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NONRESONANCE CONDITIONS FOR A SEMILINEAR WAVE
EQUATION IN ONE SPACE DIMENSION

AOMAR ANANE, OMAR CHAKRONE, ABDELLAH ZEROUALI

Abstract. In this paper we study the existence of periodic weak solutions for

semilinear wave equations in one space dimension in the case of nonresonance.

1. Introduction

In this paper we consider the existence of periodic solutions for the wave equation

�u = αu+ βux − γut + g(x, t, u) + h(x, t) in Q,

u(x, t+ 2π) = u(x, t) in ]0, π[×R,
u(0, t) = u(π, t) = 0 ∀t ∈ R,

(1.1)

where Q =]0, π[×]0, 2π[, � = ∂2

∂t2 −
∂2

∂x2 is the D’Alembertian, (α, β, γ) ∈ R×R×R,
h is a given function in L2(Q), and g :]0, π[×R × R → R is 2π-periodic in t and a
Carathéodory function (i.e. measurable in (x, t) for each s ∈ R and continuous in
s for almost all (x, t) ∈ Q).

We are interested in the nonresonance for the problem (1.1) (i.e. in the condition
for the function g such that there exist a solution u ∈ L2(Q) for any given h ∈
L2(Q)). We will assume that g satisfies the following conditions:

(C1) g(x, t, s) is nondecreasing in s;
(C2) for s 6= r, (x, t) ∈ Q, we have

eβ x
2
(g(x, t, r)− g(x, t, s)

r − s

)
≥ β2

4
− α;

(C3) for all R > 0, there exists φR ∈ L2(Q) such that a.e. (x, t) ∈ Q,

max
|s|≤R

|g(x, t, s)| ≤ φR(x, t);
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(C4) a.e. (x, t) ∈ Q, we have

λk −
γ2

4
+
β2

4
− α < l(x, t) := lim inf

|s|→+∞

g(x, t, s)
s

≤ lim sup
|s|→+∞

g(x, t, s)
s

:= k(x, t)

< λk+1 −
γ2

4
+
β2

4
− α,

where λk and λk+1 are two consecutive eigenvalues of the D’Alembertian,
and σ(�) denotes the spectrum of the D’Alembertian.

Problem (1.1) has been studied with conditions of resonances by several authors
mention in particular: In the case α = β = γ = 0 and h = 0 Benaoum in [3, 4],
Mustonen and Berkovits in [5, 6, 7, 8], and Brézis and Nirenberg in [12]. The case
g(x, t, s) = g(s), has been studied by Mustonen and Berkovits in [9]. The case
β = γ = 0 and α is a eigenvalue of the D’Alembertian operator (�), has been
studied in [7]. The case β = 0 and α is a eigenvalue of the operator T defined by
Tu = �u + γut, where ut = ∂u

∂t , has been studied in [5, 12]. In the general case,
Anane, Chakrone and Ghanim in [2]. In the case of nonresonance, the problem
(1.1) has been studied by Mustonen and Berkovits in [6] and [10], and by Brezis
and Nirenberg in [12] but only in particular cases. The situation that we consider
here is marked by the presence of one term of transportation β∇u, what constitutes
an extension of the cases studied by Mustonen and Berkovits in [6, 10]. In our work,
we show (see Corollary 3.2) while using homotopy argument given by Mustonen and
Berkovits in [6], and of analogous techniques developed by Anane and Chakrone
in [1] for the Laplacian (∆), that the problem (1.1) has at least a solution for all
h ∈ L2(Q).

2. Remarks and notation

Let δ, µ ∈ R such that δ < µ, we introduce the following general hypothesis For
a.e. (x, t) ∈ Q, we have

δ +
β2

4
− α ≤6= l(x, t) := lim inf

|s|→+∞

g(x, t, s)
s

≤ lim sup
|s|→+∞

g(x, t, s)
s

:= k(x, t)

≤6= µ+
β2

4
− α

(2.1)

The notation ≤6= means that one has an large inequality on Q and strict on a set
of measure different from zero.

