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EXISTENCE OF TWO NONTRIVIAL SOLUTIONS FOR
SEMILINEAR ELLIPTIC PROBLEMS

ABDEL R. EL AMROUSS, FOUZIA MORADI, MIMOUN MOUSSAOUI

Abstract. This paper concerns the existence of multiple nontrivial solutions

for some nonlinear problems. The first nontrivial solution is found using a

minimax method, and the second by computing the Leray-Schauder index and
the critical group near 0.

1. Introduction

We consider the Dirichlet problem
−∆u = λku + f(u) in Ω

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in Rn, and f : Ω × R → R is a nonlinear function
satisfying the Carathéodory conditions, and 0 < λ1 < λ2 ≤ . . . λk ≤ . . . is the
sequence of eigenvalues of the problem

−∆u = λu in Ω,

u = 0 on ∂Ω.

Let us denote by E(λj) the λj-eigenspace and by F (s) the primitive
∫ s

0
f(t) dt .

There are several works studying the problem
−∆u = λku + f(x, u) + h in Ω,

u = 0 on ∂Ω .
(1.2)

where h ∈ L2(Ω); see for example [4, 5, 6, 8, 9]. We write

l±(x) = lim inf
s→±∞

f(x, s)
s

, k±(x) = lim sup
s→±∞

f(x, s)
s

,

L±(x) = lim inf
s→±∞

2F (x, s)
s2

, K±(x) = lim sup
s→±∞

2F (x, s)
s2

.

In [6], the solvability of (1.2) for every h ∈ L2(Ω), is ensured when

0 < υk ≤ l±(x) ≤ k±(x) ≤ υk+1 < λk+1 − λk,
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where υk and υk+1 are constants.
However, in the autonomous case f(x, s) = f(s), De Figuerido and Gossez [5]

introduced a density condition that requires f(s)
s to be between 0 and α = λk+1−λk

as s → ±∞, and showed the existence of solution for any h. Next in [4], Costa and
Oliveira proved an existence result for (1.2) under the following conditions:

0 ≤ l±(x) ≤ k±(x) ≤ λk+1 − λk uniformly for a.e x ∈ Ω, (1.3)

0 � L±(x) ≤ K±(x) � λk+1 − λk uniformly for a.e x ∈ Ω. (1.4)

Here the relation a(x) � b(x) indicates that a(x) ≤ b(x) on Ω, with strict inequality
holding on subset of positive measure.

Later in [9], the authors proved an existence result in situation L±(x) = 0 for
a.e x ∈ Ω and K±(x) = λk+1 − λk for a.e x ∈ Ω. They replaced (1.4) by classical
resonance conditions of Ahmad-Lazer-Paul on two sides of (1.4) and showed that
(1.2) is solvable. More recently, in [8], the author interested to study the existence
of two nontrivial solutions in the case k = 1 and under other weaker conditions
cited above.

The aim of this paper is to generalize the above result for k ≥ 1. We assume the
following assumptions:

(F0) |f ′(s)| ≤ c(|s|p + 1), s ∈ R, p < 4
n−2 if n ≥ 3 and no restriction if n = 1, 2.

(F1) sf(s) ≥ 0 for |s| ≥ r > 0 and

lim sup
s→±∞

f(s)
s

≤ λk+1 − λk = α.

(F2) lim‖v‖→∞,v∈E(λk)

∫
F (v(x))dx = +∞.

(F3) There exists η ∈ R, 0 < η < α, such that

lim inf
n→+∞

µ(Gn)
n

> 0

where Gn = {s ∈] − n, n[, s 6= 0, and f(s)
s ≤ α − η} and µ denotes the

Lebesgue measure on R.
(F4) f ′(0) + λk < λ1

Theorem 1.1. Let f be C1 function, with f(0) = 0, that satisfies the conditions
(F0)-(F4). Then (1.1) has at least two nontrivial solutions.

This paper is organized as follows: In section 2, we give some technical lemmas
and some results of critical groups. The proof of our result is carried out in section
3.

