2005-Oujda International Conference on Nonlinear Analysis. Electronic Journal of Differential Equations, Conference 14, 2006, pp. 149–153. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

MULTIPLICITY RESULTS FOR NONLINEAR ELLIPTIC EQUATIONS

SAMIRA BENMOULOUD, MOSTAFA KHIDDI, SIMOHAMMED SBAI

ABSTRACT. Let Ω be a bounded domain in \mathbb{R}^N , $N \geq 3$, and $p = \frac{2N}{N-2}$ the limiting Sobolev exponent. We show that for $f \in H_0^1(\Omega)^*$, satisfying suitable conditions, the nonlinear elliptic problem

$$-\Delta u = |u|^{p-2}u + f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

has at least three solutions in $H_0^1(\Omega)$.

1. INTRODUCTION

It is well known [6, Theorems 1 and 2] that for $f \neq 0$ and ||f|| sufficiently small, the problem

$$\Delta u = |u|^{p-2}u + f \quad \text{on } \Omega$$

$$u = 0 \quad \text{on } \partial \Omega$$
(1.1)

has at least two distinct solutions \mathbf{u}_0 and \mathbf{u}_1 which are critical points of the functional

$$I(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{1}{p} \int_{\Omega} |u|^p - \int_{\Omega} fu,$$

such that $I(\mathbf{u}_1) > I(\mathbf{u}_0)$. In this note we suppose $f \ge 0$ and satisfies

$$\|f\| < \frac{\alpha}{N} S^{\frac{N}{4}},\tag{1.2}$$

where

$$\frac{1}{2} < \alpha < (\frac{N-2}{N+2})^{\frac{N+2}{4}}, \quad \text{and} \quad S = \inf_{u \in H_0^1(\Omega) ||u||_p = 1} ||\nabla u||_2^2,$$

which corresponds to the best constant for the Sobolev embedding $H_0^1(\Omega) \hookrightarrow L^p(\Omega)$. We determine a special ω_{ε} , from the extremal functions for the Sobolev inequality in \mathbb{R}^N , and consider Γ the class of continuous paths joining 0 to ω_{ε} .

Proposition 1.1. Let

$$c = \inf_{\gamma \in \Gamma} \sup_{t \in [0,1]} I(\gamma(t)).$$

Key words and phrases. Semilinear elliptic equations; critical Sobolev exponent.

²⁰⁰⁰ Mathematics Subject Classification. 35J20, 35J65.

^{©2006} Texas State University - San Marcos.

Published September 20, 2006.

Then there is a sequence $(u_j) \subset H^1_0(\Omega)$ such that

$$I(u_j) \to c,$$

$$I'(u_j) \to 0 \quad in \ (H_0^1(\Omega))^*,$$

$$I(u_0) < I(u_1) < c.$$

Let **u** denotes the weak limit in $H_0^1(\Omega)$ of (a subsequence of) (u_n) , our principal result is as follows.

Theorem 1.2. Let $f \in H_0^1(\Omega)^*$, $f \ge 0$ satisfies (1.2). Then either

- (1) $I(\mathbf{u}) = c$ and Problem (1.1) has at least three solutions. Or
- (2) $I(\mathbf{u}) \le c \frac{1}{N}S^{N/2}$.

Note that the existence results of biharmonic analogue of Problem (1.1) have been studied in [2], so a result similar to that of Theorem 1.2 may be established for the bilaplacian operator.

2. The proof of Proposition 1.1

We start with a variant of the mountain pass theorem of Ambrosetti-Rabinowitz without the Palais-Smale condition

Theorem 2.1. Let E be a real Banach space and $I \in C^1(E, \mathbb{R})$. Suppose there exists a neighborhood U of 0 in E and a constant $\rho > 0$ such that

(H1)
$$I(u) \ge \rho$$
, for all $u \in \partial U$.
(H2) $I(0) < \rho$ and, $I(v) < \rho$ for some $v \in E \setminus U$.
Let

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I(\gamma(t)),$$

where

$$\Gamma = \{\gamma : [0,1] \to E, \text{ is continuous, } \gamma(0) = 0, \ \gamma(1) = v\}$$

Then there is a sequence (u_n) in E such that

$$I(u_n) \to c,$$

$$I'(u_n) \to 0 \quad in \ E^*$$

On $H_0^1(\Omega)$ we define a variational functional $I: H_0^1(\Omega) \to \mathbb{R}$ for problem (1.1), by

$$I(u) = \frac{1}{2} \|\nabla u\|_2^2 - \frac{1}{p} \| u\|_p^p - \int_{\Omega} fu.$$

Clearly I is C^1 on E and I(0) = 0. We shall verify the assumptions of Theorem 2.1 Verification of (H1). Let $r \in]0, \alpha S^{N/4}[$ and $u \in H_0^1(\Omega))$ be such that $\|\nabla u\|_2 = r$. We have

$$I(u) \ge \frac{1}{2}r^2 - \frac{1}{p}r^p S^{-p/2} - ||f||r.$$

Letting $r \to \alpha S^{N/4}$, we obtain

$$I(u) \ge \frac{1}{2}\alpha^2 S^{N/2} - \frac{1}{p}\alpha^p S^{N/2} - \frac{1}{4N}\alpha^2 S^{N/2}.$$

Set

$$\rho = \frac{\alpha^p S^{N/2}}{2N},$$

hence $I(u) > \rho$ for all $u \in \partial B(0, r)$.

