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OPTIMAL CONTROLS FOR A CLASS OF NONLINEAR
EVOLUTION SYSTEMS

ABDELHAQ BENBRIK, MOHAMMED BERRAJAA, SAMIR LAHRECH

Abstract. We consider the abstract nonlinear evolution equation ż + Az =

uBz+f . Viewing u as control, we seek to minimize J(u) =
R T
0 L(z(t), u(t)) dt.

Under suitable hypotheses, it is shown that there exists an optimal control u

and that it satisfies the appropriate optimality system. An example involving
the p-Laplacian operator demonstrates the applicability of our results.

1. Introduction

In this paper, we investigate the optimal control problem governed by the ab-
stract non linear evolution equation

ż +Az = uBz + f (1.1)

These systems with linear operators A and B are called bilinear systems (see.
[2, 3, 11]). They appear in many mathematical models from physical processes,
for example, models involving the p Laplacian operator (see [4]). Our aim is to
investigate the case where A is not linear.

We organize this work as follows: After formulating the problem, we address the
question of existence and uniqueness of solutions to these systems. In section 3, we
prove the existence theorem of optimal control and we give the necessary conditions
of optimality. Finally, we present an example involving the p-Laplacian operator
which illustrates the applications of the abstract framework and the results of the
theory developed in the previous sections.

2. Setting of the problem

Throughout the paper, H denotes a separable Hilbert space and V a subspace
of H having the structure of a reflexive Banach space which is continuously and
densely embedded in H.

Identifying H with its dual H ′, we have the Gelfand triplet V ↪→ H ↪→ V ′ where
V ′ is the dual of V . We suppose that these embeddings are compact. Let 〈., .〉 be
the duality pairing between V and V ′ as well as the inner product on H. Let ‖ · ‖,
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| · | and ‖ · ‖V ′ denote the norms on V , H and V ′ respectively. Given a fixed real
number T > 0 and 2 < p < +∞ we introduce the spaces:

Lp(V ) = Lp(0, T ;V ), Lp(H) = Lp(0, T ;H), Lp
′
(V ′) = Lp

′
(0, T ;V ′),

where ( 1
p + 1

p′ = 1) and W =
{
w ∈ Lp(V ) : ẇ ∈ Lp

′
(V ′)

}
. Here the derivative is

understood in the sense of vector valued distributions.
It is well known that every w ∈ W is after eventual modification on a set of

measure zero, continuous from [0, T ] in H and the embedding W ↪→ C([0, T ];H)
is continuous [6, 7]. Furthermore, if V ↪→ H compactly, then also W ↪→ Lp(H)
compactly.

We study the control problem

inf
u
J(u) (2.1)

subject to the state equation

ż +Az(t) = u(t)Bz(t) + f(t)

z(0) = z0,

where the cost functional is

J(u) =
∫ T

0

L(z(t), u(t)) dt.

Our aim is to provide conditions under which the optimal solutions (2.1) exist. By
an optimal solution we mean a control u on which the infimum is attained.

For problem (2.1) we need the following hypotheses:

(H1) A : V → V ′ is such that:
(i) ‖Aϕ‖V ′ ≤ α1‖ϕ‖p−1 with α1 > 0.
(ii) 〈Aϕ,ϕ〉 ≥ α2‖ϕ‖p with α2 > 0.
(iii) 〈Aϕ1 −Aϕ2, ϕ1 − ϕ2〉 ≥ α3‖ϕ‖2 with β > 0.
(iv) ϕ→ A(ϕ) is continuously Frechet differentiable.

(H2) B : H → H is linear and continuous with |Bϕ| ≤ b|ϕ|, b > 0.
(H3) u ∈ Lr(0, T ) with r = p/(p− 2).
(H4) f ∈ Lp′(V ′).
(H5) z0 ∈ H.
(H6) L : H × R → R is a integrand convex such that:

(i) L is coercive: lim‖u‖Lr(0,T )→∞
∫ T
0
L(z(t), u(t)) dt = +∞

(ii) (x, u) → L(x, u) is continuously Frechet differentiable.
(iii) for every x ∈ C([0, T ],H) and every u ∈ Lr(0, T ), J(u) is finite.