2. Preliminaries Lemmas

Let us consider the functional defined on H1
0 (Ω) by

Φ(u) =
1
2

∫
Ω

|∇u|2dx− 1
2
λk

∫
u2dx−

∫
F (u)dx.

where H1
0 (Ω) is the usual Sobolev space obtained through the completion of C∞

c (Ω)
with respect to the norm induced by the inner product

〈u, v〉 =
∫

Ω

∇u∇vdx, u, v ∈ H1
0 (Ω).
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It is well known that under a linear growth condition on f , the functional Φ is well
defined on H1

0 (Ω), weakly lower semi-continuous and Φ ∈ C1(H1
0 , R), with

〈Φ′(u), v〉 =
∫

Ω

∇u∇vdx− λk

∫
uvdx−

∫
f(u)vdx, for u, v ∈ H1

0 (Ω).

Consequently, the weak solutions of the problem (1.1) are the critical points of the
functional Φ. Moreover, under the condition(F0), Φ is a C2 functional with the
second derivative given by

Φ′′(u)v.w =
∫
∇v∇wdx− λk

∫
vwdx−

∫
f ′(u)vwdx,

for u, v, w ∈ H1
0 (Ω).

Since we are going to apply the variational characterization of the eigenvalues,
we shall decompose the space H1

0 (Ω) as E = E− ⊕ Ek ⊕ Ek+1 ⊕ E+, where E− is
the subspace spanned by the λj- eigenfunctions with j < k and Ej is the eigenspace
generated by the λj-eigenfunctions and E+ is the orthogonal complement of E− ⊕
Ek ⊕ Ek+1 in H1

0 (Ω) and we shall decompose for any u ∈ H1
0 (Ω) as following

u = u− + uk + u+ where u− ∈ E−, uk ∈ Ek, uk+1 ∈ Ek+1 and u+ ∈ E+. We can
verify easily that∫

|∇u|2 dx− λi

∫
|u|2 dx ≥ δi‖u‖2 ∀u ∈ ⊕j≥i+1Ej (2.1)∫

|∇u|2 dx− λi

∫
|u|2 dx ≤ −δi‖u‖2 ∀u ∈ ⊕j≤iEj , (2.2)

where δi = min{1− λi

λi+1
, λi

λi−1
− 1}.

2.1. A compactness condition. To apply minimax methods for finding critical
points of Φ, we need to verify that Φ satisfies a compacteness condition of the Palais-
Smail type which was introduced by Cerami [2], and recently was generalized by
the first author in [7].
Definition. Let E be a real Banach space and Φ ∈ C1(E, R).
(i) A sequence (un) is said to be a (C)c sequence, at the level c ∈ R, if there is a
sequence εn → 0, such that

Φ(un) → c (2.3)

‖un‖〈Φ′(un), v〉H1
0 ,H−1 ≤ εn‖v‖ ∀v ∈ H1

0 . (2.4)

(ii) A functional Φ ∈ C1(E, R), is said to satisfy a condition (C)c, at the level
c ∈ R, if every (C)c sequence (un), possesses a convergent subsequence.

Now, we present some technical lemmas.

Lemma 2.1. Let (un) ⊂ H1
0 (Ω) and (pn) ⊂ L∞(Ω) be sequences, and let A a

nonnegative constant such that

0 ≤ pn(x) ≤ A a.e. in Ω and for all n ∈ N

and pn ⇀ 0 in the weak* topology of L∞, as n →∞. Then, there are subsequences
(un), (pn) satisfying the above conditions, and there is a positive integer n0 such
that for all n ≥ n0,∫

pnun((u−n + uk
n)− (uk+1

n + u+
n )) dx ≥ −δk

2
‖u+

n + uk+1
n ‖2. (2.5)
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Proof. Since pn ≥ 0 a.e. in Ω, we see that∫
pnun((u−n + uk

n)− (uk+1
n + u+

n ))

≥ −
∫

pn(u+
n + uk+1

n )2 dx

≥ −
[ ∫

pn

( u+
n + uk+1

n

‖u+
n + uk+1

n ‖
)2

dx
]
‖u+

n + uk+1
n ‖2.

(2.6)

Moreover, by the compact imbedding of H1
0 (Ω) into L2(Ω) and pn ⇀ 0 in the weak*

topology of L∞, when n →∞, then there are subsequences (un), (pn) such that∫
pn

( u+
n + uk+1

n

‖u+
n + uk+1

n ‖

)2

dx → 0.

