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LERAY LIONS DEGENERATED PROBLEM WITH GENERAL
GROWTH CONDITION

YOUSSEF AKDIM, ABDELMOUJIB BENKIRANE, MOHAMED RHOUDAF

Abstract. In this paper, we study the existence of solutions for the nonlinear

degenerated elliptic problem

−div(a(x, u,∇u)) = F in Ω,

where Ω is a bounded domain of RN , N ≥ 2, a : Ω × R × RN → RN is a
Carathéodory function satisfying the coercivity condition, but they verify the

general growth condition and only the large monotonicity. The second term

F belongs to W−1,p′ (Ω, w∗).

1. Introduction

Let Ω be a bounded open set of RN , p be a real number such that 1 < p <
∞ and w = {wi(x), 0 ≤ i ≤ N} be a vector of weight functions (i.e., every
component wi(x) is a measurable function which is positive a.e. in Ω) satisfying
some integrability conditions. The Objective of this paper is to study the following
problem, in the weighted Sobolev space,

Au = F in Ω,
u = 0 on ∂Ω,

(1.1)

where A is a Leray-Lions operator from W 1,p
0 (Ω, w) to its dual W−1,p′(Ω, w∗). The

principal part A is a differential operator of second order in divergence form defined
as,

Au = −div(a(x, u,∇u))
where a : Ω×R×RN → RN is a Carathéodory function (that is, measurable with
respect to x in Ω for every (x, ξ) in R × RN and continuous with respect to (s, ξ)
in R×RN for almost every x in Ω) satisfying the coercivity condition. But, on the
one hand, they verify the general growth condition in this form

|ai(x, s, ξ)| ≤ βw
1/p
i (x)[k(x) + |s|p−1 +

N∑
j=1

w
1/p′

j (x)[γ(s)|ξj |]p−1]
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instead the classical growth condition, where we introduce some continuous function
γ(s). This type of the growth condition can not guaranteed the existence of the
weak solution (See Remark 4.6), for that we overcame this difficulty by introduce
an other type of solution so-called T-solution. On the other hand, they verify only
the large monotonicity, that is

[a(x, s, ξ)− a(x, s, η)](ξ − η) ≥ 0 for all (ξ, η) ∈ RN × RN .

We overcome this difficulty of the not strict monotonicity thanks to a technique
(the L1-version of Minty’s lemma) similar to the one used in [5]. Recently in [6]
Boccardo has studied the problem (1.1) in the classical Sobolev space W 1,p

0 (Ω).
For that the author has proved the existence of the T-solution. Other works in this
direction can be found in [5] (where the right hand side f ∈ L1 and F ∈ Lp′(Ω))
and in [1] (where the existence and nonexistence results for some quasilinear elliptic
equations involving the P-Laplaces have proved).

2. Preliminaries

Let Ω be a bounded open set of RN , p be a real number such that 1 < p < ∞
and w = {wi(x), 0 ≤ i ≤ N} be a vector of weight functions, i.e., every component
wi(x) is a measurable function which is strictly positive a.e. in Ω. Further, we
suppose in all our considerations that (for each wi 6= 0.)

wi ∈ L1
loc(Ω), (2.1)

w
−1

p−1
i ∈ L1

loc(Ω), (2.2)

for any 0 ≤ i ≤ N .
We denote by W 1,p(Ω, w) the space of all real-valued functions u ∈ Lp(Ω, w0)

such that the derivatives in the sense of distributions fulfill
∂u

∂xi
∈ Lp(Ω, wi) for i = 1, . . . , N.

Which is a Banach space under the norm

‖u‖1,p,w =
[ ∫

Ω

|u(x)|pw0(x) dx+
N∑

i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
]1/p

. (2.3)

The condition (2.1) implies that C∞0 (Ω) is a space of W 1,p(Ω, w) and consequently,
we can introduce the subspace W 1,p

0 (Ω, w) of W 1,p(Ω, w) as the closure of C∞0 (Ω)
with respect to the norm (2.3). Moreover, condition (2.2) implies that W 1,p(Ω, w)
as well as W 1,p

0 (Ω, w) are reflexive Banach spaces.
We recall that the dual space of weighted Sobolev spacesW 1,p

0 (Ω, w) is equivalent
to W−1,p′(Ω, w∗), where w∗ = {w∗i = w1−p′

i , i = 0, . . . , N} and where p′ is the
conjugate of p i.e. p′ = p

p−1 .