Remark 2.1. A(ϕ) ∈ Lp′(V ′) if ϕ ∈ Lp(V ) and then

‖Aϕ‖Lp′ (V ′) ≤ α1‖ϕ‖p−1
Lp(V ).

For u ∈ Lr(0, T ) and ϕ ∈ Lp(V ) we have uBϕ ∈ Lp′(V ′) and

‖uBϕ‖Lp′ (V ′) ≤ β1‖u‖Lr(0,T )‖ϕ‖Lp(V ),

where β1 > 0. Therefore, the choice of control space is compatible with the equa-
tion.
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3. Results on the evolution problem

We consider the evolution problem
ż(t) +Az(t) = u(t)Bz(t) + f

z(0) = z0
(3.1)

We recall that by a solution to the above problem, we mean a function z ∈W that
satisfies (3.1).

Theorem 3.1. Under hypothesis (H1)(i), (H1)(ii), (H1)(iii), (H2), (H3), (H4)
and (H5), equation (3.1) admits a unique solution z such that z ∈ L∞(H) and
z ∈W .

Proof. Uniqueness: if z1 and z2 are solutions of (3.1), then z = z1 − z2 satisfies
ż +Az1 −Az2 = uBz

z(0) = 0
(3.2)

and for t ∈ [0, T ],
1
2
|z(t)|2 ≤ b

∫ t

0

|u(τ)||z(τ)|2 dτ .

Using the Gronwall lemma, we obtain z1 = z2.
The existence follows from a standard application of the Galerkin method [6]

and the a priori estimates given in Lemma 3.2. We remark that by Theorem 3.1,
z ∈ C([0, T ];H). �

Lemma 3.2. Under the hypothesis of Theorem 3.1, if z is a solution of (3.1) then

‖z‖Lp(V ) ≤ K1

[
|z0|2 + ‖u‖rLr(0,T ) + ‖f‖p

′

Lp′ (V ′)

]1/p (3.3)

‖z‖L∞(H) ≤ K2

[
|z0|2 + ‖u‖rLr(0,T ) + ‖f‖p

′

Lp′ (V ′)

]1/2 (3.4)

‖ż‖Lp′ (V ′) ≤ K3

[
‖z‖p−1

Lp(V ) + ‖u‖p−1/p−2
Lr(0,T ) + ‖f‖Lp′ (V ′)

]
(3.5)

Proof. Let z be a solution of (3.1), then∫ T

0

〈ż(t), z(t)〉 dt+
∫ T

0

〈Az(t), z(t)〉 dt =
∫ T

0

〈u(t)Bz(t), z(t)〉 dt+
∫ T

0

〈f(t), z(t)〉 dt.

Using (H1)(ii), (H2) and the continuity of the embedding V ↪→ H, we have

1
2
|z(T )|2 − 1

2
|z0|2 + α2

∫ T

0

‖z(τ)‖pV dτ

≤ K ′
1

∫ T

0

|u(τ)|‖z(τ)‖2 dτ +
∫ T

0

‖f(τ)‖V ′‖z(τ)‖ dτ .

By the Young inequality [10], for 1
r + 2

p = 1, we have

K ′
1

∫ T

0

|u(τ)|‖z(τ)‖2 dτ ≤ α2

4
‖z‖pLp(V ) +K ′

2‖u‖rLr(0,T ),∫ T

0

‖f(τ)‖V ‖z(τ)‖ dτ ≤
α2

4
‖z‖pLp(V ) +K ′

3‖f‖
p′

Lp′ (V ′)
.

