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MULTIPLICITY RESULTS FOR NONLINEAR ELLIPTIC
EQUATIONS
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Abstract. Let Ω be a bounded domain in RN , N ≥ 3, and p = 2N
N−2

the

limiting Sobolev exponent. We show that for f ∈ H1
0 (Ω)∗, satisfying suitable

conditions, the nonlinear elliptic problem

−∆u = |u|p−2u + f in Ω

u = 0 on ∂Ω

has at least three solutions in H1
0 (Ω).

1. Introduction

It is well known [6, Theorems 1 and 2] that for f 6= 0 and ‖f‖ sufficiently small,
the problem

−∆u = |u|p−2u + f on Ω
u = 0 on ∂Ω

(1.1)

has at least two distinct solutions u0 and u1 which are critical points of the func-
tional

I(u) =
1
2

∫
Ω

|∇u|2 − 1
p

∫
Ω

|u|p −
∫

Ω

fu,

such that I(u1) > I(u0). In this note we suppose f ≥ 0 and satisfies

‖f‖ <
α

N
S

N
4 , (1.2)

where
1
2

< α < (
N − 2
N + 2

)
N+2

4 , and S = inf
u∈H1

0 (Ω)‖u‖p=1
‖∇u‖2

2,

which corresponds to the best constant for the Sobolev embedding H1
0 (Ω) ↪→ Lp(Ω).

We determine a special ωε, from the extremal functions for the Sobolev inequality
in RN , and consider Γ the class of continuous paths joining 0 to ωε.

Proposition 1.1. Let
c = inf

γ∈Γ
sup

t∈[0,1]

I(γ(t)).
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Then there is a sequence (uj) ⊂ H1
0 (Ω) such that

I(uj) → c,

I ′(uj) → 0 in (H1
0 (Ω))∗,

I(u0) < I(u1) < c.

Let u denotes the weak limit in H1
0 (Ω) of (a subsequence of) (un), our principal

result is as follows.

Theorem 1.2. Let f ∈ H1
0 (Ω)∗, f ≥ 0 satisfies (1.2). Then either

(1) I(u) = c and Problem (1.1) has at least three solutions. Or
(2) I(u) ≤ c− 1

N SN/2.

Note that the existence results of biharmonic analogue of Problem (1.1) have
been studied in [2], so a result similar to that of Theorem 1.2 may be established
for the bilaplacian operator.

2. The proof of Proposition 1.1

We start with a variant of the mountain pass theorem of Ambrosetti-Rabinowitz
without the Palais-Smale condition

Theorem 2.1. Let E be a real Banach space and I ∈ C1(E, R). Suppose there
exists a neighborhood U of 0 in E and a constant ρ > 0 such that

(H1) I(u) ≥ ρ, for all u ∈ ∂U .
(H2) I(0) < ρ and, I(v) < ρ for some v ∈ E \ U .

Let
c = inf

γ∈Γ
max

t∈[0,1]
I(γ(t)),

where
Γ = {γ : [0, 1] → E, is continuous, γ(0) = 0, γ(1) = v}.

Then there is a sequence (un) in E such that

I(un) → c,

I ′(un) → 0 in E∗.

On H1
0 (Ω) we define a variational functional I : H1

0 (Ω) → R for problem (1.1),
by

I(u) =
1
2
‖∇u‖2

2 −
1
p
‖ u‖p

p −
∫

Ω

fu.

Clearly I is C1 on E and I(0) = 0. We shall verify the assumptions of Theorem 2.1

Verification of (H1). Let r ∈]0, αSN/4[ and u ∈ H1
0 (Ω)) be such that ‖∇u‖2 = r.

We have
I(u) ≥ 1

2
r2 − 1

p
rpS−p/2 − ‖f‖r.

Letting r → αSN/4, we obtain

I(u) ≥ 1
2
α2SN/2 − 1

p
αpSN/2 − 1

4N
α2SN/2.

Set

ρ =
αpSN/2

2N
,

hence I(u) > ρ for all u ∈ ∂B(0, r).
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Verification of (H2). Assume 0 ∈ Ω and let φ ∈ C∞0 (Ω) be a fixed function such
that φ ≡ 1 for x in some neighborhood of 0. For ε > 0, define

uε(x) =
φ(x)

(ε + |x|2)N−2
2

, vε(x) =
uε(x)

‖uε‖p
.