Therefore, there exists n0 ∈ N such that for n ≥ n0 we have∫
pn

( u+
n + uk+1

n

‖u+
n + uk+1

n ‖

)2

dx ≤ δk

2
. (2.7)

Combining inequalities (2.6) and (2.7), we get inequality (2.5). �

Lemma 2.2. Let (un) ⊂ H1
0 (Ω) be a (C) sequence. If

fn(x) =
f(un(x))

un(x)
χ[|un(x)|≥rε] ⇀ 0

in the weak* topology of L∞, as n →∞. Then, there is subsequence (un) such that
(‖u−n + (u+

n + uk+1
n )‖)n is uniformly bounded in n.

Proof. Since (un)n ⊂ H1
0 be a (C) sequence, (2.3) and (2.4) are satisfied. Now,

we prove that the sequence (‖u−n + u+
n + uk+1

n ‖)n is uniformly bounded in n. Take
v = (u−n + uk

n)− (u+
n + uk+1

n ) in (2.4), pn(x) = fn(x), and

Λ =
{
−

∫
|∇u−n |2 + λk

∫
|u−n |2 dx +

∫
|∇(u+

n + uk+1
n )|2

− λk

∫
|u+

n + uk+1
n |2 dx +

∫
pnun((u−n + uk

n)− (uk+1
n + u+

n )) dx
}

Γ =
{

εn +
∫
|un(x)|≤rε

|f(un(x)||(u+
n + uk+1

n )− (u−n + uk
n)| dx

}
.

Then Λ ≤ Γ. By the Poincaré inequality, from (2.1 ), (2.2), (2.5), and Λ ≤ Γ, it
follows that there exists constants Aε and Bε such that

δk

2
‖u−n + (u+

n + uk+1
n )‖2 ≤ εn + Aε‖u−n + (u+

n + uk+1
n )‖+ Bε.

This gives that (‖u−n + (u+
n + uk+1

n )‖)n is uniformly bounded in n. �

Lemma 2.3. Let (un) ⊂ H1
0 (Ω) such that ‖u−n +(u+

n +uk+1
n )‖ is uniformly bounded

in n and there exists A such that if A ≤ Φ(un), then∫
F (

uk
n

2
) dx ≤ M.
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Proof. From A ≤ Φ(un), and Poincaré inequality, we have∫
F (

uk
n

2
)dx ≤ −A +

∫
[F (

uk
n

2
)− F (un)]dx +

1
2
‖u−n + u+

n + uk+1
n ‖2. (2.8)

Since f ∈ C1
(
Ω, R

)
satisfy (F1), there exists two functions γ, h : Ω → R such that

f(t) = tγ (t) + h (t)

with 0 ≤ γ (t) = f(t)
t χ[|t| ≥ r] ≤ λk+1 − λk and h(t) = f(t)χ[|t| < r]. However, by

the mean value theorem, we get∫
[F (

uk
n

2
)− F (un)]dx =

∫
Ω

∫ 1

0

f(t
uk

n

2
+ (1− t)un)dt(

uk
n

2
− un)dx

=
∫

Ω

∫ 1

0

h(t
uk

n

2
+ (1− t)un)dt(

uk
n

2
− un)dx

+
∫

Ω

∫ 1

0

γ(t
uk

n

2
+ (1− t)un)[t(

uk
n

2
− un)2 + (

uk
n

2
− un)un]

(2.9)
Set t1 = min{t ∈ [0, 1] :

∫ 1

0
h(tuk

n

2 + (1 − t)un) 6= 0} and t2 = max{t ∈ [0, 1] :∫ 1

0
h(tuk

n

2 + (1− t)un) 6= 0}. It is clear that

(t2 − t1)|
uk

n

2
− un| ≤ 2r. (2.10)

So that using (2.9),(2.10) and the Poincaré inequality, and an elementary inequality

(
a

2
− b)2 + (

a

2
− b)b ≤ (a− b)2.

We have∫
[F (

uk
n

2
)− F (un)]dx

≤
∫

Ω

∫ t2

t1

h(t
uk

n

2
+ (1− t)un)dt

(uk
n

2
− un

)
dx +

λk+1 − λk

4λ1
‖u−n + u+

n + uk+1
n ‖2

≤ 2r sup
|s|≤r

|f(s)|meas(Ω) +
λk+1 − λk

4λ1
‖u−n + u+

n + uk+1
n ‖2.

(2.11)
From (2.8) and (2.11), there exists M > 0 such that∫

F (
uk

n

2
) dx ≤ M.

