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HIGHER ORDER NONLINEAR DEGENERATE ELLIPTIC
PROBLEMS WITH WEAK MONOTONICITY

YOUSSEF AKDIM, ELHOUSSINE AZROUL, MOHAMED RHOUDAF

ABSTRACT. We prove the existence of solutions for nonlinear degenerate el-
liptic boundary-value problems of higher order. Solutions are obtained using
pseudo-monotonicity theory in a suitable weighted Sobolev space.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let © be an open subset of RY with finite measure and let m > 1 be an integer
and p > 1 be a real number. We will consider the degenerated partial differential
operators

Au(x) = A™u(z) + A" tu(z), (1.1)
on {2 where
AMu(z) = Y (=)D Aq(z,u, ..., V") (1.2)
|a]=m

is the top order part of the degenerated quasilinear operator A. and where

A" hy(z) = Z (-1 DAy (z,u, ..., V™) (1.3)

lal<m—1

is the lower order part of A. The coefficients {A,(z,n,(), || < m} are real valued
functions defined on  x RV¥m-1 x RN» (with N,,_; = card{a € NV, |a|] <m —1}
and N,,, = card{a € NV |a| = m}) which satisfy suitable regularity and growth
assumptions (see section 2). Let V be a subspace such that

Wy P(Q,w) CV CW™P(Q,w), (1.4)

where W™P(Q,w) and Wy (Q,w) are weighted Sobolev spaces associated to a
vector of weights w = {w, = we (), |a] < m} on Q satisfying some integrability
conditions (see sections 2). We deal with the case where A™~! is affine with respect
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to the top order derivatives of u, i.e, A™ ' is of the form,

A" () = Y (=)D Loz, u, .., V)

al<m—1

o= (1.5)
DO Y S
la|<m—1|8|=

where L, (z,m) and Cyg(x,7) are some real valued functions defined on € x RVm-1
We will assume the following hypotheses:

(H1) For every u € V and any multi-index |G| < m — 1, there exists a parameter
q(8) > 1 and a weight function og = og(x) such that,

DPu e L9P)(Q,05),

IDPu(@)llg8),05 < Eollllm.paw
with some constant ¢g > 0 independent of u and moreover, the compact
imbedding,
V s H™H9(Q, o) (1.6)

holds, where H™~14(Q, o) = {u, D%u € L1B)(Q, 04) for all |3| <m — 1}.
(H2) The functions {Aq,|a| = m}, {La,|a| < m — 1} and {Cug,|a] < m —

1 and |B| = m} are Carathéodory functions and there exists functions g, €

LP(Q) for all [a] = m, §o € LI (®)(Q) for all |a] < m—1, and a5 € L™ (Q)

for all || < m — 1 and all |§] = m such that

(i) for all |a] = m,

|[Aa(z,m,Q)]

< cay/?(@) (9a(@) + 20 D wh Gl +
|Bl=m [Bl<m—1

a(B)
o’ )

(ii) for all |a] <m —1,

=y a8
Lo, )] < caod™ (Gule) a3 05 nsl7E)

[B]<m—1
(iii) for all || <m —1 and all |5] =
|Cap(z,m)
< capod ™ (@@ (ras(@) +as 3 ok (@)l )
Al<m-1

for a.e. x € €, some positive constants cq, ¢o and éqg, every (n,() €
RNm—1 x RN¥» = R? and some exponent r,, such that
1 1 1
— 4+ -+ —<<1 forall o] <m—1. (1.7)
ra P ql@)
For the existence of r, see Remark [2.1] below.

Let us consider the degenerated boundary value problem (DBVP) associated to
the equation,

Au=feV, (1.8)
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where V* is the dual space of V' from (1.4). Recently, Drabeck, Kufner and Musto-
nen proved in [4] the existence result for Dirichlet degenerated problem of second
order associated to the operator A of the form,

N
Au(z) = — Z %ai(a@ u, Vu) (1.9)
i=1 "

where the Carathéodory functions a;(z,n, ¢) satisfy some simple growth conditions,
that is,

1
7

N 1
jai(w,m, )l < evw (@) (9(2) + @ @)l + > w![¢P) (1.10)
j=1

where the exponent ¢ and the weight function w(x) verify the so called Hardy-type
inequality; i.e,

N
/ ()"0 () der < CZ/ | DyulPws(z) de (1.11)
Q = Ja
and the compact imbedding

WP (2, w) < LI(Q, D). (1.12)

The authors have proved that the mapping T" associated to A from (|1.9)) is pseudo-
monotone in WO1 P(Q,w), by assuming only the so-called weak Leray-Lions condition

N

> (ai@,n,¢) — ai(z,m,0)) (G — &) > 0. (1.13)
i=1
Our first objective of this paper is to extend the previous result of [4] in the general
class of operators A from (1.1]), where the lower order part A™~! is of the form
(1.5) and where the growth conditions are of the most general form (H2). More
precisely, we prove the following result.