Hence, from [4],
‖∇vε‖2

2 = S + O(ε
N−2

2 ). (2.1)
For every µ 6= 0, [6, Lemma 2.1], gives a real t+ > 0 such that

t+ > (
‖∇µvε‖2

2

(p− 1)‖µvε‖p
p
)

1
p−2 =

1
µ

(
N − 2
N + 2

)
N−2

4 ‖∇vε‖
N−2

2
2 (2.2)

and
t+ <

1
µ
‖∇vε‖

N−2
2

2 . (2.3)

Set ωε = t+µvε. We have

‖∇ωε‖2 = t+µ‖∇vε‖2 > (
N − 2
N + 2

)
N−2

4 ‖∇vε‖
N
2
2 > (

N − 2
N + 2

)
N−2

4 S
N
4 > αS

N
4 > r.

On the other hand, from (2.2) and (2.3), we get

I(ωε) <
1
2
(t+)2‖∇ωε‖2

2 −
1
p
(t+)p

<
1

2µ2
‖∇vε‖N

2 − 1
µp

1
p
(
N − 2
N + 2

)
p(N−2)

4 ‖∇vε‖N
2 .

Using (2.1), we deduce

I(ωε) < (
1

2µ2
− 1

µp

N − 2
N + 2

(
N − 2
N + 2

)
N
2 )(S + O(ε

N−2
2 ))N/2 <

εp
0S

N/2

2N
,

for µ large enough. Then c ≥ ρ > I(ωε). Recall that ωε ∈ Λ− ([6, Lemma 2.1] with

Λ− = {u ∈ H1
0 (Ω)/ < I ′(u), u >= 0, ‖∇u‖2

2 − (p− 1)‖u‖p
p < 0},

and that infΛ− I is attained by u1 [6, Theorem 2]. We conclude that

c ≥ ρ > I(ωε) ≥ I(u1) > I(u0).

3. Proof of the Theorem 1.2

Applying Proposition 1.1 we obtain a sequence (uj) ⊂ H1
0 (Ω) such that

I(uj) → c, (3.1)

I ′(uj) → 0 in H1
0 (Ω)∗. (3.2)

This implies that ‖∇uj‖2 is uniformly bounded. Hence for a subsequence of uj ,
still denoted by uj , we can find u ∈ H1

0 (Ω) such that

uj → u weakly in H1
0 (Ω),

uj → u strongly in Lq, q < p,

uj → u a.e. on Ω.

From (3.2), we deduce that u is a (weak) solution of Problem (1.1). In particular
u satisfies

‖u‖2
2 − ‖u‖p

p =
∫

fu (3.3)
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Let uj = u + vj , where vj → 0 weakly in H1
0 (Ω) and vj → 0 a.e on Ω. We have

‖∇uj‖2
2 = ‖∇u‖2

2 + ‖∇vj‖2
2 + ◦(1).

and by (3.1),

I(u) +
1
2
‖∇vj‖2

2 −
1
p
‖vj‖p

p = c + o(1),

thanks to Brezis-Lieb Lemma [5]. By (3.2) and (3.3), ‖∇vj‖2
2−‖vj‖p

p = o(1), which
gives

I(u) +
1
N
‖∇vj‖2

2 = c + o(1).

Set l = limj→+∞ ‖∇vj‖2
2, then limj→+∞ ‖vj‖p

p = l. Using Sobolev inequality one
see that l ≥ Sl2/p. Then l = 0, or l ≥ S

N
2 . We get, either

I(u) = c,

and since
I(u) > I(u1) > I(u0),

u is a solution of Problem (1.1) distinct from uo and u1, or

I(u) ≤ c− 1
N

S
N
2 .

Remark 3.1. One can show that c < 1
N S

N
2 , consequently I(u) < 0 in the second

case

4. Semilinear biharmonic equation

In [2], Benmouloud considered the problem

∆2u = |u|p−2u + f in Ω
∆u = u = 0 on ∂Ω

where Ω is a bonded domain in RN , N ≥ 5 p = 2N
N−4 and ∆2 denotes the biharmonic

operator. She proved that for f ∈ H−1 subject to a suitable condition, this problem
has at least two distinct solutions in H2(Ω) ∩H1

0 (Ω). The existence of on solution
follows from the mountain-pass theorem, with Palais-Smale condition, and a second
is obtained by a constrained minimization (see also [3]).

It follows from this study that an analog result of Theorem 1.2 may be established
by a similar argument with suitable smallness condition on f .
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