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MAXIMUM AND ANTI-MAXIMUM PRINCIPLES FOR THE
P-LAPLACIAN WITH A NONLINEAR BOUNDARY CONDITION

AOMAR ANANE, OMAR CHAKRONE, NAJAT MORADI

Abstract. In this paper we study the maximum and the anti-maximum prin-

ciples for the problem ∆pu = |u|p−2u in the bounded smooth domain Ω ⊂ RN ,

with |∇u|p−2 ∂u
∂ν

= λ|u|p−2u + h as a non linear boundary condition on ∂Ω

which is supposed C2β for some β in ]0, 1[, and where h ∈ L∞(∂Ω). We will
also examine the existence and the non existence of the solutions and their

signs.

1. Introduction

In this work we consider the problem

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u+ h on ∂Ω,

(1.1)

where Ω is a bounded domain in RN , with a C2,β boundary where β ∈]0, 1[, h ∈
L∞(∂Ω) and ∂

∂ν is the outer normal derivative.
For h ≡ 0 in ∂Ω, Fernandez Bonder, Pinasco and Rossi [1] proved that the

problem

4pu = |u|p−2u on Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω

admits an infinite sequence of eigenvalues (λn) such that λn → ∞ as n → ∞.
Martinez and Rossi [4] showed that the first eigenvalue given by

λ1 = inf
{ ∫

Ω

|∇u|p +
∫

Ω

|u|p : u ∈W 1,p(Ω) and
∫

∂Ω

|u|p = 1
}

is simple and isolated with the eigenfunctions do not change sign in Ω.
We will be interested in he case where h 6≡ 0 in ∂Ω. The case where h ≡ 0, is

treated by Godoy, Gossez and Paczka [3]; they have proved in that
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(i) The maximum principle holds if and only if λ−1(m) < λ <
λ1(m) with λ−1(m) andλ1(m) are the principal eigenvalues of the
p-Laplacien with the weight m, for the Dirichlet problem, (respec-
tively 0 < λ < λ∗(m), for the Neumann problem, with λ∗(m) is the
nontrivial principal eigenvalue).
(ii) The anti-maximum principle holds at the right of λ1(m) and at
the left of λ−1(m) (resp, at the right of λ∗(m) and at the left of 0.
Moreover it is nonuniform when p ≤ N and uniform when p > N).

In what follows one supposes that any solution of (1.1) is in C1,α(Ω) with α ∈
]0, 1[.

2. The maximum principle

The following result will be proven.

Theorem 2.1. The maximum principle holds for problem (1.1) if and only if λ ≤
λ1.

Proof. (i) Given λ ≤ λ1, 0 � h ∈ L∞(∂Ω) and u be a solution of (1.1), let us show
that u ≥ 0 in Ω. We recall that u is a solution of(1.1) if and only if∫

Ω

|∇u|p−2∇u∇v +
∫

Ω

|u|p−2uv = λ

∫
∂Ω

|u|p−2uv +
∫

∂Ω

hv (2.1)

for all v ∈W 1,p(Ω). Applying this equality to u−, one finds∫
Ω

|∇u|p−2∇u∇u− +
∫

Ω

|u|p−2uu− = λ

∫
∂Ω

|u|p−2uu− +
∫

∂Ω

hu−.

Then ∫
Ω

|∇u−|p +
∫

Ω

|u−|p = λ

∫
∂Ω

|u−|p −
∫

∂Ω

hu−,

and

λ

∫
∂Ω

|u−|p −
( ∫

Ω

|∇u−|p +
∫

Ω

|u−|p
)

=
∫

∂Ω

hu−.

However, λ ≤ λ1 = inf{
∫
Ω
|∇u|p +

∫
Ω
|u|p : u ∈W 1,p(Ω) and

∫
∂Ω
|u|p = 1}, so∫

∂Ω

hu− = λ

∫
∂Ω

|u−|p −
( ∫

Ω

|∇u−|p +
∫

Ω

|u−|p
)

≤ λ1

∫
∂Ω

|u−|p −
( ∫

Ω

|∇u−|p +
∫

Ω

|u−|p
)
≤ 0.

Moreover h 	 0 and u− ≥ 0 thus
∫

∂Ω
hu− ≥ 0 from where

∫
∂Ω
hu− = 0. Con-

sequently λ
∫

∂Ω
|u−|p =

∫
Ω
|∇u−|p +

∫
Ω
|u−|p; i-e, u− is a positive eigenfunction

associated with λ.
If λ 6= λ1 thenu− change sign on ∂Ω by [4, lemma 2.4], which is not possible, so

u− ≡ 0 on ∂Ω. Hence 0 = λ
∫

∂Ω
|u−|p =

∫
Ω
|∇u−|p +

∫
Ω
|u−|p and thus u− ≡ 0 in

Ω.
If λ = λ1 then u− is a positive eigenfunction associated to λ1 and it is in C1,α(Ω),

so u− > 0 or u− ≡ 0 inΩ by the following maximum principle.