3. Basic assumptions and statement of results

Assumption (H1). The expression

‖|u|‖X =
( N∑

i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
)1/p

(3.1)
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is a norm defined on X and is equivalent to the norm (2.3).
There exist a weight function σ on Ω and a parameter q, 1 < q <∞, such that the
Hardy inequality,( ∫

Ω

|u(x)|qσ dx
)1/q

≤ c
( N∑

i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
)1/p

, (3.2)

holds for every u ∈ X with a constant c > 0 independent of u, and moreover, the
imbedding

X ↪→↪→ Lq(Ω, σ), (3.3)
expressed by the inequality (3.2) is compact.

Note that (X, ‖|.|‖X) is a uniformly convex (and thus reflexive) Banach space.

Remark 3.1. If we assume that w0(x) ≡ 1 and in addition the integrability con-
dition: There exists ν ∈]N

P ,+∞ [∩[ 1
P−1 ,+∞[ such that

w−ν
i ∈ L1(Ω) for all i = 1, . . . , N. (3.4)

Note that the assumptions (2.1) and (3.4) imply that,

‖|u‖| =
( N∑

i=1

∫
Ω

| ∂u
∂xi

|pwi(x) dx
)1/p

, (3.5)

is a norm defined on W 1,p
0 (Ω, w) and its equivalent to (2.3) and that, the imbedding

W 1,p
0 (Ω, w) ↪→ Lp(Ω), (3.6)

is compact for all 1 ≤ q ≤ p∗1 if p.ν < N(ν + 1) and for all q ≥ 1 if p.ν ≥ N(ν + 1)
where p1 = pν

ν+1 and p∗1 is the Sobolev conjugate of p1 [see [9], pp 30-31].

Assumption (H2).

|ai(x, s, ξ)| ≤ βw
1/p
i (x)[k(x) + |s|p−1 +

N∑
j=1

w
1/p′

j (x)[γ(s)|ξj |]p−1], (3.7)

[a(x, s, ξ)− a(x, s, η)](ξ − η) ≥ 0 for all (ξ, η) ∈ RN × RN , (3.8)

a(x, s, ξ).ξ ≥ α
N∑

i=1

wi|ξi|p, (3.9)

where k(x) is a positive function in Lp′(Ω), γ(s) is a continuous function and α, β
are strictly positive constants.

We recall that, for k > 1 and s in R, the truncation is defined as,

Tk(s) =

{
s if s ≤ k

k s
|s| if |s| > k.

4. Existence results

Consider the problem

u ∈W 1,p
0 (Ω, w), F ∈W−1,p′(Ω, w∗)

−div(a(x, u,∇u)) = F in Ω
u = 0 on ∂Ω.

(4.1)
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Definition 4.1. A function u in W 1,p
0 (Ω, w) is a T -solution of (4.1) if∫

Ω

a(x, u,∇u)∇Tk[u− ϕ] dx = 〈F, Tk[u− ϕ]〉 ∀ϕ ∈W 1,p
0 (Ω, w) ∩ L∞(Ω).

Theorem 4.2. Assume that (H1) and(H2). Then the problem (4.1) has at least
one T -solution u.

Remark 4.3. Recall that an existence result for the problem (4.1) can be found
in [8] by using the approach of pseudo monotonicity with some particular growths
condition, that is γ(s) = 1.

Remark 4.4. In [9] the authors study the problem (4.1) under the strong hypothe-
ses

[a(x, s, ξ)− a(x, s, η)](ξ − η) > 0, for all ξ 6= η ∈ RN ,

|ai(x, s, ξ)| ≤ βw
1/p
i (x)[k(x) + |s|p−1 +

N∑
j=1

w
1/p′

j (x)|ξj |p−1],

instead of (3.8) and (3.7) (respectively ). Then the operator A associated to the
problem (4.1) verifies the (S+) condition and is coercive. Hence A is surjective
from W 1,p

0 (Ω, w) into its dual W−1,p′(Ω, w∗).

Proof of Theorem 4.2. Consider the approximate problem

un ∈W 1,p
0 (Ω, w)

−div(a(x, Tn(un),∇un)) = F.
(4.2)

under the following assumptions:
Assertion (a): A priori estimates The problem (4.2) has a solution by a classical
result in [8]. Moreover, by using un as test function in (4.2) we have,∫

Ω

a(x, Tn(un),∇un).∇un dx =
∫

Ω

Fun dx.