Theorem 1.1. Assume that (H1), (H2) and that
> (Aa(@.n,0) = Aa(2,7,0))(Ca — Ca) = 0 (1.14)
|a]=m

for a.e. x €Q, alln € RVN=—1 and all (¢,{) € RVNm x RN» hold. Then the mapping
T associated to the operator A from (1.1) and (1.5) is pseudo-monotone in V.
If in addition the degeneracy satisfies

Z Au(z,8)80 > ¢ Z we () [€al?, (1.15)
la|<m la|<m

for a.e. x € Q, some ¢ >0 and all ¢ € RNm—1 x RNm | then the DBVP associated
to the equation (1.8) has at least one solution u € V.

Remark 1.2. The statement of Theorem [L.1] is obviously contained in Theorem
below (it suffices to take J = @) where some general situation is considered.

On the other hand, Drabeck, Kufner and Nikolosi in [6] have studied the existence
result for the DBVP from the equation (|1.8) with A of the form (|1.1) and with more



56 Y. AKDIM, E. AZROUL, M. RHOUDAF EJDE/CONF/14

general hypotheses (H1%), (H2’), (H3) (in section 2) and with the so-called Leray-
Lions condition

Z (Aa(mvnaC)_Aa(xanvg))(Ca _CCK) > 0. (116)
lor|=m
The authors have assumed in addition to the previous hypotheses the compact
imbedding,

V s WMTLP(Q, w) (1.17)
and then, have proved that the mapping T satisfies the condition «(V') (see defini-
tion and hence used the degree theory of general mappings of monotone type.
The hypotheses play an important role in the work [6], because it is related
to some strong converges appearing in the «(V') condition.

Our second objective of this paper, is to prove the same result as in [6] without
assuming the compact imbedding . This is possible by proving the pseudo-
monotonicity of the mapping 7" induced by the operator A from . More pre-
cisely, we have the following result.

Theorem 1.3. Assume that (H1’), (H2’), (H3) and (1.16|). Then the mapping T
associated to operator A from (1.1)) is pseudo-monotone in V. If in addition the
degeneracy (1.15)) is satisfied, then, the DBVP from the equation (1.8) has at least

one solution u € V.

Remark 1.4. Theorem[I.3]is obviously a consequence of the more general Theorem
it suffices to take J¢ = 0).

Hence, this paper can be seen as an extension of the preceding papers [4, [5] ]
(where the second order case without lower order part is considered in the first
paper. The degree theory is used in the two last papers) and as a continuation
of the papers [2] and [3] (where the second order case with lower order part not
equal to zero, is studied in the first paper and where the higher order case with
A™=1 =0 or with A™~! # 0 but under restrictions w, = 1 for all |a| < m — 1, is
considered in the last paper). Finally, note that our approach (based on the theory
of pseudo-monotone mappings) can be applied in the case of non reflexive Banach
spaces. For example in the general settings of weighted Orlicz-Sobolev spaces (see
[1] for this direction). This work is divided into five sections. We start with the
introduction of a basic assumptions in section 2. Next, we give our main general
result in section 3, which is proved in section 4. Finally, we study in section 5, some
particular case (where our basic assumption are satisfied). In our work, we shall
adopt many ideas introduced in [7], but the results are generalized and improved.

2. PRELIMINARIES AND BASIC ASSUMPTIONS

2.1. Weighted Sobolev spaces. Let  be an open subset of RY with finite mea-
sure. In the sequel we suppose that the vector of weights, on Q, w = {ws(x) :
|a| < m} satisfies the integrability conditions:

Wey € Llloc(Q)7

__1
wa """ € Lige(Q)

for any |a| < m. We denote by W™P(Q,w) (1 < p < o) the space of all real-valued
functions u such that the derivatives in the sense of distributions fulfil

D% € LP(Q,w,) for all |a] < m.
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The weighted Sobolev space W™ P (£, w) is normed when equipped by the norm

1/p
HUHm,p,w = ( Z / |Dau|pwa dx) . (21)
laf<m /<

The space WP (Q,w) is defined as the closure of the set C§°(£2) with respect

to the norm (2.1). Note that the conditions (2.1) and (2.1) imply that the spaces
WP (Q,w) and Wy (Q, w) are reasonably defined and are reflexive Banach spaces

(for more details see [6]). We recall that the dual space of W™ (92, w) is equivalent
to WP (Q,w*) where w* = {w’ = wl™? : |a| < m}, with p/ = 577 Is the
Holder’s conjugate of p.

2.2. Basic assumptions. Let J be a subset of {a € NV, |a| = m} and J¢ its

complement. We will suppose that the coefficients A, of the operator A from (|1.1))
are such that

AQ(Q:?’W?C) = B(x(xanch) Va € J,
Aa(xﬂ%o = BOA('T777;CJC) Ya € Jc7
Aa(xa m, C) = La(x,n, CJ) + Z Caﬁ(l‘,?’], CJ)Cﬂ V|o¢| S m — 1,
peJe

for a.e. € Q and where {B,, |a| = m}, {La,|a] <m —1} and {Cap,|a] <m —1
and 3 € J°} are some Carathéodory functions and where (; denoted {5 = {(,,
a € I'}. We denote by Ny = card{a € NV, « € I}. Let us introduce the following

modified versions of (1.16) and (1.14)),

(2.2)