Theorem 2.2 (Vasquez [5]). Let u ∈ C1(Ω) be such that ∆pu ∈ L2
loc(Ω), u ≥ 0

a.e in Ω and ∆pu ≤ β(u) a.e in Ω, with β : [0,+∞[→ R is a increasing continuous
function, β(0) = 0 and either β(s) = 0 for some s > 0 or (β(s) > 0 for all s > 0 and
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0
(j(s))−

1
p ds = ∞ with j(s) =

∫ s

0
β(t)dt). Then if u does not vanish identically on

Ω, it is positive everywhere in Ω.
Moreover if u ∈ C1(Ω ∪ {x0}) for an x0 ∈ ∂Ω that satisfies an interior sphere

condition and u(x0) = 0 then ∂u
∂n (x0) > 0 where n is an interior normal at x0.

Indeed, (u− > 0 or u− = 0) in Ω, and if there exists x0 ∈ ∂Ω such that u−(x0) =
0, then ∂u−

∂ν (x0) < 0. However |∇u−|p−2 ∂u−

∂ν (x0) = λ1|u−(x0)|p−2u−(x0) = 0 and
thus ∇u− ≡ 0 in Ω; i.e., u− = 0 in Ω. Consequently u ≥ 0 inΩ.
(ii) Given λ > λ1, and one supposes that the maximum principle is applicable to
the problem (1.1); i.e., for all h ∈ L∞(∂Ω), if h � 0 then any solution is positive
on Ω.

Considering Φ a positive eigenfunction associated to the first eigenvalue λ1, and
h = (λ − λ1)|Φ|p−2Φ � 0, one checks that Ψ = −Φ ≤ 0 is a solution of (1.1), but
this contradicted the maximum principle. �

3. Existence and nonexistence of solutions for (1.1)

In this paragraph one shows stronger results existence and nonexistence. They
are stated in the following theorem.

Theorem 3.1. Given h ∈ L∞(∂Ω) such that h ≥ 0 in ∂Ω.
(i) Ifλ < λ1 and h � 0 in ∂Ω, then the problem admits an unique solution u

which is in C1(Ω) andu > 0 on Ω.
(ii) If λ = λ1 and h � 0 in ∂Ω, then the problem has no solution.
(iii) If λ > λ1 then the problem does not have any solution u such that u � 0

on Ω.

For the proof of this theorem we need the following lemma.

Lemma 3.1. Let u be a solution of (1.1) with u > 0 on Ω, and h ≥ 0 in ∂Ω (or
h ≤ 0 in ∂Ω). Then ∀ϕ ∈ C1(Ω) with ϕ ≥ 0 in Ω, one has

λ

∫
∂Ω

ϕp +
∫

∂Ω

h
ϕp

up−1
≤

∫
Ω

|∇ϕ|p +
∫

Ω

ϕp.. (3.1)

Moreover, the equality holds if and only if ϕ is a multiple of u.

Proof. Given u and ϕ in C1(Ω) with u > 0 and ϕ ≥ 0 on Ω, we denote R(ϕ, u) =
|∇ϕ|p − |∇u|p−2∇u∇( ϕp

up−1 ), and we prove that R(ϕ, u) ≥ 0 and that R(ϕ, u) = 0
if and only if there exists c ≥ 0 such that ϕ = cu.

One has R(ϕ, u) = |∇ϕ|p + (p − 1)ϕp

up |∇u|p − pϕp−1

up−1 |∇u|p−2∇u∇ϕ. Applying

Minkovsky inequality to |∇ϕ| and ϕp−1

up−1 |∇u|p−1, one obtains

ϕp−1

up−1
|∇u|p−1|∇ϕ| ≤ 1

p
|∇ϕ|p +

1
q
(
ϕp−1

up−1
|∇u|p−1)q (3.2)

where 1
q + 1

p = 1. This implies ϕp−1

up−1 |∇u|p−1|∇ϕ| ≤ 1
p |∇ϕ|

p + p−1
q (ϕp

up |∇u|p−1). And
it follows that

R(ϕ, u) = |∇ϕ|p + (p− 1)
ϕp

up
|∇u|p − p

ϕp−1

up−1
|∇u|p−2∇u∇ϕ ≥ 0.

The inequality (3.2) becomes an equality if and only if

|∇ϕ| = ϕ

u
|∇u|. (3.3)
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Let ψ = ϕ
u ≥ 0. Then we have ϕ(x) = ψ(x)u(x) which implies ∇ϕ = ψ∇u+ u∇ψ.

Then (3.3) is equivalent to |ψ∇u + u∇ψ| = ψ|∇u|, which is true if and only if
u2|∇ψ|2 = −2uψ∇u∇ψ. We have also:

(R(ϕ, u) = 0) ⇔ |∇ϕ|p = |∇u|p−2|∇u‖∇(
ϕ

u
)pu|

⇔ |∇ϕ|p = |∇u|p(ϕ
u

)p + u|∇u|p−2|∇u|∇(ψp).