Hence
α2

2
‖z‖pLp(V ) ≤

1
2
|z0|2 +K ′

2‖u‖rLr(0,T ) +K ′
3‖f‖

p′

Lp′ (V ′)
,



138 A. BENBRIK, M. BERRAJAA, S. LAHRECH EJDE/CONF/14

from which, we deduce then (3.3).
Multiplying (3.1) by z and integrating on [0, t] we obtain

1
2
|z(t)|2 − 1

2
|z0|2 +

α2

2

∫ t

0

‖z(τ)‖p dτ ≤ K ′′
2 ‖u‖rLr(0,T ) +K ′′‖f‖p

′

Lp′ (V ′)

and then
|z(t)|H ≤ K2

[
|z0|2 + ‖u‖rLr(0,T ) + ‖f‖p

′

Lp′ (V ′)

]1/2
which implies 3.4.

Multiplying 3.2 by ξ ∈ Lp(V ), we have

|
∫ T

0

〈ż(t), ξ(t)〉 dt|

≤ |
∫ T

0

〈Az(t), ξ(t)〉 dt|+ |
∫ T

0

〈u(t)Bz(t), ξ(t)〉|+ |
∫ T

0

〈f(t), ξ(t)〉|.

Hence∣∣ ∫ T

0

〈ż(t), ξ(t)〉 dt
∣∣ ≤ [

α1‖z‖p−1
Lp(V ) + β1‖u‖Lr(0,T )‖z‖Lp(V ) + ‖f‖Lp′ (V ′)

]
‖ξ‖Lp(V ),

which by Young inequality implies (3.5). �

4. Optimal controls

The aim of this section is to prove the existence of optimal controls for problem
(2.1). The differentiability of the mapping u 7→ z permits the characterization of
the optimal control u by necessary conditions corresponding to J ′(u) = 0.

Existence theorem for the control problem.

Theorem 4.1. If (H1), (H2), (H3), (H4), (H5) and (H6) hold, then (2.1) admits
an optimal solution.

Proof. Let (un)n be a minimizing sequence for (2.1), i.e. the pairs (zn, un) are
admissible for (2.1) and

lim
n
J(un) = J.

From (H6) we have ‖un‖Lr(0,T ) ≤M .
And from Lemma 3.2, we know that (zn)n belongs to a bounded subset of

L∞(H) ∩W . By passing to a subsequence if necessary, we may assume that

un ⇀ u w − Lr(0, T )

zn ⇀ z w ∗ −L∞(H)

zn ⇀ z w − Lp(V )

Azn ⇀ χ w − Lp
′
(V ′)

unBzn ⇀ Ψ w − Lp
′
(V ′)

żn ⇀ Λ w − Lp
′
(V ′)

1. Using the convergence σ(D(0, T ;V );D′(0, T ;V ′)) we obtain Λ = ż.
2. V ↪→ H compactly implies that

zn → z s− Lp(H)

zn(t) → z(t) s−H for all t ∈ [0, T ].
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For ϕ ∈ Lp(V ), we have∫ T

0

〈un(t)Bzn(t), ϕ(t)〉 dt

=
∫ T

0

〈un(t)B(zn(t)− z(t);ϕ(t)〉 dt+
∫ T

0

〈un(t)Bz(t), ϕ(t)〉 dt.

Note that∫ T

0

〈un(t)B(zn(t)− z(t);ϕ(t)〉 dt ≤ K1‖un‖Lr(0,T )‖zn − z‖Lp(H)‖ϕ‖Lp(H)

and ∫ T

0

un(t)〈Bz(t), ϕ(t)〉 dt→
∫ T

0

u(t)〈Bz(t), ϕ(t)〉 dt

because 〈Bz, ϕ〉 ∈ Lr′(0, T ). We deduce that Ψ = uBz.
3. For y ∈ Lp(V ), we set

Xm =
∫ T

0

〈Azm(t)−Ay(t); zm(t)− y(t)〉 dt .

We have

Xm =
∫ T

0

〈Azm(t); zm(t)〉 dt−
∫ T

0

〈Azm(t); y(t)〉 dt−
∫ T

0

〈Ay(t); zm(t)− y(t)〉 dt

and ∫ T

0

〈Azm(t), zm(t)〉 dt

=
1
2
|zm,0|2 −

1
2
|zm(T )|2 +

∫ T

0

〈umBzm(t), zm(t)〉 dt+
∫ T

0

〈f(t), zm(t)〉 dt.

