.14)
According to conditions (3.2)) and (3.2]) with w replaced by ¢, we have
F.(v;) = F,(vsr + Reu — Reus)
> Fy(vs.r) — const {/ IV (s — w)|(1 + [Vor [T + [V, |7
o. (4.15)

+ Z )\/ IV Re(us — w)|(1 + |V, [Po 1 + [Vvs,[P2 1)}
(A\,w) B-
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Let vs = us — u, v§ = R.(vs) and

Alz/ IV 05](1 4+ [Vor |9 + [Vos, |97

€

A=Y )\/ IVt (1 + [V Po =+ [Vavs, 7o da.
) 7 Be

By Holder inequality
A < ( / [Vos|?) / (L4 Vo171 + [V, |77 dar) VO
o

= O,

< constvale,q(o\S).(/ 1+ | Vo, |? + |Vu|? + |Vu5|¢de)1/q/
o

€

(¢’ is the conjugate exponent of ¢). We have

[ 19usltde < fuslly oo,

< const (HUZSHIWLQ(O\S) + ||u||?/vl,q(o\s))

< const (1 + ||uH’{/VLq(O\S)).
Using this result and (4.5))
Ay < const [[vs | wr.aiors) (1 + [ullfyraions) /- (4.16)

On the other hand, by Holder inequality,

Ay < comst 3T A([ VeI R ([ 1 D P4 [V
(A,w) £ £

[ 1ves
B,

We have

Pw dﬂf

p“’dmz/ |V R.vs
B.

— [ Igz(oslen] = va(—laoxl)) @ (%)

= 5. % Vs TN vs§ N -

1
+ 5 (Voslen| = Vos(=zn]))ve (2) [P da
Using # € L=(RY), 4. <1 and a change of variable,
1

Vus|[Prde < (o Pw Vus|Pvdx). 4.17

/ |Vug|Pda < cons ((25)Pw /Ba [vs] JF/BJ vs|P dix) (4.17)

€

Since vs € V, by [15, Lemma 3.1],

A / |
2e)pe Jp'°

By (4.17)), we have

A
)\/ |[Vus|P» < const(o(r) + W”w”%}ﬂyq(o\s)).

€

A
Pwly + Wi ||U5||€{1/U1,q((9\5))

Puwdy < const(/\/ Vs
B.

A
< const(o(r) + WHW”%}ULG(O\S))'
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Using this result, (4.3) and (4.4),

A
A P 1 A Puw Pw—1
< const (Z)(o(r) + WHUJHWM(@\S))”“’ (14 o(r) + W”W”WM(O\S)) Pw
Aw
(4.18)
Applying (4.14), (4.15)), (4.16) and (4.18)), we obtain
lign_}glf Fo(v) > F(us) — C(u)lvs|lwr.aions) (4.19)

where C'(u) is a constant depending on u. On the other hand, since 4> and h
satisfies respectively conditions (3.2 and (3.2]) with w replaced by g, (6% )P°™ and
Qh are lipshitz functions (the proof is an adaptation of the proof of [I8, Proposition
2.1]). Then

Flus) > Flu) — const{/ Vs |(1 4+ [Vul?! + |Vug|7 1)
(@)

+/S|[v5}|(1+I[U]\p“’_l+|[Ua]|””_1)d5}-

Using the fact that p,, < ¢, Holder inequality, continuity of the jump, the compact
embeding W14(O \ S) — L4(S) and that lusllwiaons)y < llullwraons) + 1, we
have

F(us) > F(u) — C(u)|vs|lwr.ao\s)-
We then use this result and (4.19), and we let § approach 0. Thus

lim i(I)lf F.(v,) > F(u)

(ii) Case I, = +oo and lq < +00: We have [uy] = 0. Indeed, let o € D(O, MM).
By Green formula and Proposition

/ G:VUrdxz/U:erdx—/a:(XoEer)dx
B (@] (@]
T

= —/ divo : v, d / o: (Xo.Vv,)dx
o o

5 / on.[u] dz,
S

where n is the unit vector normal exterior to OF . If we take o = ¢.In, where Iy
is the unit matrix of RY and ¢ € D(O), we have

1im/ ¢ divo, dx:/gb.[uN] dz (4.20)
" JB. S
According to (4.5) and that I; = 400
[ odiver o] < 10l o, Idivw v o
€p571

I

where p/, is the conjugate exponent of p,. By (4.20]), we obtain [uy] = 0. Thus,
u € Von. And we have (b°°)hom[y] = 0. Indeed let us take (b°%)hom(q) =

< const( )i 50
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(b>o-sYhom (g ~). According to [15], Proposition 3.8], we have

(5% ([u]) < (%) ([u, ).
Let k € Nand ¢ = U7 .[u], where for a given y € By, ¥ (y) = sign(yN)\I/(zTN‘) =
if?N. Definition of (b°*)h°™ implies