Since |∇ϕ| = ψ|∇u|, one has

R(ϕ, u) = 0 ⇔ |∇u|p−2|∇u|∇(ψp) = |∇u|p−2(∇u∇ψ)pψp−1 = 0

If |∇u| ≡ 0, then (3.3) implies that |∇ϕ| = 0. And in this case u and ϕ are
constants; therefore there exists c ≥ 0 such that ϕ = cu.

If |∇u| 6= 0, on the set {|∇u| 6= 0}, (3.3) is equivalent to ∇u∇ψ = 0. Therefore,
one has also (3.3) is equivalent to −2ψ∇u∇(ϕψ) = u|∇ψ|2 Thus ∇u∇ψ = 0 if and
only if |∇ψ| = 0, which is equivalent to ψ equals a constant.

Consequently R(ϕ, u) = 0 if and only there exists c ≥ 0 such that ϕ = cu.
Conclusions:

(i) 0 ≤
∫
Ω
R(ϕ, u) =

∫
Ω
|∇ϕ|p−

∫
Ω
|∇u|p−2∇u∇( ϕp

up−1 ) for all(u, ϕ) ∈ (C1(Ω))2

with u > 0 and ϕ ≥ 0 on Ω.
(ii)

∫
Ω
R(ϕ, u) =

∫
Ω
|∇ϕ|p−

∫
Ω
|∇u|p−2∇u∇( ϕp

up−1 ) = 0 if and only there exists
c ≥ 0 such that ϕ = cu.

Then if u is a solution of (1.1) and ϕ ∈ C1(Ω) such that ϕ ≥ 0 on Ω, we get∫
Ω

|∇u|p−2∇u∇(
ϕp

up−1
) +

∫
Ω

(u)p−1(
ϕp

up−1
) = λ

∫
∂Ω

(u)p−1(
ϕp

up−1
) +

∫
∂Ω

h
ϕp

up−1
.

Consequently,

0 ≤
∫

Ω

|∇ϕ|p − λ

∫
∂Ω

(u)p−1(
ϕp

up−1
)−

∫
∂Ω

h
ϕp

up−1
+

∫
Ω

(u)p−1(
ϕp

up−1
),

then

0 ≤
∫

Ω

|∇ϕ|p − λ

∫
∂Ω

ϕp −
∫

∂Ω

h
ϕp

up−1
+

∫
Ω

ϕp,

and ∫
Ω

|∇ϕ|p +
∫

Ω

ϕp ≥ λ

∫
∂Ω

ϕp +
∫

∂Ω

h
φp

up−1
. (3.4)

If there is equality in (3.4) then
∫
Ω
R(ϕ, u) = 0 which is equivalent to R(ϕ, u) = 0

almost everywhere in Ω. So there exists c ≥ 0 such that ϕ = cu. �

Proof of Theorem 3.1. The case of λ < λ1: (i) Existence of the solutions for the
problem (1.1): One considers the function Φ : W 1,p(Ω) → R defined by

Φ(v) =
1
p
(
∫

Ω

|∇v|p +
∫

Ω

|v|p)− λ

p

∫
∂Ω

|v|p −
∫

∂Ω

hv .

(a) Φ is C1 and weakly lower semi-continuous.
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(b) Let us show that Φ is coercive: Let v ∈W 1,p(Ω) such that ‖v‖W 1,p(Ω) 6= 0, and
we consider u = v

‖v‖W1,p(Ω)
and s = ‖v‖W 1,p(Ω). So we have

Φ(v) = Φ(su)

=
1
p
sp

[( ∫
Ω

|∇u|p +
∫

Ω

|u|p
)
− λ

∫
∂Ω

|u|p
]
− s

∫
∂Ω

hu

≥ 1
p
sp(1− λ

λ1
)‖u‖p

W 1,p(Ω) − s‖h‖Lq(∂Ω)‖u‖Lp(∂Ω)

≥ 1
p
sp(1− λ

λ1
)− s

(λ1)
1
p

‖h‖Lq(∂Ω)

Thus as s → +∞ one has Φ(su) → +∞; i. e. Φ(v) → +∞ as ‖v‖W 1,p(Ω) → +∞,
so Φ is coercive. The function Φ is weakly lower semi-continuous coercive, so it
admits a critical point u which is solution of (1.1).
(ii) One shows that u > 0 on Ω. According to the regularity and the theorem 2.1,
one has u ∈ C1(Ω) and u > 0 on Ω. And with the maximum principle by Vazquez
[5], one gets u > 0 on Ω. Moreover ∂Ω is C2,β , so u > 0 on Ω, because if there
exists x0 ∈ ∂Ω such that u(x0) = 0, then ∂u

∂n (x0) > 0; i.e. ∂u
∂ν (x0) < 0. However,

|∇u|p−2 ∂u
∂ν (x0) = λ|u|p−2u(x0) + h(x0) = h(x0), then |∇u|p−2 ∂u

∂ν (x0) = h(x0) < 0.
That is impossible since h > 0 in ∂Ω. So u > 0 on Ω.
(iii) Uniqueness of the solution: By contradiction one supposes that there exist two
nontrivial solutions of (1.1) u and v with h � 0 in ∂Ω. According to what precedes
one has u > 0 and v > 0 on Ω. And Applying lemma 3.1 at u and v one gets