But∫ T

0

(
〈um(t)Bzm(t), zm(t)〉 − 〈u(t)Bz(t), z(t)〉

)
dt

=
∫ T

0

〈um(t)Bzm(t), zm(t)− z(t)〉 dt+
∫ T

0

〈um(t)Bzm(t)− u(t)Bz(t), z(t)〉 dt

The first integral in the right-hand side approaches zero because zm → z (s −
Lp(H)). The second integral approaches zero because umBzm ⇀ uBz (w −
Lp

′
(V ′)). We deduce that

lim sup
m

∫ T

0

〈Azm(t), zm(t)〉 dt

≤ 1
2
|z0|2 −

1
2
|z(T )|2 +

∫ T

0

〈u(t)Bz(t), z(t)〉 dt+
∫ T

0

〈f(t), z(t)〉 dt .

Since z satisfies

ż + χ = uBz + f

z(0) = z0

it follows that
1
2
|z0|2 −

1
2
|z(T )|2 +

∫ T

0

〈u(t)Bz(t), z(t)〉 dt+
∫ T

0

〈f(t), z(t)〉 dt =
∫ T

0

〈χ(t), z(t)〉 dt.
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Hence

0 ≤ lim sup
m

Xm ≤
∫ T

0

〈χ(t)−Ay(t), z(t)− y(t)〉 dt for all y ∈ Lp(V )

Using the continuity of the operator A we obtain χ = Az. We deduce that (z, u) is
admissible for (2.1). From (H6) we have∫ T

0

L(z(t), u(t)) dt ≤ lim inf
m

∫ T

0

L(zm(t), um(t)) dt = J

Hence u is an optimal control. �

Optimality conditions. Before proceeding with investigation of the mapping
Θ: u 7→ z, where z is defined by (3.1), we introduce a technical lemma general-
izing the Gronwall inequality.

Lemma 4.2. Let T > 0 and c ≥ 0. Assume that λ and m are integrable in [0, T ]
with positive values. Let ϕ : [0, T ] → R+ be such that:

(a) λϕ and λϕ2 are integrable on [0, T ].
(b) 1

2ϕ
2(t) ≤ 1

2c
2 +

∫ t
0
λ(s)ϕ(s) ds+

∫ t
0
m(s)ϕ2(s) ds for t ≥ 0.

Then

ϕ(t) ≤
[
c+

∫ t

0

λ(s) ds
]
exp

( ∫ t

0

m(s) ds
)
.

Proof. Set

Ψ(t) =
[
c2 + 2

∫ t

0

λ(s)ϕ(s) ds+ 2
∫ t

0

m(s)ϕ2(s) ds
]1/2

.

We have that ϕ(t) ≤ Ψ(t) and Ψ̇ ≤ λ(t) +m(t)Ψ(t). Then

d

dt

[
Ψ(t) exp

(
−

∫ t

0

m(s) ds
)
−

∫ t

0

λ(s) exp
(
−

∫ s

0

m(τ) dτ
)]

≤ 0.

Hence

Ψ(t) ≤ exp
( ∫ t

0

m(τ) dτ
)[
c+

∫ t

0

λ(τ) exp
(
−

∫ τ

0

m(s) ds
)
dτ

]
,

which completes the proof. �

Lemma 4.3. Suppose the hypothesis (H1), (H2), (H3), (H4) and (H5) hold, then
the mapping Θ: Lr(0, T ) → L∞(H) ∩ L2(V ), u 7→ z is locally Lipschitz.

Proof. Let u and h be in Lr(0, T ) with ‖h‖Lr(0,T ) ≤ 1. Set z = Θ(u), zh = Θ(u+h)
and z = zh − z. Then z satisfies

ż +Azh −Az = uBz + hBzh

z(0) = 0

Multiplying by z and integrating on [0, t] we have

1
2
|z(t)|2 + β

∫ t

0

‖z(τ)‖2
V dτ ≤ b

∫ t

0

|u(τ)||z(τ)|2 dτ + b

∫ t

0

|h(τ)||zh(τ)||z(τ)| dτ .