Z(Ba(l‘vn)g])_Ba(xanvgJ))(Ca_ga) >O7 (23)
acJ
for a.e x € Q, all n € RV=-1 and all ¢; # {; € R™ and
Z (Boz(xv"?v CJC) - Ba(IvnszC))(Ca - é_-a) > 07 (24)
aeje

for a.e 2 € Q and all (1, (e, (ge) € RNm—1 x RNse x RNue,

Let us denote by m; = m — % and suppose that m; > 0 i.e, mp > N. We
denote by C(2,w,) the weighted spaces of continuous functions, more precisely
C(Q,wq) = {u = u(x) continuous on Q, [|ul|c(Q,w,) = SUPeq [u(T)wa(x)| < 00}

(H’) Let u e V.
(i) For |8] < myq, there is a weight function o3 = o5(z) such that, DPu €
C(Q,03) and moreover,

sup | D u(x)os(x)| < Elltllm,p,w (2.5)
e

with some constant ¢g > 0 independent of u. When we denote by
k(z,u(x)) the expression > g, log(x)DPu(x)|, then, in view of

23).

[k(x, u(x))| < cl|ullmpw forall ueV. (2.6)

(ii) For m; < |B] < m — 1, there is a parameter ¢(5) > 1 and a weight
function o3 = o5(z) such that D%u € LI (Q, 05) and moreover,

”Dﬁu(m)Hq(ﬁ),dﬁ < 6ﬂHuHm,p,w (2.7)

for some constant ¢z > 0 independent of w.
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(iii) The imbedding V << H™~14(Q, o) compact, where H™~14(Q, 0) =
{u, DPu € Xg, for all |8] <m — 1} with X5 = L1 (Q,05) for m; <
6] <m—1and Xg=C(Q,05) for |3 <my.

(H2") There exists functions g, € L¥ (Q) for |a| = m, o € LI (®)(Q) for m; <
la] <m —1, go € L'(Q) for |a| < m1, Yas € L™ (Q) for all o] <m —1
and 8 € J¢ and some positive constants ¢, and ¢,g, moreover there exists
a positive continuous, non decreasing function G(t), ¢t > 0, such that the
following estimates hold:

(i) For a € J,
|Ba(33»777CJ)|
- = _ _ e a(B)
< Gk, )t/ (gal@) + 20 Do wi Gl e >0 af gl ™)
BeJ m1<[B|<m—1
(ii) for o € JC,
‘Ba(mvnacu’“)
- o 1 - LB
< Gk(w, )0l (gale) + 0 > wi 1l +ea >0 of gl )
peJe m1<|B|<m—1

(iii) for m; < |a| <m —1,

[ La(x,n,Cr)
e (- . T e TS e
< Gl )oET (Ga@) + 0 3 wi Gl T+ > F gl v
peJt mi <|B]<m—1
(iv) for |a| < mq,
[ La(x,n,Cr)
< Gk, 7))o (d0l@) + e Y wsliol +ea 3 oalnsl®®)
peJ m1<|B|<m—1
(v) for m; <lJo| <m—1and g€ J°
‘Caﬁ(x,%CJ”
Ty, 1 < DR S L e
< Gk(z,k))od >wg/p<’7aﬁ(x) + Cap ZU))\ |7 + Cap Z o\ Al e )
AeJ my<|A|[<m—1

(vi) for |a| < mq and 3 € J°,
‘Caﬁ(x7777<J)|
a)

1 - e |, o~ o
< Glk(a. )l (Yop (@) +Eap Y wiT |G +20s D ol Il
reJ my<|A|[<m—1

)

for a.e. z € Q, every € R¥m-1 and every ¢; € RN where k = {13, |3| <

mq} and
1 1
e P q(a)
for any m; < |a| <m —1 and any 8 € J¢ and with
1 1
—+-<1

Ta P
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for any |a| < my and any 8 € J¢. Note that the exponent ¢'(a)) denotes
the Holder’s conjugate of g(a).

Remark 2.1. For all my < |a| < m — 1, the such r, satisfying L + % + ﬁ <1
exists when ¢(a) > p’. And we can choose r, > p’ when |a| < m;.

Remark 2.2. If m; <0, then the set of multi-indices £z with || < my is empty.
Then we set G(t) = 1 and since the cases iv)and vi) in (H}) are irrelevant, we obtain
the growth condition of type C [6]. Further if we do not differ between |a| = m
and | < m —1 ie, if we take o = go € L? (Q) we immediately obtain the growth
conditions of type (B) [6]. Finally if we choose ¢(8) = p and 03 = wg, we obtain
the growth condition of type A [0].

(H3) Let G; be a continuous positive, nonincreasing function on [0, 00), and
let G4 be a continuous positive, nondecreasing function on [0, 0c0), we will
suppose that for every ¢ = (k,7n,¢) € R? and for a.e. x € Q the ellipticity
condition holds

Z Aa(aj? K1, C)Ca

|a]=m

> Gi(h(z, k) Y wslGel’ — Galh(z,w) D oplnsl”™,

|Bl=m m1<|B]<m—1

where £ = {§ﬂ7 1Bl < ma} € Rdl? n= {gﬁa my < [B] <m—1} € Ran
¢={&, Bl =m} e R" and di + dz = Ny 1.