λ

∫
∂Ω

vp +
∫

∂Ω

h(
vp

up−1
) ≤

∫
Ω

|∇v|p +
∫

Ω

|v|p = λ

∫
∂Ω

vp +
∫

∂Ω

hv. (3.5)

Then

λ

∫
∂Ω

h(
vp

up−1
)−

∫
∂Ω

hv ≤ 0, i-e
∫

∂Ω

hv(
vp−1 − up−1

up−1
) ≤ 0. (3.6)

By exchanging the roles of u and v one has∫
∂Ω

hu(
up−1 − vp−1

up−1
) ≤ 0. (3.7)

Inequalities (3.6) and (3.7) imply∫
∂Ω

h
[
u((

up−1 − vp−1

up−1
) + v((

vp−1 − up−1

up−1
)
]
≤ 0;

i.e.,
∫

∂Ω
h
[
(up−1 − vp−1)( v

up−1 − u
vp−1 )

]
≤ 0. Consequently∫

∂Ω

h
(vp−1 − up−1)(vp − up)

up−1vp−1
≤ 0.

However,
(vp−1 − up−1)(vp − up)

up−1vp−1
≥ 0

and h ≥ 0 in ∂Ω. Then (3.6) and (3.7) are equalities, and one has equality in (3.5);
that is true if and only if u is a multiple of v. Consequently there exists c ≥ 0 such
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that u = cv on Ω and since u > 0 andv > 0 we have c > 0. Replacing u by cv in
equation (1.1), one obtains

∆p(cv) = |cv|p−2cv in Ω,

|∇cv|p−2 ∂(cv)
∂ν

= λ|cv|p−2cv + h on ∂Ω.

This is equivalent to

∆p(v) = |v|p−2v in Ω,

|∇v|p−2 ∂(v)
∂ν

= λ|v|p−2v +
h

cp−1
on ∂Ω.

But v is a solution of (1.1) then h
cp−1 = h, and sinceh 6= 0 one has c = 1 and u = v.

So the uniqueness of the solution of (1.1) in the case λ < λ1 and h � 0 is proved.
The case λ = λ1: Suppose that there exists u ∈W 1,p(Ω) a nontrivial solution of

(1.1). One has u ∈ C1(Ω) and u > 0 on Ω. And let ϕ1 be a positive eigenfunction
associated to λ1, then ϕ1 ∈ C1(Ω) and ϕ1 > 0 on Ω. Applying lemma 3.1 at u and
ϕ1 one gets

λ1

∫
∂Ω

ϕp
1 +

∫
∂Ω

h(
ϕp

1

up−1
) ≤

∫
Ω

|∇ϕ1|p +
∫

Ω

|ϕ1|p.

However
∫
Ω
|∇ϕ1|p +

∫
Ω
|ϕ1|p = λ1

∫
∂Ω
ϕp

1, then
∫

∂Ω
h

ϕp
1

up−1 = 0 and h ϕp
1

up−1 = 0σ a.e.
in ∂Ω. But ϕ1 > 0 andu > 0 on Ω and h 6= 0 in ∂Ω a contradiction. Then if λ = λ1

and h � 0 in ∂Ω, problem (1.1) has no solution in W 1,p(Ω).
The case of λ > λ1: By contradiction we suppose that there is u � 0 a solution

of (1.1). Then u ∈ C1(Ω) and u > 0 on Ω. Lemma 3.1 implies

λ

∫
∂Ω

ϕp +
∫

∂Ω

h
ϕp

up−1
≤

∫
Ω

|∇ϕ|p +
∫

Ω

|∇ϕ|p

This implies that λ
∫

∂Ω
ϕp ≤

∫
Ω
|∇ϕ|p +

∫
Ω
|∇ϕ|p for all ϕ ∈ C1(Ω) with ϕ ≥ 0.

Also by density λ
∫

∂Ω
ϕp ≤

∫
Ω
|∇ϕ|p +

∫
Ω
|∇ϕ|p|p for all ϕ ∈W 1,p(Ω). Then

λ ≤
∫
Ω
|∇ϕ|p +

∫
Ω
|∇ϕ|p|p∫

∂Ω
ϕp

∀ϕ ∈W 1,p(Ω) with
∫

∂Ω

ϕp 6= 0

Consequently λ ≤ λ1, which is a contradiction, and the result follows. �

4. The anti-maximum principle

In this part we study the anti-maximum principle for the problem (1.1).

Theorem 4.1. Given h ∈ L∞(∂Ω) with h 	 0, there exists δ = δ(h) > 0 such that
if λ1 < λ < λ1 + δ, and u is a solution of (1.1), then

u < 0 in Ω and
∂u

∂v
< 0 on ∂Ω (4.1)

It will thus be said that the antimaximum principle (AMP) holds on the right
of λ1.