Remark 2.1. (1) We denote by Tu = �u+ γut. Then
(i) T is a densely defined closed linear operator with closed range.
(ii) Im(T ) = [ker(T )]⊥.
(ii) λ is a eigenvalue of the D’Alembertian if and only if λ− γ2

4 is a eigenvalue
of T

(iii) If T0 is the restriction of the operator T on Im(T ) = T (D(T )), with D(T )
is the domain of the operator T , then T0 has compact inverse.
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For the proof of the remarks (i)–(iii), see [4].
(2) We put g̃(x, t, s) = (α− β2

4 )s+ e
β
2 xg(x, t, e−

β
2 xs) and h̃(x, t) = e

β
2 xh(x, t). Let

N : L2(Q) → L2(Q),

N(u) = g̃(x, t, u)

be the Nemytskii operator generated by the function g̃. For r ∈ [0, 1], consider the
operator Hr : D(T ) ⊂ L2(Q) → L2(Q),

Hr(u) = Tu− r(N(u) + h̃)− (1− r)λu,

where δ < λ < µ.

If there exists R > 0, for all r ∈ [0, 1] and all u ∈ D(T ),

with ‖u‖ =
( ∫

Q

|u|2
)1/2

= R, then Hr(u) 6= 0.
(2.2)

(3) If (C1) and (C2) are verified, then g̃(x, t, s) is nondecreasing in s, thus the
operator N is monotone. This statement and the following are easy to prove.
(4) Condition (C3) implies that for all R > 0 there exists φ̃R ∈ L2(Q) such that for
a.e. (x, t) ∈ Q we have

max
|s|≤R

|g̃(x, t, s)| ≤ φ̃R(x, t).

(5) If (C4) is verified, then for a.e. (x, t) ∈ Q, we have

λk −
γ2

4
< l̃(x, t) := lim inf

|s|→+∞

g̃(x, t, s)
s

≤ lim sup
|s|→+∞

g̃(x, t, s)
s

:= k̃(x, t) < λk+1 −
γ2

4

(6) If (2.1) is satisfied, then for a.e. (x, t) ∈ Q, we have

δ ≤6= l̃(x, t) := lim inf
|s|→+∞

g̃(x, t, s)
s

≤ lim sup
|s|→+∞

g̃(x, t, s)
s

:= k̃(x, t) ≤6= µ

i.e. for all ε > 0 there exists aε ∈ L2(Q) such that for a.e. (x, t) ∈ Q, and all s ∈ R,
we have

(l̃(x, t)− ε)s2 − aε(x, t)|s| ≤ sg̃(x, t, s) ≤ (k̃(x, t) + ε)s2 + aε(x, t)|s|.

(7) Under hypothesis (C3) and (2.1), there exists θ > 0 and η ∈ L2(Q) such that
a.e. (x, t) ∈ Q, and all s ∈ R, we have

|g̃(x, t, s)| ≤ θ|s|+ η(x, t). (2.3)

Proposition 2.2. The problem (1.1) is equivalent to the problem

Tv = g̃(x, t, v) + h̃(x, t) in Q,

v(x, t+ 2π) = v(x, t) in ]0, π[×R,
v(0, t) = v(π, t) = 0 ∀t ∈ R,

(2.4)

Proof. Assume that u is a solution of the problem (1.1). Let v = e
β
2 xu, it is clear

that v is 2π-periodic in t and v(0, t) = v(π, t) = 0 ∀t ∈ R. On the other hand, we
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have

vx =
∂v

∂x
=
β

2
e

β
2 xu+ e

β
2 xux,

vxx =
∂2v

∂x2
= βe

β
2 xux +

β2

4
e

β
2 xu+ e

β
2 xuxx,

vt =
∂v

∂t
= e

β
2 xut, vtt =

∂2v

∂t2
= e

β
2 xutt;

thus

�v = vtt − vxx

= e
β
2 xutt − βe

β
2 xux −

β2

4
e

β
2 xu− e

β
2 xuxx

= −β
2

4
v + e

β
2 x(�u− βux)

= (α− β2

4
)v − γvt + e

β
2 x(g(x, t, e−

β
2 xv) + h(x, t)).

Hence Tv = g̃(x, t, v) + h̃(x, t), and v is a solution of the problem (2.4). The
reciprocal implication is demonstrated by an identical calculation. �

3. Main results

Theorem 3.1. Assume (C1), (C2), (C3) and (2.1). If (Hr) does not satisfy (2.2),
then there exists m(x, t) ∈ L∞(Q), v ∈ L2(Q) \ {0} and (un) ⊂ L2(Q) such that v
is the nontrivial solution of the problem

Tu = m(x, t)u in Q,

u(x, t+ 2π) = u(x, t) in ]0, π[×R,
u(0, t) = u(π, t) = 0 ∀t ∈ R

(3.1)

and

‖un‖ → +∞,
un

‖un‖
→ v in L2(Q),

δ ≤6= m(x, t) ≤6= µ a.e. in Q.