EJDE/CONF/14

Verification of (H2). Assume $0 \in \Omega$ and let $\phi \in C_0^{\infty}(\Omega)$ be a fixed function such that $\phi \equiv 1$ for x in some neighborhood of 0. For $\varepsilon > 0$, define

$$u_{\epsilon}(x) = \frac{\phi(x)}{(\epsilon + |x|^2)^{\frac{N-2}{2}}}, \quad v_{\epsilon}(x) = \frac{u_{\epsilon(x)}}{\|u_{\epsilon}\|_{p}}$$

Hence, from [4],

$$\|\nabla v_{\epsilon}\|_{2}^{2} = S + O(\epsilon^{\frac{N-2}{2}}).$$

$$(2.1)$$

For every $\mu \neq 0$, [6, Lemma 2.1], gives a real $t^+ > 0$ such that

$$t^{+} > \left(\frac{\|\nabla\mu v_{\epsilon}\|_{2}^{2}}{(p-1)\|\mu v_{\epsilon}\|_{p}^{p}}\right)^{\frac{1}{p-2}} = \frac{1}{\mu} \left(\frac{N-2}{N+2}\right)^{\frac{N-2}{4}} \|\nabla v_{\epsilon}\|_{2}^{\frac{N-2}{2}}$$
(2.2)

and

$$t^{+} < \frac{1}{\mu} \|\nabla v_{\epsilon}\|_{2}^{\frac{N-2}{2}}.$$
(2.3)

Set $\omega_{\epsilon} = t^+ \mu v_{\epsilon}$. We have

$$\|\nabla\omega_{\epsilon}\|_{2} = t^{+}\mu\|\nabla v_{\epsilon}\|_{2} > \left(\frac{N-2}{N+2}\right)^{\frac{N-2}{4}} \|\nabla v_{\epsilon}\|_{2}^{\frac{N}{2}} > \left(\frac{N-2}{N+2}\right)^{\frac{N-2}{4}} S^{\frac{N}{4}} > \alpha S^{\frac{N}{4}} > r.$$

On the other hand, from (2.2) and (2.3), we get

$$I(\omega_{\epsilon}) < \frac{1}{2} (t^{+})^{2} \|\nabla \omega_{\epsilon}\|_{2}^{2} - \frac{1}{p} (t^{+})^{p} < \frac{1}{2\mu^{2}} \|\nabla v_{\epsilon}\|_{2}^{N} - \frac{1}{\mu^{p}} \frac{1}{p} (\frac{N-2}{N+2})^{\frac{p(N-2)}{4}} \|\nabla v_{\epsilon}\|_{2}^{N}$$

Using (2.1), we deduce

$$I(\omega_{\epsilon}) < (\frac{1}{2\mu^{2}} - \frac{1}{\mu^{p}} \frac{N-2}{N+2} (\frac{N-2}{N+2})^{\frac{N}{2}})(S + O(\epsilon^{\frac{N-2}{2}}))^{N/2} < \frac{\epsilon_{0}^{p} S^{N/2}}{2N},$$

for μ large enough. Then $c \ge \rho > I(\omega_{\epsilon})$. Recall that $\omega_{\epsilon} \in \Lambda^{-}$ ([6, Lemma 2.1] with

$$\Lambda^{-} = \{ u \in H_0^1(\Omega) / < I'(u), u \ge 0, \|\nabla u\|_2^2 - (p-1)\|u\|_p^p < 0 \},\$$

and that $\inf_{\Lambda^-} I$ is attained by \mathbf{u}_1 [6, Theorem 2]. We conclude that

$$c \ge \rho > I(\omega_{\epsilon}) \ge I(\mathbf{u}_1) > I(\mathbf{u}_0).$$

3. Proof of the Theorem 1.2

Applying Proposition 1.1 we obtain a sequence $(u_j) \subset H_0^1(\Omega)$ such that

$$I(u_j) \to c, \tag{3.1}$$

$$I'(u_j) \to 0 \quad \text{in } H^1_0(\Omega)^*.$$
 (3.2)

This implies that $\|\nabla u_j\|_2$ is uniformly bounded. Hence for a subsequence of u_j , still denoted by u_j , we can find $\mathbf{u} \in H_0^1(\Omega)$ such that

$$u_j \to \mathbf{u}$$
 weakly in $H_0^1(\Omega)$,
 $u_j \to \mathbf{u}$ strongly in L^q , $q < p$,
 $u_j \to \mathbf{u}$ a.e. on Ω .