Proof. By contradiction we suppose that for all k ∈ N∗ there exists (µk)k ⊂ R)
such that

λ1 < µk < λ1 +
1
k
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and there exists (uk)k ⊂W 1,p(Ω) so that

∆puk = |uk|p−2uk + h in Ω,

|∇uk|p−2 ∂uk

∂ν
= µk|uk|p−2uk + h on ∂Ω

(4.2)

and uk does not check (4.1). One has according to the regularity result uk ∈ C1,α(Ω)
for some α ∈]0, 1[. And ‖uk‖∞ does not remain bounded. Indeed, if there exists
M > 0 such that ‖uk‖∞ ≤M for all k, then ‖∆puk‖ = ‖|uk|p−1‖∞ ≤Mp−1 = M ′,
and we get also ‖uk‖C1,α(Ω) ≤ K1 independently of k.

So since (uk) ⊂ C1,α(Ω)↪→C1(Ω), compact, then for a subsequence uk → u in
C1(Ω). Moreover, if

∆puk = |uk|p−2uk + h inΩ,

|∇uk|p−2 ∂uk

∂ν
= µk|uk|p−2uk + h on ∂Ω,

then

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ1|u|p−2u+ h on ∂Ω.

This contradicts the result of theorem 3.1 which ensures the nonexistence of solution
for (1.1) when λ = λ1 and h � 0. Consequently ‖uk‖∞ → +∞.

Let us consider vk = uk

‖uk‖∞ , so ‖vk‖∞ = 1 and as previously for a subsequence
vk → v in C1(Ω) with ‖v‖∞ = 1. Also vk solves

∆pvk =
∆puk

‖uk‖p−1
∞

= |vk|p−2vk in Ω,

|∇vk|p−2 ∂vk

∂ν
=

1
‖uk‖p−1

∞
|∇uk|p−2 ∂uk

∂ν
= µk|vk|p−2vk +

h

‖uk‖p−1
∞

on ∂Ω.
(4.3)

Then

∆pv = |v|p−2v in Ω,

|∇v|p−2 ∂v

∂ν
= λ1|v|p−2v on ∂Ω.

So v is a eigenfunction associated to λ1 and v 6= 0. Applying again the maximum
principle one has (v > 0 in Ω) or (v < 0 in Ω).
(i) If v > 0 in Ω, then for k sufficiently large we have vk > 0 inΩ, but vk is a
solution of (1.1) with λ = µk > λ1 and h′ = h

‖uk‖p−1
∞

� 0 on ∂Ω which leads to a
contradiction with the theorem 3.1.
(ii) If v < 0 in Ω, one has |∇v|p−2 ∂v

∂ν = λ1|v|p−2v < 0 in ∂Ω, then ∂v
∂ν < 0 in ∂Ω.

So for k sufficiently large, (vk < 0 in Ω and ∂vk

∂ν < 0 in ∂Ω). This means that uk

checks (4.1). Contradiction with the assumption. This completes the proof of the
anti-maximum principle. �

Now we study the uniformity of this principle. One will show that the AMP is
nonuniform on the right of λ1 when p ≤ N , and uniform when p > N . In the latter
case one will characterize the interval of uniformity. Moreover one shows that the
AMP still holds on the right of this interval but not uniformly. For this, one shows
accesses the following result.
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Lemma 4.1. If p ≤ N then λ1 = λ1. If p > N then λ1 < λ1, and the interval
]λ1, λ1] does not contain any eigenvalue where λ1 = infu∈P (

∫
Ω
|∇u|p +

∫
Ω
|u|p) and

P =
{
u ∈W 1,p(Ω) :

∫
∂Ω

|u|p = 1 and u vanishes in some ball in Ω
}
.

Proof. It is clear that λ1 ≤ λ1.
(i) If p < N : As in Godoy, Gossez and Paczka [2], one defines a sequence (vk)k as
follows: For k ∈ N∗, 

1 if |x| ≥ 1/k
2k|x| − 1 if 1/(2k) < |x| < 1/k,
0 if |x| ≤ 1/2k

Note that vkconverges to the constant function 1 as k → +∞ in W 1,p
loc (RN ). Given

x0 ∈ Ω, and u a eigenfunction associated to λ1; i.e., λ1 =
R
Ω |∇u|p+

R
Ω |u|

pR
∂Ω |u|p

, then the

sequence (wk) defined by wk(x) = u(x)vk(x − x0) vanishes in the ball B(x0,
1
2k )

and

λ1 ≤
∫
Ω
|∇wk|p +

∫
Ω
|wk|p∫

∂Ω
|wk|p

→
∫
Ω
|∇u|p +

∫
Ω
|u|p∫

∂Ω
|u|p

as k → +∞

So λ1 ≤ λ1, then λ1 = λ1.
(ii) If p = N : One defines a sequence (vk)k as follows: For k ∈ N∗,