Under these assumptions, the differential operator (1.1) generates a mapping T
from V to its dual V* through the formula

(Tu,v) = Z/QBa(x,n(u),C'](Vmu))Davdx

acJ

+ /Q Ba (2, n(u), Cye (V™u)) D dz

acJe

+ > /Q Lo(z,n(u), (s (V™)) D% dx

lal<m—1

+ 2 E:l(flw@%muxgdvmunlﬁuDavmm

|a|]<m—1peJe

for all uw,v € V and where (.,.) denotes the duality pairing between V* and V.
The mapping 7' is well defined and bounded, this can be easily seen by Holder’s
inequality and the following lemma.

Lemma 2.3. Let () be a subset of RN with finite measure and let f € LP(Q,01),9 €

L, 09) where o1 and oo are weight functions in Q and let h € L™ (Q,0, "0y *)
with

1 1 1

S+ <

p q T

Then fgh € LY(Q).
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Indeed. Let 1 = % + % + 1 < 1. By Hélder’s inequality we have,

oo ([ i) ([ o) (oot <o

Then fgh € L*(£2), which implies that, fgh € L'(Q).
Let us recall the following definitions.

Definition 2.4. A mapping T from X to its dual X*, is called pseudo-monotone, if
for every sequence {u,} C X with u, — v in X and limsup,,_, .o (T tn, un —u) <0,
one has

lim inf(Tw,, uy, —v) > (Tu,u —v) for all v € X.

n—oo
Definition 2.5. Let X be a reflexive Banach space. The mapping T from X to
X* is said to satisfy condition «(X) if the assumptions

up, = in X and limsup(T uy,,u, —u) <0,

n—oo
imply u,, — u in X.
Obviously, the class a(X) of operators is contained in the class of pseudo-

monotone operators.

3. MAIN GENERAL RESULT

The aim of this section, is to prove the following result.

Theorem 3.1. Assume that (H1’), (H2’), (H3), (2.3) and (2.4]) hold. Then, the
mapping T defined by (2.8)) is pseudo-monotone in V.

Remark 3.2. (1) When J = (), the previous theorem applies in particular to
operators like (1.1) with A,, |a| < m — 1 affine with respect to V™. This
gives from sufficient condition (see Theorem [1.1]).
(2) When J =0, m =1 and Ay = 0, we immediately obtain [4, proposition 1].
(3) When A, = 0 for all [a] < m —1 and J = 0 (resp. J¢ = ) we ob-
tain Theorem 8.1 (resp. Theorem 8.3) of [I] with some simple the growth
conditions.

Remark 3.3. Since the hypothesis (H3) concerns only the terms L, with |a] < my
(see Remark below), then the statement of Theorem remains true without
assuming (H3), when m; < 0.

Remark 3.4. If we take my <0, q(8) = p and 03 = wg, then Xz = LP(Q, wg) for
all |8] < m — 1, hence the growth condition (H2’) is of the type A (see [6]) and the
statement of Theorem remains true without assuming (H3).

Applying the previous theorem, we obtain the following existence results, which
generalize the corresponding (cf. [I, 4]) and extend the corresponding in [5, [6].

corollary 3.5. Assume the hyptheses in Theorem and the condtion on the
degeneracy (1.15)). Then the DBVP from the equation (1.8) has at least one solution
ueV.

Remark 3.6. If the expression,

v = (3 /Qwa(x)Dadem)l/p

la]=m
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is a norm in V equivalent to the usual norm ([2.1) (see section 5 where this fact is
verified for V.= W™"" (2, w)), then we can replace in Corollary the degeneracy

(1.15) by the weaker condition
> Aa(@, e = D> walbal (3.1)

lee|<m loe|=m
4. PROOF OF THEOREM [3.1]
For this goal, we need the following lemmas.

Lemma 4.1. Let (gy,)n be a sequence of LP(2,6) and let g € LP(Q,5) (1 < p < 00),
where & is a weight function in Q. If g, — g in measure (in particular a.e in Q)
and it is bounded in LP(Q,5), then g, — g in Lq(Q,&%) for all g < p.

2 meas

/ |gn_g|q5—% d(E:/ |gn_g‘q5% dl""/ |gn_g|q5—% dx
Q A, A

c
n

< 5+/ lgn — 9|95+ da.
2 Ja

Proof. Let € > 0 and set A, = {z € Q/|gn(x) — g(x)|6'/P(z) < (ﬁ)l/q}. We
have

c
n

By Holder inequality, one can see that

/

where M is a constant does not depend on n. On the other hand, since g,, — ¢ in
measure, meas(A%) — 0 as n — oco. Then there exists some ng € N such that for
all n > ng,

14
p

lgn — g|q5% dx < (/ lgn — g|p(7*dx>5 (meas(A%))
c Q

a
P

< M(meas(AfL)) ,

N ™

/ |gn79|q5—% dr <
a

The following lemma is a generalization of [9, Lemma 3.2] in weighted spaces.