Corollary 3.2. Assume (C1), (C2), (C3) and (2.1). If there exist two consecutive
eigenvalues of the D’Alembertian λk and λk+1 such that 0 ≤ λk − γ2

4 < δ < µ <

λk+1 − γ2

4 , then problem (1.1) has at least one solution for all h ∈ L2(Q).

Proof of theorem 3.1. As the proof is relatively long, we organize it in several
lemmas. Suppose that (Hr) does not satisfy the estimate (2.2), then ∀n ∈ N, there
exist rn ∈ [0, 1], and un ∈ D(T ) with ‖un‖ = n such that

Tun − rn(N(un) + h̃)− (1− r
n
)λun = 0 (3.2)

Let

vn =
un

‖un‖
, gn(x, t) =

g̃(x, t, un)
‖un‖

a.e. in Q.

The sequence (vn) is bounded in L2(Q), then for subsequence vn → v weakly in
L2(Q).

Lemma 3.3. Assume (2.3) and (3.2). (1) For a subsequence gn → f weakly in
L2(Q). (2) vn → v strongly in L2(Q), in particular, ‖v‖ = 1, thus v 6= 0.
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Proof. (1) Dividing (2.3) by ‖un‖, we have

|gn(x, t)| ≤ θ|vn|+
η(x, t)
n

,

thus

‖gn‖ ≤ θ‖vn‖+
‖η‖
n

≤ θ +
‖η‖
n
,

hence gn is bounded in L2(Q), one deduces that for a subsequence gn → f weakly
in L2(Q).
(2) Dividing by ‖un‖ in (3.2), we have

Tvn = rngn + (1− rn)λvn + rn
h̃

n
.

Which implies

vn = (T−1
0 )[rngn + (1− r

n
)λvn + rn

h̃

n
].

Since gn → f weakly in L2(Q) and vn → v weakly in L2(Q), then

rngn + (1− r
n
)λvn + rn

h̃

n
→ rf + (1− r)λv weakly in L2(Q),

where r = limn rn. The operator T−1
0 is compact, thus

vn = (T−1
0 )[rngn +(1−r

n
)λvn +rn

h̃

n
] → (T−1

0 )[rf+(1−r)λv] strongly in L2(Q).

Therefore, vn → (T−1
0 )[rf + (1− r)λv] = v strongly in L2(Q). �

Lemma 3.4. Assume (2.3) and (III). Then f(x, t) = 0 a.e. in A = {(x, t) ∈ Q :
v(x, t) = 0 a.e. in Q}.

Proof. Let ψ be the function

ψ(x, t) = sign(f(x, t))χA(x, t) a.e. in Q,

where χA is the indicatrice function. Since gn → f weakly in L2(Q), we have∫
Q
gnψ →

∫
Q
fψ =

∫
A
|f(x, t)|. On the other hand, as vn → v, and using (2.3), we

have ∣∣ ∫
Q

gnψ
∣∣ ≤ ∫

Q

|gnψ| ≤ θ

∫
Q

|vnχA|+
∫

Q

η(x, t)χA

n
→ θ

∫
Q

|v|χA = 0,

thus
∫

A
|f(x, t)| = 0 and f = 0 a.e. in A. �

We define the function

d(x, t) =

{
f(x,t)
v(x,t) a.e. in Q \A,
λ a.e. in A.

Lemma 3.5. If one supposes (2.3) ,(3.2) and (2.1), then δ ≤ d(x, t) ≤ µ a.e. in
Q.

Proof. We prove that δ ≤ d(x, t) a.e. in Q. We denote B = {(x, t) ∈ Q :
δ(v(x, t))2 > v(x, t)f(x, t) a.e.}. It is sufficient to prove that measB = 0. Un-
der condition (2.1) (cf. Remark 2.1. No. 5), we have

(δ − ε)u2
n − aε(x, t)|un

| ≤ ung̃(x, t, un).
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Dividing by ‖un‖2, we get

(δ − ε)v2
n − aε(x, t)

|vn|
n

≤ vngn(x, t).

Multiplying by χB and integrating, we get

(δ − ε)
∫

Q

v2
nχB −

∫
Q

aε(x, t)
n

|vn|χB ≤
∫

Q

vnχBgn(x, t). (3.3)

Under conditions (2.3) and (3.2), gn → f weakly in L2(Q) and vn → v strongly
in L2(Q). Going to the limit in (IV ), we have

(δ − ε)
∫

Q

|v(x, t)|2χB ≤
∫

Q

v(x, t)f(x, t)χB .