vk =


1− 1

2k if |x| ≥ 1
k

|x|δk − 1
k if ( 1

k )1/δk < |x| < 1
k

0 if |x| ≤ ( 1
k )1/δk ,

where δk satisfies ( 1
k )δk = 1− 1

k . (δk = 1− ln(k+1)
ln(k) → 0 as k → +∞). And (wk) is

as previously, and we show that∫
Ω
|∇wk|p +

∫
Ω
|wk|p∫

∂Ω
|wk|p

→
∫
Ω
|∇u|p +

∫
Ω
|u|p∫

∂Ω
|u|p

as k → +∞

Indeed∫
Ω

|wk|p =
∫
|x−x0|≥ 1

k

|1− 1
2k
|p|u(x)|p +

∫
( 1

k )
1

δk ≤|x−x0|≤ 1
k

‖x− x0|δk − 1
k
|p|u(x)|p,

and∫
( 1

k )
1

δk ≤|x−x0|≤ 1
k

‖x− x0|δk − 1
k
|p|u(x)|p ≤ (1− 2

k
)p

∫
( 1

k )
1

δk ≤|x−x0|≤ 1
k

|u(x)|p → 0,

consequently

λ1 ≤
∫
Ω
|∇wk|p +

∫
Ω
|wk|p∫

∂Ω
|wk|p

→
∫
Ω
|∇u|p +

∫
Ω
|u|p∫

∂Ω
|u|p

= λ1,

then λ1 = λ1.
(iii) When p > N , we have

λ1 = inf
u∈G

( ∫
Ω

|∇u|p +
∫

Ω

|u|p
)

where G =
{
u ∈ W 1,p(Ω) :

∫
∂Ω
|u|p = 1 and ∃x0 ∈ Ω : u(x0) = 0

}
. Since

W 1,p(Ω) ↪→
cpt

C(Ω), the minimum is achieved in a certain function u, that one can
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suppose positive on Ω. And there exists x0 ∈ Ω such that u(x0) = 0. Let us show
that it vanishes only once on Ω.

One assumes, by contradiction, that there exists x1 6= x0 ∈ Ω with u(x1) = 0.
Setting F = {u ∈W 1,p(Ω) :

∫
∂Ω
|u|p = 1 and u(x0) = 0} and µ = infu∈F (

∫
Ω
|∇u|p+∫

Ω
|u|p), one gets λ1 ≤ µ , u ∈ F and λ1 =

∫
Ω
|∇u|p +

∫
Ω
|u|p then λ1 = µ.

Applying the standard theorem on Lagrange multipliers, we ensure the existence
of (α1, α2) ∈ R2 such that for all w ∈W 1,p(Ω) with w(x0) = 0 one has

Φ′(u).w = α1Ψ′
1(u).w + α2Ψ′

2(u).w = α1Ψ′
1(u).w

where Ψ1(u) =
∫

∂Ω
|u|p−1, Ψ2(u) = u(x1) and Φ(u) =

∫
Ω
|∇u|p +

∫
Ω
|u|p. Then for

all w ∈W 1,p(Ω) : w(x0) = 0 one has
∫
Ω
|∇u|p−2∇u∇w+

∫
Ω
up−1w = α1

∫
∂Ω
up−1w.

Taking w = u one gets α1 = λ1 and∫
Ω

|∇u|p−2∇u∇w +
∫

Ω

up−1w = λ1

∫
∂Ω

up−1w (4.4)

for all w ∈W 1,p(Ω) with w(x0) = 0. By the same process, one has∫
Ω

|∇u|p−2∇u∇w +
∫

Ω

up−1w = λ1

∫
∂Ω

up−1w

for all w ∈ W 1,p(Ω) with w(x1) = 0. Knowing that for all w ∈ W 1,p(Ω), there
exists (w0, w1) ∈ (W 1,p(Ω))2 such that w = w0 + w1, w0(x0) = 0 and w1(x1) = 0,
one arrives at the result: For all w ∈W 1,p(Ω),∫

Ω

|∇u|p−2∇u∇w +
∫

Ω

up−1w = λ1

∫
∂Ω

up−1w (4.5)

Then λ1 is a eigenvalue and u is a positive eigenfunction associated. However by
[4, Lemma 2.4], λ1 = λ1 and u > 0 on Ω by the maximum principle. But this
contradicted the assumption that u vanishes in Ω. Consequently u vanishes only
once on Ω, and

λ1 =
∫

Ω

|∇u|p +
∫

Ω

|u|p = inf
u∈F

( ∫
Ω

|∇u|p +
∫

Ω

|u|p
)

with u > 0 in Ω\{x0} and u(x0) = 0.
Now one considers uε(x) = max(u(x), ε) and Bε = {x ∈ Ω : u(x) < ε} where