Lemma 4.2. Let g € LY(Q,5) and let g, € LI(Q,5), with ||gnllqs <c (1 <g<
00). If gn(x) — g(x) a.e. in Q, then g, — g in LI(2,5), where — denotes weak
convergence.

Proof. Since g,6¢ is bounded in L(Q) and gn(x)(}%(a:) — g(m)&é(x), a.e. in
then by [9 lemma 3.2],
gn(f% —~gé7  in Li(Q).

Moreover, for all ¢ € L9 (€,5179), we have @5« € L9 (). Then

/gngodx—>/g<pdx; ie. g, =g in LI(Q,0).
Q Q
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Proof of Theorem Let (uy)n be a sequence in V' such that: u, — v in V
and

lim sup(Tuy,, un, —u) <0, (4.1)

n—o0

ie.,

lim sup /ZB ,n(Un), 7 (V" up)) (D uyp — D%u) dx

/ZB (z,n(un), Cye (V™up))(D%uy, — D%u) dx

acJe

/ Z (z,n(un), C7 (V" un))(Dup — D%u) dx

la|<m-—1

/ Z Z Coplz,n(un), s (V ")) DP iy (D%, — D%u )dx} <

la|<m—1BeJe
(a) We shall prove that
(Tup,v) = (Tu,v) asn —ooVv e V. (4.2)
By (H1’)(iii), the compact imbedding implies that for a subsequence

D%, — D% in X,
D%, — D% a.e. in QV |o| <m —1.

Step (1) We shall prove that

lim Lo(z,n(un), C7 (V™ u,)) (D%, — D) = 0. (4.4)
e a|§m—1/ﬂ

(i) We show that

n—oo
mi1<|a|<m-—1

lim > / (2, 7(tn), C7 (V™)) (D%up — D) daz = 0. (4.5)
Let my < |a| < m — 1 be fixed. Thanks to (H2’), we have
| Eal (). (7)) (D = D) d

/ G(k(z,un(x)))oa ) |(D%uy, — D%u)||ga| dz

#2602 [ A1) TT (D, — Do 1D 0|75
geJ

o) a(5)
+ Ca Z / G(k(z,un(x)))os ) |(D%uy — D)o ) DPu,, ()] 7 dz.

m1<|B]<m-—1

By (2.6) we have,

G(k(z, un(z)) < Gefunllmpw)-
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Applying the Holder’s inequality with exponents ¢(«) and ¢'(a)) we obtain

[ o). T 1) (D D) d

< Gcllunllm,pa) ID*tn = D*ullg(a o (130l e

_r__ a(B)
T N FE N S [ LN e

peJ m1<|B|<m—1

Thanks to (2.7), we have |[DPunlg(8),05 < 8lltnllm.pw for all my < |B] <m — 1.
Since [|DPuy|pwy < [[tinllm,p,w for all B € J, we conclude that

/ (Lo (2 7(tn), G (V™)) (D%t — D) dt
Q
< ||Daun - Da“”q(a),JQRa(Hun||m,p,w)
with,
_p a(B)
Ra(t) = G(clt)(||§a\|q/(a) + ot feg Y tm))

my <[B|<m—1
which is a positive continuous function, hence Ry (||tn ||m p,w) is bounded. Moreover,
by (4.3) we have,
| D%y — D%ullg(a),0, — 0 asn — oo.
then
/ Lo, 1(tn), €5 (V™ 11)) (D%, — D) dz — 0,

Q
which yields (4.5).
(ii) We show that

lim Z / Lo(z,n(up), Cr(V™up)) (D%, — D%u) dz = 0. (4.6)
n—oo o <m Q

Let |a| < my be fixed. Similarly by virtue of (H2’),
[ Late (), ¢ (7)) (D" — D*w)] d
Q

< G(cflunlm,p,w) Slelg(“Daun — D%u)oq|) (Hgaul + Ca Z ||D6Un||p,w5

peJ
ta > IDMwES ).

m1<|B|<m—1

It follows from (2.7) and || DPu,,

paws < |[tnllm,pw for all 3 € J that

/Q | Lo (2, n(un), Cr (V™ up))(D%uy — DYu)| da

< ”Daun - Dau”C(Qpa)Ra(”“n”m,P,w)a

where
Ra(t) = G(Clt)(||§a||1 toott +og Y tqw))_

mi1<[B|<m—1
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This function is also positive and continuous, hence Re (||tn|m.p.w) is bounded.
Since, by (4.3) [[D%u, — D%ul|c(0,0,) — 0 as n — oo, it follows that

/ Lo (z,n(un), C;(V™up))(D%uy — DY) dz — 0,
Q

which yields (4.6). Thus, due to (4.5)) and (4.6)) we conclude (4.4]).
Step (2) We shall prove that

lim > > / Cop (@, n(tn), (V™)) DPuy (D¥uy — D) dz = 0. (4.7)

n—oo

la|<m—1pB€eJe
(i) Let my <|a] <m —1and § € J° be fixed. And let s, such that,
1 1 1 1
—=——+-+—<L1L
sa ql@) P Ta
By Holder’s inequality, we have

/ |Cap (@, n(un), €1 (V™ un)) Dty (Dun — D¥u)|** d

ra Sa

/ Cas (), G (V)70 i)

D’Bun Pw dl‘ B D%u,, — D%u q(a)Ua da W'
B8
@ Q

By (H2’) the sequences {Cyg(z, n(un) Cr(V™uy)), my < la] <m -1, 8 € J°}

(resp {DPu,, B € J°}) remain bounded in L™ (€2, 04 ‘”‘” wy TQ) (resp LP(Q,wg)).