Invoking the Lemma 4.2, we have

|z(t)|H ≤ exp
(
b

∫ t

0

|u(τ)| dτ
)[
b

∫ t

0

|h(τ)||zh(τ)| dτ
]
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but ∫ t

0

|h(τ)||zh(τ)| dτ ≤ K‖h‖Lr(0,T )‖zh‖L∞(H)

and

‖zh‖L∞(H)‖ ≤ K1

[
|z0|2 + ‖u+ h‖rLr(0,T ) + ‖f‖p

′

Lp′(V ′)

]1/2

≤ K ′

where K ′ is a positive constant depending on z0, u and f (because ‖h‖ ≤ 1). We
obtain

‖z‖L∞(H) ≤ K ′
1‖h‖Lr(0,T ),

‖z‖L2(V ) ≤ K ′
2‖h‖Lr(0,T )

�

Theorem 4.4. Suppose that:
(i) The hypothesis of Lemma 4.3 are satisfied with f = 0.
(ii) For ϕ and Ψ in C([0, T );H) with ‖Ψ‖C([0,T ];H) ≤ 1 we have

‖A′(ϕ(t) + Ψ(t))−A′(ϕ(t))‖L(H) ≤ γ(t)|Ψ(t)|H
where γ ∈ L1(0, T ).

Then the mapping Θ: Lr(0, T ) → L∞(H)∩L2(V ) is Fréchet differentiable and the
derivative Θ′

u.h is a solution of

ẏ(t) +A′z(t)y(t) = u(t)By(t) + h(t)Bz(t)

y(0) = 0
(4.1)

where z = Θ(u).

Proof. 1. Since A is strongly monotone. For λ > 0, ϕ and Ψ in V , we have〈 1
λ

(A(ϕ+ λΨ)−A(ϕ)),Ψ
〉
≥ β‖Ψ‖2

V .

Hence 〈A′ϕΨ,Ψ〉 ≥ β‖Ψ‖2
V

2. For u ∈ Lr(0, T ), the mapping h 7→ y defined by (4.1) is linear. Multiplying
(4.1) by y and integrating on [0, t] we obtain

1
2
|y(t)|2 + β

∫ t

0

‖y(τ)‖2
V dτ ≤ b

∫ t

0

|u(τ)||y(τ)|2 dτ + |h(τ)||z(τ)||y(τ)| dτ

By Lemma 4.3,

|y(t)| ≤ b

∫ t

0

|h(τ)||z(τ)| dτ exp
[
b

∫ t

0

|u(τ)|
]
,

but
‖z‖L∞(H) ≤ K1

[
|z0|2 + ‖u‖rLr(0,T )

]1/2
.

Then

‖y‖L∞(H) ≤ K ′
1‖h‖Lr(0,T ),

‖y‖L2(V ) ≤ K ′
2‖h‖Lr(0,T ),

where K ′
i are positive constants depending on z0 and u. Hence the mapping h 7→ y

is continuous.



142 A. BENBRIK, M. BERRAJAA, S. LAHRECH EJDE/CONF/14

3. Set z = Θ(u), zh = Θ(u+ h), z = zh − z and w = z − y where y is a solution of
(4.1). We have

ẇ(t) +A′z(t)w(t) = u(t)Bw(t) + h(t)Bz(t) + g(t)

w(0) = 0
(4.2)

where

g(t) = A′z(t)z(t)−
(
Azh(t)−Az(t)

)
=

∫ 1

0

[A′z(t)−A′(z(t) + sz(t))]z(t) ds.