ε > 0. One has uε → u, as ε→ 0, in W 1,p(Ω), and∫
∂Ω

|uε|p∂σ =
∫

∂Ω\Bε

|u|p∂σ + εp
∫

∂Ω∩Bε

∂σ →
ε→0

∫
∂Ω

|u|p∂σ = 1

Then
∫

∂Ω
|uε|p∂σ > 0 for ε enough small. One hopes to show that

λ1 ≤
∫
Ω
|∇uε|p +

∫
Ω
|uε|p∫

∂Ω
|uε|p

< λ1 =
∫

Ω

|∇u|p +
∫

Ω

|u|p

for ε enough small. We notice that∫
Ω

|uε|p =
∫

Ω

up −
∫

Ω∩Bε

up + εp meas(Ω ∩Bε),∫
∂Ω

|uε|p =
∫

∂Ω

up −
∫

Bε∩∂Ω

up + εp meas
σ

(Bε ∩ ∂Ω),∫
Ω

|∇uε|p =
∫

Ω

|∇u|p −
∫

Ω∩Bε

|∇u|p
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and we conclude that

Aε =

∫
Ω
|∇uε|p +

∫
Ω
|uε|p∫

∂Ω
|uε|p

−
∫

Ω

|∇u|p −
∫

Ω

|u|p

=

∫
Ω
|∇uε|p +

∫
Ω
|uε|p −

∫
∂Ω
|uε|p(

∫
Ω
|∇u|p +

∫
Ω
up)∫

∂Ω
|uε|p

=
( ∫

Ω

|∇u|p +
∫

Ω

|u|p
)
Cε

where

Cε =

( ∫
Bε∩∂Ω

up − εp measσ(Bε ∩ ∂Ω)
)
−

( ∫
Ω∩Bε

|∇u|p +
∫
Ω∩Bε

up − εpmes(Bε)
)

1−
∫

Bε∩∂Ω
|u|p + εp measσ(Bε ∩ ∂Ω)

.

We will prove that Aε/ε converges towards a non positive value. For that we recall
that u checks the property (4.4), and considering the sequence vε = min(u, ε) we
get ∫

Ω∩Bε

|∇u|p +
∫

Ω∩Bε

up = λ1

∫
∂Ω∩Bε

up + ε(Pε),

where Pε = λ1

∫
∂Ω\Bε

up−1 −
∫
Ω\Bε

up−1 → λ1

∫
∂Ω
up−1 −

∫
Ω
up−1 as ε→ 0.

If λ1

∫
∂Ω
up−1 =

∫
Ω
up−1, then (4.4) holds for w ≡ 1; consequently it holds also

for all ϕ in W 1,p(Ω) because ϕ = ψ+ϕ(x0)w with ψ = ϕ−ϕ(x0). So u is a positive
solution of the problem

∆pv = |v|p−2v in Ω,

|∇v|p−2 ∂v

∂ν
= λ1|v|p−2v on ∂Ω,

then u > 0 on Ω, absurdity since u(x0) = 0. So we deduce that λ1

∫
∂Ω
up−1 6=∫

Ω
up−1.
If λ1

∫
∂Ω
up−1 <

∫
Ω
up−1, then since

∫
∂Ω∩Bε

up = o(εp) one has

1
ε
(
∫

Ω∩Bε

|∇u|p +
∫

Ω∩Bε

up) →
ε→0

λ1

∫
∂Ω

up−1 −
∫

Ω

up−1 < 0.

This implies that for ε enough small
∫
Ω∩Bε

|∇u|p +
∫
Ω∩Bε

up < 0, which is not true.
Then λ1

∫
∂Ω
up−1 >

∫
Ω
up−1. Moreover 1−

∫
Bε∩∂Ω

up + εp measσ(Bε ∩ ∂Ω) → 1 as
ε→ 0 and

∫
Bε∩∂Ω

up − εp measσ(Bε ∩ ∂Ω) = o(εp), then

1
ε
(

∫
Ω
|∇uε|p +

∫
Ω
|uε|p∫

∂Ω
|uε|p

−
∫

Ω

|∇u|p −
∫

Ω

|u|p) →
ε→0

λ1

∫
∂Ω

up−1 −
∫

Ω

up−1 < 0

So for ε enough small λ1 ≤
R
Ω |∇uε|p+

R
Ω |uε|pR

∂Ω |uε|p <
∫
Ω
|∇u|p +

∫
Ω
|u|p = λ1. Conse-

quently, λ1 < λ1. To complete the proof, one shows that there is no eigenvalue in
]λ1, λ1]. Let us suppose by absurdity that there exists an eigenvalue µ in ]λ1, λ1],
with associated eigenfunction v. By [4, Lemma 2.4], v changes sign on ∂Ω, conse-
quently it vanishes somewhere in Ω. Then v ∈ G, so

λ1

∫
∂Ω

|v|p ≤ ‖∇v‖p
Lp(Ω) + ‖v‖p

Lp(Ω) = µ

∫
∂Ω

|v|p
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Since
∫

∂Ω
|v|p 6= 0, one concluded that λ1 = µ . In this case v satisfies (4.5), and it

vanishes only once on Ω. Applying (4.5) to w = v− one obtains

λ1

∫
∂Ω

|v−|p = ‖∇v−‖p
Lp(Ω) + ‖v−‖p

Lp(Ω),

then v− vanishes only once on Ω. Contradiction since v changes sign on ∂Ω. �

Theorem 4.2. If p > N

(i) For all h ∈ L∞(∂Ω), such that h 	 0 in Ω, if λ ∈]λ1, λ1], then any solution
u of (1.1) satisfies u < 0 in Ω.