Moreover, | D%u, — D*ul|*®

da)on 0 as n — o0o. Then

lim |Cag(a: n(un), C7 (V™)) DPuy (D%uy — D%u)|* dz = 0.

Consequently,
T [ 1Casen(un), G (V7 0,)) DPun (D% — D) do =0,
i.e,
B Y S [ Canlonfun), (T ) Do (D~ D) = 0. (49

mi<|a|<m—1p8€Je
(ii) Let || < mq and 8 € J€ be fixed. By (H2’) the sequences
{00! Capl@, n(un), €1 (V"un)) Dun, |a] <my, B € I
remain bounded in L*~(Q) with ;- = & + ;1 < 1. Indeed,

/Q 107 o, (2t ), C (V™)) Dty | dit

< ([ Castentun). o u) oy F ) ([ 1D%ufrupds) *

The right hand 51de is bounded because {Cop(x, n(un), (s (V™uy))} is bounded in
L™ (Q o0, g g ) and {DPu,} is bounded in LP(Q, wg).
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Thanks to s, > 1, the sequences {o; ' Cog(z, n(uy), C7(V™up))DPuy,, o < my, B €

J¢} remain bounded in L'(2). Since
[ 1Cant ). oV )} D% (D" — D*w)] d
Q

< sup(/(D*un — Du)ora]) / (Cons (2,111 ), G (V™)) D |
e Q

it follows that
lim |C’aﬁ(x n(un), (s (V™ un))Dﬁun(Do‘un — D%)|dz =0

n—oo

(because Supx69(|(D”‘un — D*u)o,|) — 0). Which gives

m 3 Z/caﬁ (), Cy (V™)) DP ot (D% — Du)da = 0. (4.9)
la|<my BEJTC

Combining (4.8)) and ( we obtain

Step (3) We shall prove that

,}LHQOZ/ (@, n(un), Cr (V™ un))

acJ (410)
— By (z,n(un), Cs (V™)) (D%uy, — D*u) dz = 0

and that
tim [ (. 7(t). e (V)
nmeeJa a;c (4.11)
- Ba(x,n(un), Cye (V™)) (D%, — DY) dx = 0.

Combining (4.1]), (4.4) and ( one obtain
e 3 / (2, (un), G (V™)) (D%, — D)

L (4.12)
+ Z / (z,n(un), Cre (V™up))(D%uy — D%u) dx < 0.

acJe

Thanks to (4.3) and (H2’) one deduce that

Ba(@,n(un), G5 (V") = Ba(z,n(u),(s(V™u)) i L (Qw},), a € J
Ba(,n(un), Cre (V™)) = Ba(z,n(u), (e (V™)) in LP (Q,w}), a € J°.

Since D%u,, = D%u in LP(§2, w,) for all |a| = m, one can write

lim/ZB (z,n(un), Cs (V™)) (DYuyp — D) dx =0,

n—oo
acJ

(4.13)
lim / > Ba(@,n(un), Cre (V" u))(D*up — Du) da = 0.

n—oo
acJe

Combining (4.12)), (4.13)), (2.3) and (2.4) we conclude the assertions (4.10) and
(1.
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Step (4) To prove the relation (4.2)), it suffices to show the following assertions:
(i) For every v € V|

lim /Q " Ba(w,1(un), (V1)) D0 d

n—oo
acJ

:/ﬂZBa(x,n(u),@(vmu))Davdx.

acJ

(4.14)

(ii) For every v € V,

lim /Q Z Lo (x,n(un), Cs(V™uy)) D% dx

mi<|]a|]<m-—1

~[ ¥ L.V 0ds,

mi<|a|<m—1

(4.15)

(iii) For every v € V,

lim/Q Z Lo(z,n(un), Cs(V™uy)) D% dx

n—oo
|a] <my

~ [ ¥ Lalwn(w. (V) D vds.

Q2 |a] <my

(4.16)

(iv) For every v € V,

lim > Y Capl@n(un), (5 (V™ un)) DPuy D

n—oo Q
|a|<m—1pB€Je

- / S S Cuplwn(w), G (V") DPuD .

2\ 4j<m—1peJe

(4.17)

(v) For every v € V,

lim / Z(Ba(x,n(un),CJC(Vmun))Do‘vd:c
(4.18)
= [ 3 (Bulenta). oo () D 0 da

acJe

Proof of assertions (i)and (). Invoking Landes [8, lemma 6], we obtain from (4.10))
and the strict monotonicity (2.3]) that

D%u,, — D% a.e in § for each a € J, (4.19)
which gives
Bo(z,nm(un), ¢ (V™uy)) — Baol(z,n(uw), (V™)) ae. in QVa e J,
L n(1tn), G (V™0n)) = Loz, n(u), € (V™))
a.ein QVmy <o <m—1.