Then

|g(t)|H ≤
∫ 1

0

γ(t)|sz(t)||z(t)| ds =
γ(t)
2
|z(t)|2

On the other hand, multiplying (4.2) by w and integrating on [0, t] we obtain

1
2
|w(t)|2 + β

∫ t

0

‖w(τ)‖2
V dτ

≤ b

∫ t

0

|u(τ)||w(τ)|2 dτ + b

∫ t

0

|h(τ)||z(τ)||w(τ)| dτ +
1
2

∫ t

0

γ(τ)|z(τ)|2|w(τ)| dτ

Then Lemma 4.3 gives

|w(t)| ≤ exp
(
b

∫ t

0

|u(τ)| dτ
)[
b

∫ t

0

|h(τ)||z(τ)| dτ +
1
2

∫ t

0

γ(τ)|z(τ)|2 dτ
]
,

but ‖z‖L∞(H) ≤ K‖h‖Lr(0,T ) then

‖w‖L∞(H) ≤ K1‖h‖2
Lr(0,T ),

‖w‖L2(V ) ≤ K2‖h‖2
Lr(0,T ).

It follows that Θ is fréchet differentiable from Lr(0, T ) on L∞(H)∩L2(V ) and Θ′
u.h

is a solution of (4.1). �

Theorem 4.5. Assume the hypotheses of Theorem 4.4 and (H6) hold. Then an
optimal control u, its corresponding state z, and its adjoint state p are necessarily
tied by the optimality system:

(1) ż +Az = uBz z(0) = z0
(2) −ṗ+A′

∗
zp = uB∗p+ ∂1L(z(t), u(t)) p(T ) = 0

(3) 〈Bz(t), p(t)〉+ ∂2L(z(t), u(t)) = 0 a.e. in [0, T ]

Proof. Since L is Fréchet differentiable, we deduce that the functional

J(u) =
∫ T

0

L(z(t), u(t)) dt

is Fréchet differentiable on Lr(0, T ). Since u is a minimum point for J ,

J ′u.h = 0, ∀h ∈ Lr(0, T )

but

J ′u.h =
∫ T

0

〈∂1L(z(t), u(t), y(t)〉 dt+
∫ T

0

〈∂2L(z(t), u(t), h(t)〉 dt
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where y = Θ′
u.h. We define p by (2), then

J ′(u).h =
∫ T

0

〈−ṗ(t) +A′
∗
z(t)p(t)− u(t)B∗p(t), y(t)〉 dt+

∫ T

0

h(t)∂2L(z(t), u(t)) dt

=
∫ T

0

〈p(t), ẏ(t) +A′z(t)y(t)− u(t)By(t)〉 dt+
∫ T

0

h(t)∂2L(z(t), u(t)) dt

=
∫ T

0

[
〈p(t), Bz(t)〉+ ∂2L(z(t), u(t))

]
h(t) dt

Hence part (3) of the theorem is consequence of the above equality. �

5. Example

In this section, we present an example which illustrates the application of the
results of the theory developed in the previous sections. Let Ω be a bounded domain
in RN with smooth boundary Γ = ∂Ω. We consider the control problem (2.1) with

J(u) =
∫
Q

|z(x, t)|4 dx dt+
∫ T

0

|u(t)|2RN dt

Where z satisfies the nonlinear evolution equation

∂z

∂t
− div(|∇z|2∇z) =

N∑
i=1

ui(t)
∂z

∂xi
in Q = Ω×]0, T [

z = 0 in Σ = Γ×]0, T [

z(x, 0) = z0(x)

(5.1)

Setting V = W 1,4
0 (Ω), H = L2(Ω) and V ′ = W−1,4/3(Ω) we have V ↪→ H ↪→ V ′

continuously and densely. Furthermore V ↪→ H compactly.
The equation (5.1) can be written in the form

ż(t) +Az(t) = u(t)Bz(t)

z(0) = z0

where

(1) A : V → V ′, ϕ 7→ −div(|∇ϕ|2∇ϕ) which satisfies (H1) (see [6]).
(2) B = (B1, . . . , BN ) with Bi : V → H, ϕ 7→ Biϕ = ϕxi

. Hence ‖Biϕ‖H ≤
bi‖ϕ‖V , bi > 0 and ‖Bϕ‖HN ≤ b‖ϕ‖V .