Since ε is arbitrary, one concludes that∫
Q

[v(x, t)f(x, t)− δ|v(x, t)|2]χB ≥ 0.

Therefore, by the definition of B, measB = 0. By an analogous method, we prove
that d(x, t) ≤ µ a.e. in Q. �

Lemma 3.6. If one supposes (2.3), (III) and (2.1), then

Tv = m(x, t)v in Q,

v(x, t+ 2π) = v(x, t) in ]0, π[×R,
v(0, t) = v(π, t) = 0 ∀t ∈ R,

where m(x, t) = rd(x, t) + (1− r)λ and r = limn rn.

Remark 3.7. It is easy to see that m(x, t) is 2π-periodic in t, and δ ≤ m(x, t) ≤ µ
a.e. in Q.

Proof. In the proof of the Lemma 3.3, we have rf + (1 − r)λv = Tv. From the
definition of the function m, we have Tv = mv. �

It remains to prove only the following lemma.

Lemma 3.8. If one supposes (2.3), (3.2) and (2.1), then

δ ≤6= m(x, t) ≤6= µ a.e. in Q.

Proof. We prove that m(x, t) ≤6= µ a.e. in Q. (By analogous method, we prove
that δ ≤6= m(x, t) a.e. in Q). Suppose by contradiction that m(x, t) = µ a.e. in Q.
Under assumption (2.1), we have

vngn ≤ (k̃(x, t) + ε)v2
n +

aε|vn|
n

, (3.4)

where k̃(x, t) ∈ L∞(Q) such that k̃(x, t) ≤6= µ. By (V ), we have∫
Q

rngnvn + (1− rn)λv2
n + rn

∫
Q

h̃vn

n

≤
∫

Q

[rn(k̃(x, t) + ε) + (1− rn)λ]v2
n + rn

∫
Q

(h̃
vn

n
+ aε

|vn|
n

).
(3.5)
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Under conditions (2.3) and (3.2), gn → f weakly in L2(Q) and vn → v strongly in
L2(Q). Going to the limit in (V ), we get∫

Q

[r(fv) + (1− r)λv2] ≤
∫

Q

[r(k̃(x, t) + ε) + (1− r)λ]v2.

By the definition of m, we have∫
Q

[r(fv) + (1− r)λv2] =
∫

Q

m(x, t)v2 =
∫

Q

µv2.

Thus ∫
Q

µv2 ≤
∫

Q

[r(k̃(x, t) + ε) + (1− r)λ]v2.

Since ε is arbitrary, we have∫
Q

µv2 ≤
∫

Q

[rk̃(x, t) + (1− r)λ]v2.

Hence ∫
Q

[µ− rk̃(x, t)− (1− r)λ]v2 ≤ 0.

Since k̃(x, t) ≤ µ a.e. in Q and λ < µ, we have µ− rk̃(x, t)− (1− r)λ ≥ 0, then∫
Q

[µ− rk̃(x, t)− (1− r)λ]v2 = 0.

Therefore, [µ − rk̃(x, t) − (1 − r)λ]v2 = 0 a.e. in Q. Since m(x, t) = µ a.e. in
Q, by the definition of the function of d, (d(x, t) 6= λ), we have measA = 0 (i.e.
v(x, t) 6= 0 a.e. in Q). Thus, µ = rk̃(x, t) + (1 − r)λ a.e. in Q, this contradiction
completes the proof. �

For the proof of Corollary 3.2 we will need the following two lemmas.

Lemma 3.9 ([6]). Assume (C1), (C2), (2.3), λ ∈ σ(T ) and λ ≥ 0. Let h̃ ∈ L2(Q),
if there exist R > 0 such that

Tu− r(N(u) + h̃)− (1− r)λu 6= 0, ∀u ∈ D(T ), ‖u‖ = R, 0 ≤ r ≤ 1,

then problem (2.4) admits at least one solution u ∈ D(T ) with ‖u‖ < R.

Proof. By (2.3), (C1) and (C2), N is continuous and monotone; therefore the result
ensues while using by the homotopy studied in [6]. �

Lemma 3.10. If there exists two reals δ and µ such that

δ ≤ m(x, t) ≤ µ a.e. in Q with [δ, µ] ∩ σ(T ) = ∅, (3.6)

then the problem (3.1) has only the trivial solution.