(From the growth condition (H2’), the sequence { By (z,n(un), (s (V™ uy)), 0 € J}
(resp {La(z,n(un), (s (V™u,)) my < |a] < m —1}) are bounded in LP' (Q, w?)
(resp. L9 (®(,6%)), hence by Lemma [4.2{ we have

Ba(z,m(un), (1 (V" un)) = Ba(x,n(u), (;(V"u))
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in LP' (Q,w?) for all o € J and
La(z,n(un), s (V™ un)) = La(z,n(u), (V™))
in L) (Q, 0*) for all my < |a| < m — 1, which implies (i) and (ii). O

Proof of assertion (iii). In virtue of the growth condition (H2’) we have for all
v eV and all |of < my

| La(@,n(un), (1 (V" un)) D] < |D0|G (K2, 1(un))) oo (Qa(w) oy ws|DPunl?

peJ
tea > oplD ).

m1<[B|[<m—1

Since G(k(z,n(u,))) < c1 and sup,cq(|D%voq|) < ¢ for all |a] < mq, where

¢;(i = 1,2) are some positive constants, it follows that
| La (2, n(un), € (V™ up ) D

< C(ga(x)+CaZWﬂ‘Dﬁun|p+Ca 3 Jﬁ|Dﬁun‘q(ﬁ)) = gn.
BeJ m1<|B|<m—1

It follows from (4.3) and (4.19) that
La($, n(un)a CJ(vmun)) - La(xa U(U)a CJ(Vm’U,)) a.e. in § V|a| <my

and

Gn — g = c(ga(x) + ca Z wg| DPulP + cq Z 05|D5u|q(5))a.ea.e. in Q.

BeJ m1<|B|<m—1

Lemma 4.3. DPu,, — DPu asn — oo in LP(Q,wg) for all B € J.

By (4.3) and Lemma we obtain

/gndx—>/gd:r.
Q Q

By the generalized Lebesgue theorem we have,

/ La(x,n(un), (1 (V™ un)) D% do — / La(x,n(w), (1 (V"u)) D% d
Q Q
for all |a| < my which implies (4.16). O

Proof of assertion (iv). By (4.3) and (4.19) we have for each |a| < m — 1 and each
peJe,
Caﬁ(xa n(un)v C](vmun)) - aﬁ(xv U(U)a CJ(vmu)) a.e. in (2.

So, from (H2’) the sequences {Cop(z, n(up), Cr(V™uy)),m1 <|a| <m-—1and 3 €
J} (resp. {Cap(z,n(un), Cs(V™uy)), || < my and § € J°}) remain bounded in

Ta

LTQ(Q,U;TZ)wﬁ_ ") (vesp. L™ (Q,0, ™ wg 7a)) Then Lemmayields
Cap(,n(un), (V" un)) — Cap(x,n(u), (s (V"))

49 _ _4a
in LY(Q, 04 ‘“")wﬁ P for all ¢ < 7, all my < Jaf < m —1 and all 5 € J°. Lemma
[41] also yields
Cap(@,1(un), C7(V"un)) = Cap(z,n(w), (7 (V"u))
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4
in LY(Q, 0,9 ") for all ¢ < 1q, all [af <my and all § € J°.
Let sq such that i = %—i— ﬁ. Remark that ro > s;, = ;225 for m; <af <
m — 1 and since p’ < r, for |a| < m; one has

Cap(@,1(un), ¢ (V" un)) = Cap(z,n(w), (1 (V"u))

N /
s Sa
P

’
o —

in L% (Q, 00 ““)wﬁ ) for all m; < |a| < m — 1. Also one has

Cap(@,n(un), Cr (V" un))og" = Caplz,n(u), ¢ (V"u))og ! (4.20)

in L”/(Q,w; ) for all |a| < mj.

Lemma 4.4. For allv € V, one has
(1) DPu, D — DPuDv in L** (Q,O’FU)?) for each my < |a] < m—1
and each 3 € J€.

(2) DPu,D*0o, — DPuD*vo, in LP(Q,wg) for each |a| < mi and each
6 e Je.

In view of (4.20)) and Lemma [4.4 we conclude (4.17)). O

Proof of assertion (v). First we show that

/Q > (Bala,n(u), (1)) = ha)(va — D*u) dz > 0 (4.21)

aeJe
for all v = (va) € [[j4jmm LP (% wa), where h, stands for the weak limit of
{Bo(z,1(un), Cre (V™)) € J¢} in LY (Q,w?). Indeed by ([.11)) we have,

timsup |37 Ba ). G (V") (D — D) di <0,
Q

n—oeo acJe
implies
lim su Bo(z,n(un), Cje(V™uy, Daundmg/ hoD%udx 4.22
msup [ 3 Boln(ua). e (97 0,) »> (4.22)

acJe acJe

and from weak Leray-Lions condition (2.4)), for any v = (vs) € Hlalzm LP(Q,we),
we obtain

/Q 3" Balx, n(un), (e (V")) D%y dae

acJe

Z/Q Z Bo(z,m(un), Cye (V™ up))vg dx

acJe
4[5 Balm(ua). G (0) (D, — va) d
2 aege
Letting n — oo we conclude by (4.22)) that