(3) u = (u1, . . . , uN ) ∈ U = L2(0, T ; RN ) . Here

u(t)Bz(t) =
N∑
i=1

ui(t)Biz(t) =
N∑
i=1

ui(t)
∂z(t)
∂xi

.

The cost function becomes

J(u) = ‖u‖2
L2(0,T ;RN ) + ‖z‖4

L4(0,T ;Q)



144 A. BENBRIK, M. BERRAJAA, S. LAHRECH EJDE/CONF/14

Since
∫
Ω
u(t)Bz(x, t)z(x, t) dx = 0, the a priori estimates given by Lemma 3.2

become

‖z‖L4(V ) ≤ K1|z0|1/2,
‖z‖L∞(H) ≤ K2|z0|,

‖ż‖L4/3(V ′) ≤ K3

[
‖z‖3/2

L4(V ) + ‖u‖3/2

L2(0,T ;RN )

]
Corollary 5.1. For z0 in L2(Ω) and u in L2(0, T ; RN ), the equation (3.1) with
f = 0 admits a unique solution which satisfies

z ∈ L∞(0, T ;L2(Ω)) ∩ L4(0, T ;W 1,4
0 (Ω)),

ż ∈ L4/3(0, T ;W−1,4/3(Ω))

Proposition 5.2. The mapping Θ: U → C([0, T ];H), u 7→ z, with z the solution
of (3.1) with f = 0. is differentiable in the sense of Fréchet, and Θ′

u.h satisfies

ẏ +A′z(t)y(t) = u(t)By(t) + h(t)Bz(t)

y(0) = 0,
(5.2)

where z = (Θ(u))(t) and

A′ϕ.h = −
N∑
i=1

[
|∇ϕ|2hxi + 2〈∇ϕ,∇h〉1ϕxi

]
xi

with 〈∇ϕ,∇h〉1 =
∑N
i=1 ϕxi

hxi
(ϕ and h ∈ V ).

Proof. 1. For ϕ ∈ V , the mapping, A′ϕ : V → V ′,

h 7→ A′ϕh = −
N∑
i=1

[
|∇ϕ|2hxi

+ 2〈∇ϕ,∇h〉1ϕxi

]
xi

is linear and for v ∈ V we have

〈A′ϕh, v〉V ′,V =
N∑
i=1

∫
Ω

fivxi
dx

with fi = |∇ϕ|2hxi + 2〈∇ϕ,∇h〉1ϕxi . Furthermore,

‖fi‖4/3

L4/3(Ω)
≤ K1

[ ∫
Ω

|∇ϕ|8/3|hxi
|4/3 dx+

∫
Ω

|〈∇ϕ,∇h〉1|4/3|ϕxi
|4/3 dx

]
≤ 2K1

[( ∫
Ω

|∇ϕ|4
)1/4( ∫

Ω

|∇h|4
)1/3]

.

Then
‖fi‖L4/3(Ω) ≤ K‖ϕ‖2

W 1,4
0 (Ω)

‖h‖W 1,4
0 (Ω).

Using the norm in V ′ it follows that A′ϕ ∈ L(V, V ′).
For ϕ and h in V , we have

A(ϕ+ h)−A(ϕ)−A′ϕ(h) = F (ϕ, h)

where

F (ϕ, h) = −
N∑
i=1

[|∇h|2hxi
+ |∇h|2ϕxi

+ 2〈∇ϕ,∇h〉1hxi
]xi
.
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For v ∈ V ,

〈F, v〉V ′,V =
N∑
i=1

∫
Ω

fivxi
dx,

where
fi = |∇h|2ϕxi

+ |∇h|2hxi
+ 2〈∇ϕ,∇h〉1hxi

.