1
() < s [ 65 Vel
k By

Since [uny] = 0, Vso(y) = (VI (y) ® [u])s = :tv%(eN ® [u])s = 0. By the fact
that b,(z,0) = 0, we deduce that (b°+*)1°™([y]) = 0 and we conclude using result

of case (i).
(iii) case Iy = +oo: In this case, [u] = 0. Indeed, let o € D(O, MY). We have

T

lim o : Vavdx = / oan.[u]ldz
B. s

for all o € D(O, MN). Thus u € Vj, and ¢ = ¥ [u] = 0. Consequently
1
) < g [ 6 0 Vupldy =0
k By

for w = s and w = d. The result is then proved. ([l

Proposition 4.8. Ifu € X, then there exist a sequence (v,.), C X such that v, = u
and
limsup F.(v,) < F(u)

r—0

Proof. (i) Case l; and l; are finite: Let u € X. If u ¢ V, F(u) = 400, and the
result is established taking for example v, = u. If not, we first take u regular. Let
(Si) be the family of open bounded disconnected cubes of R¥~! with diameter «

so that meas(RV~! \ Uier(a)Si) = 0, and v, = R.u (4.6). By @.13)), v, L u. Let
a € RN, for (\,w) = (i, s) or (n,d) we have

Z Ly meas(S;) (b)) ([u] (a)) > }E%A/ b(g,vva)dx —o(w). (4.21)
i€l(a) B.

Indeed, let u. ; be an e-minimizer of Sig, (a) defined by
1
Sig.(a) = inf{/ b (y, Vyp)dy 1 ¢ € ¥a + Wol’p”(gBE,i)},
c lBE,’i

where B, ; = B: N (S; x R). Let § = V¥ € L>°(RY). Using lemma and the
change of variable x = ey, we have

Lo meas(S;) (b%)"™ ([u] (a)

) _ A 00w )
= Th_l%eN 1W [BEJ b (y7 ([u](a) & e(x))w + unEﬂ)dy (422)

e

r—0 (Qg)Pw

. A 0w (T z AT
— lim /Bb (£, (@) & 6(E))u + (Ve )())do

According to (H2) and the inequalities meas(B. ;) < 7i,aN~'e and

/ |(un57i)(§)\p“’dx < conste(a™ "t +£N)
Bs,i



EJDE/CONF/14 MODELLING OF A COLLAGE PROBLEM 49

(this last result is obtained using the . ; definition and condition (3.2) satisfied by
b)), (4.22)) becomes

1y, meas(S;) (b)) "™ ([u](a))
— lim /\/ o, %([u](a) 0(2))w + Z—Z(uns,i)(g))dm

r—0 &

(4.23)

By Holder inequality, condition (8.2) and the result |[VR.u| < const(l + 1), we
deduce

Ly meas(S;) (6°™) ™ ([u] ()

T 1 T
> 1 el _ N2 _
> Th_r)r%)A/m b(5 ,VwReu+ 25(unw)(g))dx o(w)

> lir% )\/ b(f, VpReu)dx — o)
r— ) £

Summing over I(«a) and tendlng o towards 0, we deduce that

L /bwwhom )dz > lim A b(6 Vo tr)di .

r—0 B

Since v, = u on O,

. X
lim { h(x,vpr)dx+ZA/ b(, Vuur)da}

Os /\ w BE

/thu dx+Zl /boow Yhom (o]

Thus
G(u) = inf{lim sup F,.(v,) : v, — u}

/thu dx—l—Zl /boowhom([ )di

If we take the weak lower semicontinuous envelope on W4(0O \ S) denoted T, for
the two members, we obtain

/thVudx+Zl /boowhorn([ ) di

(we use the integral representation of quasiconvex envelope for the first integral
term and compact embeeding W4(O\ S) — LPw(S) for the second, noticing that
function (b>*)hem is convex [I7, Proposition 2.6]. Since G is the I-limsup of F},
it will be 7-lower semicontinuous [2, Theorem 2.1]; thus

G(u) / Qh(z, Vu) dm—l—Zl / (b>wYhom ([u])dE < F(u).

We conclude noticing the infimum in the definition of G is attained. If u is not
regular, we use a density argument like in Proposition

(ii) Case l; = +o00 and lg < 4o0: If u & Vo n, F(u) = 400 and we take for
example v, = u. If not, u € Vo v C V and it suffice to apply results of case (i)
noticing that (6°°°)hom([u]) = 0.
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(iii) Case lq = +oo: It is deduced from the fact that (b )hom([u]) = 0 for w = s
and w = d. d

The proof of Proposition [4.3]is a direct consequence of Propositions [4.7] and
Recall the functional I,, = F, — L is defined on the space (X,7) and take I =
F — L. Let

|4 if I and 4 are finite
W =dqVon ifls =400 and I, is finite
% if ld = 400

Corollary 4.9. Let (u,), be a (3.1))-minimizing sequence. Thus (4, ), is relatively
compact in (X, 7). Moreover, for every cluster point @ and a subsequence, we have

lim 1, (@) = I(@) = inf{I(v) : v € W},

The proof of this corollary is a straightforward application of Remark propo-
sitions 2.1l and .3l
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