/Q Z haDaude/Q Z havadJC—F/Q Z Bu(z,n(u), (e (v)) (D% — vgy) dx

agJe agJe agJe
and hence (4.21)) follows. Choosing v = D% + ¢t with ¢ > 0, @ = (,) €
[Tja)=m LP(Q, wa) and letting ¢ — 0 we obtain ha = Ba(z,1(u), (se(V™u)) a.e. in
Q which implies (4.18]). O
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(b) We shall prove that
lim inf (T, upn) > (Tu, u). (4.23)

n—oo

In view of monotonicity condition ) and (| we have

/ZB x,(un), (7 (V" up))Duy + /ZB 2, (tn ), Cre (V™ uy)) DUy,

acJ acJe
/ZB xnun CJ(V un))
aelJ
/ZB 2. 1(n), G (V™)) (D*uy — D)
aeJ
Q aege

/ZB (2, m(1n). e (V70)) (D, — D).

acJe
Letting n — oo and using and (| We obtain

Proof of Lemma[4.3 Let E be a measurable subset of 2, in view of steps 1, 2, 3
and 4 in [0, Lemma 2.7], we obtain

H By, p _
lim / [;wﬁw z)|Pdz =0 (4.24)

uniformly with respect to n € N, i.e the sequence (wg|D?u,|P) is equi-integrable.

And due to (4.19) we have
wg|DPun|P — wg|DPulP  a.e. VB € J.

Since meas(Q2) < oo, by Vitali’s theorem we obtain D?u,, — D"u in LP(Q,wg) for

all g e J. O
Proof of Lemma@ ) Let my < Ja] < m—1and 3 € J¢ fixed. Let ¢ €

% (Q, o—aW ;7).
Smce % + (— by Holder’s inequality we obtain

V(] o )
[ proerwy < ( / D01, ) "7 ([ Joltu, T 0l <o
Q

(because % m ) Then D*vyp € L¥' (Q, wé_p/) and since DPu,, — DPu in

LP(Q,w,), we have

/ DPup D*vp — / DPu, Dvp for all g € L% (Q,00 " wy * );
Q Q

ie.,

DPu, D% — DPuD%v € L*(Q, 04 w,")
for all m; <|a|] <m —1and all g € J°.
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(2) Let |a] < my and 8 € J¢ and let ¢ € L”/(Q,wg). Thanks to D*v €
C(Q,0,) Yv € V, we have D%o,p € Lp,(Q,wE). Since DAu, — DPu in
LP(Q,w,), we have

/ DPu, D*vogpdr — / DPuD*voqapdr  for all ¢ € ¥ (2, wp).
Q Q
([l

Remark 4.5. Note that, the ellepticity condition (H3) is only used to prove (4.24)
(see step 3 in [6l lemma 2.7], which concerns only the equality (4.16)) corresponding
to a terms L, with |a| < m;).

5. SPECIFIC CASE

Let ©Q be a bounded open subset of RY satisfying the cone condition. In the se-
quel we assume in addition that the collection of weight functions w = {wq (), |a| <
m} satisfies w,(z) = 1 for all |a| < m — 1, and the integrability condition: There
exists v €)%, oo[N[5L7, o[ such that

o1
w,” € L*(Q) V]a| =m. (5.1)
Note that (5.1)) is stronger than (2.1]). Assumptions (2.1)) and (5.1) imply
1/p
iy = (32 [ 1D upun (o) do)
la]=m
is a norm defined on V = W"?(Q,w) and it’s equivalent to (2.1). Let

mpv — N(v+1) N pv
m=—————"—">==m—— with p; = .
pv D1 v+1

(5.2)
Remark 5.1 ([5]). Under the above assumption the following continuous imbed-
dings hold: (i) For k < m;,
W™P(Q,w) — C*(Q).

(ii) For k = my, with arbitrary r,1 < r < oo,

W™P(Q,w) — Wh(Q).
(iii) For k > my,

W™P(Q,w) — W (Q)
pv N

N(v+1)—pr(m—k) "
Moreover the imbedding (i) and (ii) are compact and (iii) is compact if 7 < gy.

where 7y, satisfies 1 < rp < g =

Now, we define

HM(Q0) = ] Xs
[B|<m—1
where X5 = L1%)(Q,05),q(8) > 1 for m; <[] <m —1 and X5 = CI81(Q, 05) for
18] < ma.
Also we define the assumption
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(H4) Let
pvN

N(v+1) —pr(m —|3])
for m; < |B] < m — 1 and ¢(B) arbitrary if || = m; and o3 = 1 for all
8<m-—1.
Remark 5.2. If (H4) is satisfied, then by Remark
W™P(Q,w) —— H™ Q)
which implies immediately that (H2’)(iii) with o = 1.

Theorem 5.3. Let Q be a bounded open subset of R?. And assume that , ,
(H1’), (H2’)(,i,11), (H3), (H4), and are satisfied. Then the operator T
defined in is pseudo-monotone in V = Wy (Q,w).

If in addition the degeneracy is satisfied, then the degenerate boundary-
value problem from has at least one solution u € V.

1<q(B) <qp =
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