Then

‖fi‖4/3

L4/3(Ω)
≤ K ′

[ ∫
Ω

|∇ϕ|4/3|∇h|8/3 dx+
∫

Ω

|∇ϕ|4/3|∇h|8/3 dx+
∫

Ω

|∇h|4 dx
]

≤ K ′′
[
‖ϕ‖4/3

W 1,4
0 (Ω)

‖h‖8/3

W 1,4
0 (Ω)

+ ‖h‖4
W 1,4

0 (Ω)

]
.

We deduce that

‖A(ϕ+ h)−A(ϕ)−A′ϕ(h)‖V ′ ≤ K[‖ϕ‖V ‖h‖2
V + ‖h‖3

V ‖]
Hence A is differentiable in the sense of Frechet.
2. The equation (5.2) admits a unique solution satisfying

y ∈ L2(V ) ∩ L∞(H), ẏ ∈ L2(V ′).

The existence follows from a standard application of the Galerkin method and the
a priori estimates obtained for (4.1). We remark that y ∈ C([0, T ];H).
3. The mapping A′ : V → L(V, V ′), ϕ 7→ A′ϕ is locally Lipschitz. Let ϕ and ψ be
in V with ψ in neighbourhood of 0. For h in V , we have

A′ϕ+ψh = −
N∑
i=1

[
|∇(ϕ+ ψ)|2hxi

+ 2〈∇(ϕ+ ψ),∇h〉1((ϕ+ ψ))xi

]
xi

and (A′ϕ+ψ −A′ϕ)h = F , where

F = −
N∑
i=1

[
|∇ψ|2hxi

+ 2〈∇ϕ,∇ψ〉1hxi
+ 2〈∇ϕ,∇h〉1ψxi

+ 2〈∇ψ,∇h〉1ϕxi
+ 2〈∇ψ,∇h〉1ψxi

]
xi

.

Then for v ∈ V ,

〈F, v〉V ′,V =
N∑
i=1

∫
Ω

fivxi
dx,

where

fi = |∇ψ|2hxi
+2〈∇ϕ,∇ψ〉1hxi

+2〈∇ψ,∇h〉1ϕxi
+2〈∇ψ,∇h〉1ψxi

+2〈∇ϕ,∇h〉1ψxi
.

Hence

‖fi‖Lp′ (Ω) ≤ K

[
‖ψ‖2

V + ‖ψ‖V ‖ϕ‖V
]
‖h‖V .

Since ψ is in neighbourhood of 0,

‖(A′ϕ+ψ −A′ϕ)h‖V ′ ≤ K ′‖ϕ‖V ‖ψ‖V ‖h‖V .
Hence

‖A′ϕ+ψ −A′ϕ‖L(V,V ′) ≤ K ′′‖ψ‖V .
It follows by theorem 4.4. that Θ is Frechet differentiable and its derivative Θ′

u.h
satisfies (5.2) �
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Now the functional J can be written as J(u) =
∫ T
0
L(z(t), u(t)) dt with L satis-

fying (H6).
The differentiability of Θ and the norm ensures the differentiability of J and the

expression of derivative is

dJ(u).h = 4
∫
Q

|z(x, t)|2z(x, t)y(x, t) dx dt+ 2
∫ T

0

〈u(t), h(t)〉RN dt

where y = Θ′
uh.

From Theorems 3.1, 4.4 and 4.5, we get the following result.

Corollary 5.3. An optimal control u, its corresponding state z, and its adjoint
state p are necessarily tied by the optimality system: For 1 ≤ i ≤ N and t ∈ [0, T ],

ui(t) = −2
∫

Ω

p(x, t)
∂z

∂xi
(x, t) dx

∂z

∂t
− div(|∇z|2∇z =

N∑
i=1

ui(t)
∂z

∂xi
in Q

z(x, t) = 0 in Σ

z(x, 0) = z0(x) in Ω

−∂p
∂t

+A′z(t)p = −
N∑
i=1

ui(t)
∂p

∂xi
+ |z(x, t)|2z(x, t) in Q

p(x, t) = 0 in Σ

p(x, T ) = 0 in Ω
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