From (3.2), we deduce that **u** is a (weak) solution of Problem (1.1). In particular **u** satisfies

$$\|\mathbf{u}\|_2^2 - \|\mathbf{u}\|_p^p = \int f\mathbf{u} \tag{3.3}$$

Let $u_j = \mathbf{u} + v_j$, where $v_j \to 0$ weakly in $H_0^1(\Omega)$ and $v_j \to 0$ a.e on Ω . We have

$$\|\nabla u_j\|_2^2 = \|\nabla \mathbf{u}\|_2^2 + \|\nabla v_j\|_2^2 + o(1).$$

and by (3.1),

$$I(\mathbf{u}) + \frac{1}{2} \|\nabla v_j\|_2^2 - \frac{1}{p} \|v_j\|_p^p = c + o(1),$$

thanks to Brezis-Lieb Lemma [5]. By (3.2) and (3.3), $\|\nabla v_j\|_2^2 - \|v_j\|_p^p = o(1)$, which gives

$$I(\mathbf{u}) + \frac{1}{N} \|\nabla v_j\|_2^2 = c + o(1).$$

Set $l = \lim_{j \to +\infty} \|\nabla v_j\|_2^2$, then $\lim_{j \to +\infty} \|v_j\|_p^p = l$. Using Sobolev inequality one see that $l \ge Sl^{2/p}$. Then l = 0, or $l \ge S^{\frac{N}{2}}$. We get, either

$$I(\mathbf{u}) = c,$$

and since

$$I(\mathbf{u}) > I(\mathbf{u}_1) > I(\mathbf{u}_0),$$

 \mathbf{u} is a solution of Problem (1.1) distinct from \mathbf{u}_o and \mathbf{u}_1 , or

$$I(\mathbf{u}) \le c - \frac{1}{N} S^{\frac{N}{2}}.$$

Remark 3.1. One can show that $c < \frac{1}{N}S^{\frac{N}{2}}$, consequently $I(\mathbf{u}) < 0$ in the second case

4. Semilinear biharmonic equation

In [2], Benmouloud considered the problem

$$\Delta^2 u = |u|^{p-2}u + f \quad \text{in } \Omega$$
$$\Delta u = u = 0 \quad \text{on } \partial \Omega$$

where Ω is a bonded domain in \mathbb{R}^N , $N \geq 5$ $p = \frac{2N}{N-4}$ and Δ^2 denotes the biharmonic operator. She proved that for $f \in H^{-1}$ subject to a suitable condition, this problem has at least two distinct solutions in $H^2(\Omega) \cap H_0^1(\Omega)$. The existence of on solution follows from the mountain-pass theorem, with Palais-Smale condition, and a second is obtained by a constrained minimization (see also [3]).

It follows from this study that an analog result of Theorem 1.2 may be established by a similar argument with suitable smallness condition on f.

References

- A. Ambrosetti, P. Rabinowitz; Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal, Vol. 11, 1973, pp. 349-381.
- [2] S. Benmouloud, Existence de solutions pour un probleme biharmonuque non homogne avec exposant critique de Sobolev. Bull. Belg. Math. Soc. 8 (2001), 555-565
- [3] S. Benmouloud, M. Sbai; A perturbed biharmonic minimization problem with critical exponent à paraitre dans le volume 7 de Math-Recherche et applications.
- [4] H. Brezis, L. Niremberg; Positive Solutions of NonLinear Elliptic Equations Involving Critical Sobolev Exponents, comm. Pure. Appl. Math 36(1983), 437-477.
- [5] H. Brezis, E. Lieb; A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Sco. 88 pp. 486-490 (1983).
- [6] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. Henri Poincaré, Vol. 9, no. 3, 1992, p. 281-304.

Samira Benmouloud

E.G.A.L, DÉPT. MATHS, FAC. SCIENCES, UNIVERSITÉ IBN TOFAIL, BP. 133, KÉNITRA, MAROC *E-mail address*: ben.sam@netcourrier.com

Mostafa Khiddi

E.G.A.L, Dépt. Maths, Fac. Sciences, Université Ibn Tofail, BP. 133, Kénitra, Maroc

Simohammed Sbai

E.G.A.L, DÉPT. MATHS, FAC. SCIENCES, UNIVERSITÉ IBN TOFAIL, BP. 133, KÉNITRA, MAROC *E-mail address*: sbaisimo@netcourrier.com