Thanks to assumption (3.9), we have∫
Ω

a(x, Tn(un),∇un).∇un dx ≥ α

N∑
i=1

∫
Ω

|∂un

∂xi
|pwi(x) dx = α‖|un‖|p

i.e.,
α‖|un‖|p ≤ 〈F, un〉 ≤ ‖F‖−1,p′,w∗‖|un‖|,

which implies α‖|un‖|p ≤ C1‖|un‖| for p > 1, with C1 is a constant positive,
then the sequence un is bounded in W 1,p

0 (Ω, w), thus, there exists a function
u ∈ W 1,p

0 (Ω, w) and a subsequence unj
such that unj

converges weakly to u in
W 1,p

0 (Ω, w).
Assertion (b) We shall prove that for ϕ in W 1,p

0 (Ω, w) ∩ L∞(Ω), we have∫
Ω

a(x, unj
,∇ϕ)∇Tk[unj

− ϕ] dx ≤ 〈F, Tk[unj
− ϕ]〉. (4.3)

Let nj large enough (nj > k + ‖ϕ‖L∞(Ω)), we have by choosing Tk[unj
− ϕ] as test

function in (4.2)∫
Ω

a(x, unj
,∇unj

)∇Tk[unj
− ϕ] dx = 〈F, Tk[unj

− ϕ]〉,
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i.e., ∫
Ω

a(x, unj ,∇unj )∇Tk[unj − ϕ] dx+
∫

Ω

a(x, unj ,∇ϕ)∇Tk[unj − ϕ] dx

−
∫

Ω

a(x, unj
,∇ϕ)∇Tk[unj

− ϕ] dx

= 〈F, Tk[unj − ϕ]〉,

which implies∫
Ω

[a(x, unj ,∇unj )− a(x, unj ,∇ϕ)]∇Tk[unj − ϕ] dx

+
∫

Ω

a(x, unj
,∇ϕ)∇Tk[unj

− ϕ] dx = 〈F, Tk[unj
− ϕ]〉.

(4.4)

Thanks to assumption (3.8) and the definition of truncating function, we have,∫
Ω

[a(x, unj
,∇unj

)− a(x, unj
,∇ϕ)]∇Tk[unj

− ϕ] dx ≥ 0. (4.5)

Combining (4.4) and (4.5), we obtain (4.3).
Assertion (c) We claim that,∫

Ω

a(x, unj ,∇ϕ)∇Tk[unj − ϕ] dx→
∫

Ω

a(x, u,∇ϕ)∇Tk[u− ϕ] dx

and that
〈F, Tk[unj

− ϕ]〉 → 〈F, Tk[u− ϕ]〉.

Indeed, first, by virtue of unj
⇀ u weakly in W 1,p

0 (Ω, w), and [3, Lemma 2.4], we
have

Tk(unj
− ϕ) ⇀ Tk(u− ϕ) in W 1.p

0 (Ω, w). (4.6)

Which gives
∂Tk

∂xi
(unj

− ϕ) ⇀
∂Tk

∂xi
(unj

− ϕ) in Lp(Ω, wi). (4.7)

Note that ∇Tk(unj
−ϕ) is not zero on the subset {x ∈ Ω : |unj

−ϕ(x)| ≤ k} (subset
of {x ∈ Ω : |unj

(x)| ≤ k + ‖ϕ‖L∞(Ω)},). Thus thanks to assumption (3.7), we have

|ai(x, unj
,∇ϕ)|p

′
w
−p′/p
i ≤ [k(x) + |unj

|p−1 + γp−1
0

N∑
k=1

| ∂ϕ
∂xk

|p−1w
1/p′

k ]p
′

≤ β[k(x)p′ + |unj |p + γp
0

N∑
k=1

| ∂ϕ
∂xk

|pwk].

(4.8)

where {γ0 = sup|γ(s)|, |s| ≤ k + ‖ϕ‖∞}. Since unj
⇀ u weakly in W 1,p

0 (Ω, w)
and W 1,p

0 (Ω, w) ↪→↪→ Lq(Ω, σ), it follows that unj → u strongly in Lq(Ω, σ) and
unj

→ u a.e. in Ω. Combining (4.7), (4.8) and By Vitali’s theorem we obtain,∫
Ω

a(x, unj
,∇ϕ)∇Tk[unj

− ϕ] dx→
∫

Ω

a(x, u,∇ϕ)∇Tk[u− ϕ] dx. (4.9)

Secondly, we show that

〈F, Tk[unj
− ϕ]〉 → 〈F, Tk[u− ϕ]〉. (4.10)
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In view of (4.6) and since F ∈W−1,p′(Ω, w∗), we get

〈F, Tk[unj
− ϕ]〉 → 〈F, Tk[u− ϕ]〉. (4.11)

The convergence (4.9) and (4.11) allow to pass to the limit in the inequality (4.3),
and to obtain ∫

Ω

a(x, u,∇ϕ)∇Tk[u− ϕ] dx ≤ 〈F, Tk[u− ϕ]〉. (4.12)

Now we introduce the following Lemma which will be proved later and which is
considered as an L1 version of Minty’s lemma (in weighted Sbolev spaces).