Proof. Let c ∈ [δ, µ] be arbitrary with

max(|µ− c|, |δ − c|)
dist(c, σ(T ))

< 1

(for example, c = (δ + µ)/2). Then the operator T − cI is invertible and

‖(T − cI)−1‖ =
1

dist(c, σ(T ))
.
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Hence for all u ∈ D(T ),

‖Tu− cu‖ ≥ dis(c, σ(T ))‖u‖.

Assume now that u ∈ D(T ) is a solution of the problem (3.1). Then ‖Tu− cu‖ =
‖mu− cu‖. Therefore,

‖u‖ ≤ ‖mu− cu‖
dist(c, σ(T ))

.

On the other hand, by (3.6),

|mu− cu| = |m− c||u| ≤ max(|µ− c|, |c− δ|)|u|

which implies ‖mu− cu‖ ≤ max(|µ− c|, |c− δ|)‖u‖. Thus

‖u‖ ≤ max(|µ− c|, |c− δ|)
dist(c, σ(T ))

‖u‖.

Since max(|µ− c|, |δ − c|)/dist(c, σ(T )) < 1, it follows that u = 0. �

Proof of corollary 3.2. Suppose by contradiction that the problem (1.1) does not
admit a solution. Thus by proposition 2.2, (2.4) does not admit a solution. Hence
by lemma 3.9, the homotopy (Hr) does not satisfy the estimate (2.2). And by
Theorem 3.1, there exists m(x, t) ∈ L∞(Q), v ∈ L2(Q) \ {0} such that v is the
nontrivial solution of the problem (3.1) and δ ≤6= m(x, t) ≤6= µ a.e. in Q. Since
0 ≤ λk − γ2

4 < δ < µ < λk+1 − γ2

4 , where λk − γ2

4 and λk+1 − γ2

4 are two positive
consecutive eigenvalues of T (cf. Remark 2.1 No. 1.ii), what is in contradiction
with Lemma 3.10. Thus the proof is complete. �

Remark 3.11. (1) We have an analogous result, if in Corollary 3.2 λk and λk+1

are two consecutive eigenvalues of the D’Alembertian such that λk − γ2

4 < δ < µ <

λk+1 − γ2

4 ≤ 0, while replacing the operator T by (−T ).
(2) Note that if µ = 0, δ = 0 and γ = 0, we recover a result on the existence of the
periodic solutions with conditions of non resonance of the problem

�u = g(x, t, u) + h(x, t) in Q,

u(x, t+ 2π) = u(x, t) in ]0, π[×R,
u(0, t) = u(π, t) = 0 ∀t ∈ R

(3) Note that if µ = 0, and δ = 0, we recover a result on the existence of the
periodic solutions with conditions of non resonance of the telegraph equation

�u = γut + g(x, t, u) + h(x, t) in Q,

u(x, t+ 2π) = u(x, t) in ]0, π[×R,
u(0, t) = u(π, t) = 0 ∀t ∈ R

References
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[5] Juha Berkovits and Vesa Mustonen, On the resonance for semilinear equations with normal

linear part, J. Math. Maroc2, pp. 115-123, 1994.

[6] Juha Berkovits and Vesa Mustonen, An extension of Leray-Schauder degree and applications
to nonlinear wave equations , Differentiel Integral Equations No. 3, 945-963, 1990.

[7] Juha Berkovits and Vesa Mustonen, On semilinear wave equations at resonance, proceedings

of the first world congress of nonlinear analysts, 1992. Editor: Lakshmilkantham, Berlin, New
York, 1996.

[8] Juha Berkovits and Vesa Mustonen, An application of topologique degree to semilinear equa-
tions with nonlinearities strongly monotones, Bull, London Math. Soc. 23, pp. 470-476, 1991.

[9] Juha Berkovits and Vesa Mustonen, On multiple solutions for a class of semilinear wave

equations, Nonlinear Analysis: theory and applications, Vol. 16, No. 5, pp. 421-434, 1991.
[10] Juha Berkovits and Vesa Mustonen, On nonresonance for systems of semilinear wave equa-

tions, Nonlinear analysis: theory and applications, Vol.29, pp.627-638, 1997.

[11] Juha Berkovits and Vesa Mustonen, Multipliciy results for some wave equations, Nonlinear
Vibration Problems, Zagadnienia Drgan Nieliniowych, 1993.

[12] H. Brezis and L. Nirenberg, Characterization of the ranges of some nonlinear operators and

applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa (4) 5, pp. 225-326,
1978.

Aomar Anane
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