(ii) λ1 is the largest number such that the preceding implication holds.
(iii) Given h ∈ L∞(∂Ω), h 	 0 in ∂Ω, there exists δ = δ(h) > 0 such that if

λ1 < λ < λ1 + δ, and u is a solution of (1.1) then u < 0 on Ω.

Theorem 4.3. The AMP is not uniform on the right of λ1 for all 1 < p <∞; i.e.,
there is no δ independent of h satisfying (i).

The proof of this result is a consequence of the following theorem.

Theorem 4.4. Given ε > 0, there exists h ∈ L∞(∂Ω), such that h 	 0 in ∂Ω and
if λ1 + ε < λ then problem (1.1) does not admit any non-positive solution.

Proof of theorem 4.2 (i) Given h ∈ L∞(∂Ω), such that h 	 0 in ∂Ω, and
λ ∈]λ1, λ1], then if u is a solution of (1.1), it does not satisfy u � 0 on Ω by the
Theorem 3.1. Taking u− 6= 0 as testing function in (1.1), one gets∫

Ω

|∇u−|p +
∫

Ω

|u−|p = λ

∫
∂Ω

|u−|p −
∫

∂Ω

hu− ≤ λ

∫
∂Ω

|u−|p.

If
∫

∂Ω
|u−|p = 0, then

∫
Ω
|∇u−|p +

∫
Ω
|u−|p = 0, consequently u− ≡ 0, this is not

true, so
∫

∂Ω
|u−|p > 0. One deduces that∫

Ω
|∇u−|p +

∫
Ω
|u−|p∫

∂Ω
|u−|p

≤ λ.

If λ < λ1 then∫
Ω
|∇u−|p +

∫
Ω
|u−|p∫

∂Ω
|u−|p

≤ λ < λ1 = inf
u∈G

( ∫
Ω

|∇u|p +
∫

Ω

|u|p
)
,

so u− /∈ G i-e u− does not vanish any where on Ω. Consequently u < 0 on Ω. If
λ = λ1 then

R
Ω |∇u−|p+

R
Ω |u

−|pR
∂Ω |u−|p

≤ λ1. Two cases are distinguished: If u− /∈ G then

u < 0 on Ω. But if u− ∈ G then
R
Ω |∇u−|p+

R
Ω |u

−|pR
∂Ω |u−|p

= λ1, and u− vanishes only once

on Ω. In this case one has the equality∫
∂Ω

hu− = λ

∫
∂Ω

|u−|p −
∫

Ω

|∇u−|p +
∫

Ω

|u−|p = 0,

so u− vanishes on the set where h 6= 0 which is of positive measure. Absurdity. So
u− /∈ G and as previously u < 0 on Ω.
(ii) This part is a consequence of Theorem 4.4.
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(iii) This result is similar as Theorem 4.1. As in his proof we suppose, by contra-
diction, that for all k ∈ N∗ there exists (µk)k ⊂ R) such that λ1 < µk < λ1 + 1

k ,
and there exists (uk)k ⊂W 1,p(Ω) holding

∆puk = |uk|p−2uk + h in Ω,

|∇uk|p−2 ∂uk

∂ν
= µk|uk|p−2uk + h in ∂Ω,

where uk is not non-positive on Ω, and uk ∈ C1,α(Ω) for some α ∈]0, 1[. One
distinguishes two cases, either ‖uk‖∞ remains bounded, or ‖uk‖∞ → +∞. In the
first case, one has for a subsequence uk → u in C1(Ω), and u solves

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ1|u|p−2u+ h on ∂Ω.

By part (i) one gets u < 0 on Ω. Contradiction. In the second case one considers
vk = uk

‖uk‖∞ , so ‖vk‖∞ = 1 and as previously for a subsequence vk → v in C1(Ω)
with ‖v‖∞ = 1, and v solves

∆pv = |v|p−2v in Ω,

|∇v|p−2 ∂v

∂ν
= λ1|v|p−2v on ∂Ω.

But this yields a contradiction since by Lemma 4.1, λ1 is not an eigenvalue.

Proof of theorem 4.4. Assume by contradiction that there exists ε > 0 such that for
any h 	 0 there exists λ(h) with λ(h) ≥ λ1+ε such that (1.1) has a solution u(h) < 0
in Ω. We consider ϕ ∈ C1(Ω) satisfying

∫
∂Ω
|ϕ|p 6= 0 and ϕ vanishes in some ball in

Ω, and we choose h ∈ L∞(∂Ω), such that h 	 0 in ∂Ω and suppϕ∩ supph∩∂Ω = ∅.
Applying Lemma 3.1 to |ϕ| and v = −u(h) > 0 in Ω, we obtain

λ(h)
∫

∂Ω

|ϕ|p ≤
∫

Ω

|∇ϕ|p +
∫

Ω

|ϕ|p,

Then

λ1 + ε ≤ λ(h) ≤
∫
Ω
|∇ϕ|p +

∫
Ω
|ϕ|p∫

∂Ω
|ϕ|p

,

for all ϕ ∈W 1,p(Ω) satisfying
∫

∂Ω
|ϕ|p 6= 0 and ϕ vanishes in some ball in Ω, which

contradicts the definition of λ1. �
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