Result (4.12) and the following lemma complete the proof of Theorem 4.2. �

Lemma 4.5. Let u be a measurable function such that Tk(u) belongs to W 1,p
0 (Ω, w)

for every k > 0. Then the following two statements are equivalent:
(i) For every ϕ in W 1,p

0 (Ω, w) ∩ L∞(Ω) and every k > 0,∫
Ω

a(x, u,∇ϕ)∇Tk[u− ϕ] dx ≤
∫

Ω

F∇Tk(u− ϕ) dx .

(ii) For every ϕ in W 1,p
0 (Ω, w) ∩ L∞(Ω) and every k > 0,∫

Ω

a(x, u,∇u)∇Tk[u− ϕ] dx =
∫

Ω

F∇Tk(u− ϕ) dx .

Proof. Note that (ii) implies (i) is easily proved adding and subtracting∫
Ω

a(x, u,∇ϕ)∇Tk[u− ϕ] dx,

and then using assumption (3.8). Thus, it only remains to prove that (i) implies (ii).
Let h and k be positive real numbers, let λ ∈]− 1, 1[ and ψ ∈W 1,p

0 (Ω, w)∩L∞(Ω).
Choosing, ϕ = Th(u−λTk(u−ψ)) ∈W 1,p

0 (Ω, w)∩L∞(Ω) as test function in (4.12),
we have,

I ≤ J, (4.13)

with

I =
∫

Ω

a(x, u,∇Th(u− λTk(u− ψ))∇Tk(u− Th(u− λTk(u− ψ)) dx,

J = 〈F, Tk(u− Th(u− λTk(u− ψ))〉.

Put Ahk = {x ∈ Ω : |u−Th(u−λTk(u−ψ))| ≤ k} and Bh = {x ∈ Ω : |u−λTk(u−
ψ)| ≤ h}. Then, we have

I =
∫

Akh∩Bh

a(x, u,∇Th(u− λTk(u− ψ))∇Tk(u− Th(u− λTk(u− ψ)) dx

+
∫

Akh∩BC
h

a(x, u,∇Th(u− λTk(u− ψ))∇Tk(u− Th(u− λTk(u− ψ)) dx

+
∫

AC
kh

a(x, u,∇Th(u− λTk(u− ψ))∇Tk(u− Th(u− λTk(u− ψ))) dx.

Since ∇Tk(u− Th(u− λTk(u− ψ)) is zero in AC
kh, we obtain∫

AC
kh

a(x, u,∇Th(u− λTk(u− ψ))∇Tk(u− Th(u− λTk(u− ψ)) dx = 0. (4.14)
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Moreover, if x ∈ BC
h , we have ∇Th(u− λTk(u− ψ) = 0 which implies,∫

Akh∩BC
h

a(x, u,∇Th(u− λTk(u− ψ))∇Tk(u− Th(u− λTk(u− ψ)) dx

=
∫

Akh∩BC
h

a(x, u, 0)∇Tk(u− Th(u− λTk(u− ψ)) dx.

Now, thanks to assumption (3.9), we have a(x, u, 0) = 0. Then∫
Akh∩Bh

a(x, u, 0)∇Tk(u− Th(u− λTk(u− ψ)) dx = 0. (4.15)

Combining (4.14) and (4.15), we obtain

I =
∫

Akh∩Bh

a(x, u,∇Th(u− λTk(u− ψ))∇Tk(u− Th(u− λTk(u− ψ)) dx,

letting h→ +∞, we have

Akh → {x, |Tk(u− ψ)| ≤ k} = Ω, (4.16)

and Bh → Ω which implies
Akh ∩Bh → Ω. (4.17)

Then

lim
h→+∞

∫
Akh∩Bh

a(x, u,∇Th(u− λTk(u− ψ))∇Tk(u− Th(u− λTk(u− ψ)) dx

= λ

∫
Ω

a(x, u,∇(u− λTk(u− ψ)∇Tk(u− ψ) dx.

(4.18)
On the other hand, we have

J = 〈F, Tk[u− Th(u− λTk(u− ψ)]〉.

Then
lim

h→+∞
〈F, Tk(u− Th(u− λTk(u− ψ))〉 = λ〈F, Tk[u− ψ]〉. (4.19)

Together (4.18), (4.19) and passing to the limit in (4.13), we obtain

λ

∫
Ω

a(x, u,∇(u− λTk(u− ψ)∇Tk(u− ψ) dx ≤ λ〈F, Tk[u− ψ]〉

for every ψ ∈ W 1,p
0 (Ω, w) ∩ L∞(Ω), and for k > 0. Choosing λ > 0 dividing by λ,

and then letting λ tend to zero , we obtain∫
Ω

a(x, u,∇u)∇Tk(u− ψ) dx ≤ 〈F, Tk[u− ψ]〉. (4.20)

For λ < 0 , dividing by λ, and then letting λ tend to zero , we obtain∫
Ω

a(x, u,∇u)∇Tk(u− ψ) dx ≥ 〈F, Tk[u− ψ]〉, (4.21)

Combining (4.20) and (4.21), we conclude that∫
Ω

a(x, u,∇u)∇Tk(u− ψ) dx = 〈F, Tk[u− ψ]〉.

This completes the proof of Lemma. �
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Remark 4.6. (1) The fact that the terms Tn(un) is introduced in (4.2) and also
γ(s) is a continuous function, allow to have a weak solution for the a approximate
problem.
(2) Since in the formulation of the problem (4.1), we have a(x, u,∇u) instead of
a(x, Tn(un),∇un), then the term a(x, u,∇u) may not belongs in Lp′(Ω, w∗) and not
in L1(Ω), thus the problem (4.1) can have a T-solutions but, not a weak solution.

For example if wi ≡ 1, i = 1, . . . , N and a(x, u,∇u) = e|u||∇u|p−2∇u, with
γ(s) = e|s| then

u ∈W 1,p
0 (Ω, w), F ∈W−1,p′(Ω, w∗)

−div(e|u||∇u|p−2∇u) = F in Ω
u = 0 on ∂Ω.

our simple problem has a T -solutions, but not a weak solution

Example 4.7. Let us consider the special case:

ai(x, η, ξ) = e|s|wi(x)|ξi|p−1 sgn(ξi) i = 1, . . . , N,

with wi(x) is a weight function (i = 1, . . . , N). For simplicity, we shall suppose
that wi(x) = w(x), for i = 1, . . . , N − 1, and wN (x) ≡ 0 it is easy to show that the
ai(x, s, ξ) are Caracthéodory function satisfying the growth condition (3.7) and the
coercivity (3.8). On the other hand the monotonicity condition is verified. In fact,

N∑
i=1

(ai(x, s, ξ)− ai(x, s, ξ̂))(ξi − ξ̂i)

= e|s|w(x)
N−1∑
i=1

(|ξi|p−1 sgn(ξi)− |ξ̂i|p−1 sgn(ξ̂i))(ξi − ξ̂i) ≥ 0

for almost all x ∈ Ω and for all ξ, ξ̂ ∈ RN . This last inequality can not be strict,
since for ξ 6= ξ̂ with ξN 6= ξ̂N and ξi = ξ̂i, i = 1, . . . , N − 1. The corresponding
expression is zero. In particular, let us use special weight functions w expressed
in terms of the distance to the bounded ∂Ω. Denote d(x) = dist(x, ∂Ω) and set
w(x) = dλ(x), such that,

λ < min(
p

N
, p− 1) (4.22)

Remark 4.8. Condition (4.22) is sufficient for (3.4) to hold [see [10],pp 40-41].

Finally, the hypotheses of Theorem 4.2 are satisfied. Therefore, for all F ∈∏N
i=1L

p′(Ω, w∗i ) the following problem has at last one solution:

Tk(u) ∈W 1,p
0 (Ω, w),∫

Ω

N∑
i=1

wi(x)e|u||
∂u

∂xi
|p−1 sgn

( ∂u
∂xi

)∂Tk(u− ϕ)
∂xi

dx =
∫

Ω

FTk(u− ϕ) dx

∀ϕ ∈W 1,p
0 (Ω, w) ∩ L∞(Ω) .
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