�

2.2. Critical groups. Let H be a Hilbert space and Φ ∈ C1(H, R) satisfying the
Palais-Smaile condition or the Cerami condition. Set Φc = {u ∈ H | Φ(u) ≤ c}
and denote by Hq(X, Y ) the q-th relative singular homology group with integer
coefficient. The critical groups of Φ at an isolated critical point u with Φ(u) = c
are defined by

Cq(Φ, u) = Hq(Φc ∩ U,Φc ∩ U \ {u}); q ∈ Z.

where U is a closed neighborhood of u.
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Let K = {u ∈ H | Φ′(u) = 0} be the set of critical points of Φ and a < infK Φ.
The critical groups of Φ at infinity are defined by

Cq(Φ,∞) = Hq(H,Φa); q ∈ Z

We will use the notation deg(Φ′, U, 0) for the Leray-Schauder degree of Φ with
respect to the set U and the value 0. Denote also by index(Φ′, u) the Leray-
Schauder index of Φ′ at critical point u. Recall that this quantity is defined as
limr→0 deg(Φ′, Br(u), 0), if this limit exists, where Br(u) is the ball of radius r
centered at u.

Proposition 2.4 ([3]). If u is a mountain pass point of Φ, then

Cq(Φ, u) = δq,1Z.

Proposition 2.5 ([1]). Assume that H = H+ ⊕H−, Φ is bounded from below on
H+ and Φ(u) → −∞ as ‖u‖ → ∞ with u ∈ H−. Then

Cµ(Φ,∞) 6= 0, with µ = dim H− < ∞.

3. Proof of Theorem 1.1

First, we prove that Φ satisfies the Cerami condition.

Lemma 3.1. Under the assumptions (F0)–(F3), Φ satisfies the (C)c condition on
H1

0 (Ω), for all c ∈ R.

Proof. Let (un)n ⊂ H1
0 be a (C)c sequence, i.e

Φ(un) → c (3.1)

‖un‖〈Φ′(un), v〉H1
0 ,H−1 ≤ εn‖v‖ ∀v ∈ H1

0 , (3.2)

where εn → 0. It clearly suffices to show that (un)n remains bounded in H1
0 .

Assume by contradiction. Defining zn = un

‖un‖ , we have ‖zn‖ = 1 and, passing if
necessary to a subsequence, we may assume that zn ⇀ z weakly in H1

0 , zn → z
strongly in L2(Ω) and zn(x) → z(x) a.e. in Ω. By the linear growth of f , the
sequence

( f(un(x))
‖un‖

)
n

remains bounded in L2, then for a subsequence, we have

f(un(x))
‖un‖

⇀ ζ in L2.

and by standard arguments based on assumptions F0),F1), ζ can be written as
ζ(x) = m(x)z(x), where m satisfies (see [4]).

0 ≤ m(x) ≤ λk+1 − λk a.e. in Ω.

However, divide (3.2) by ‖un‖2 and goes to the limit we obtain

〈Φ′(un), v〉
‖un‖

=
∫
∇zn∇v − λk

∫
znv −

∫
f(un)
‖un‖

vdx → 0

for every v ∈ H1
0 . On the other hand, since zn converges to z weakly in H1

0 , strongly
in L2 and f(un(x))

‖un‖ converges weakly in L2 to ζ, we deduce

〈Φ′(un), v〉
‖un‖

→
∫
∇z∇v − λk

∫
zv −

∫
ζvdx = 0 ∀v ∈ H1

0 (Ω). (3.3)



EJDE/CONF/14 EXISTENCE OF TWO NONTRIVIAL SOLUTIONS 169

Claim: We will prove that zn → z strongly in H1
0 . Indeed, taking v = z in (3.3)

we have
‖z‖2 = λk

∫
z2 +

∫
m(x)z2. (3.4)

On the other hand, by (3.2) it results

〈Φ′(un), un〉
‖un‖2

→ 1− λk

∫
z2 −

∫
m(x)z2 = 0. (3.5)

From (3.4) and (3.5), it follows ‖z‖ = 1. Since zn ⇀ z, ‖zn‖ → ‖z‖ and H1
0 (Ω)

is convex uniformly space the claim follows. So that, z is a nontrivial solution of
problem

−∆z = (λk + m(x))z in Ω
z = 0 on ∂Ω.

(3.6)

We now distinguish three cases: i) λk < m(x)+λk and m(x)+λk < λk+1 on subset
of positive measure; (ii) m(x) + λk ≡ λk; (iii) m(x) + λk ≡ λk+1.

Case i: We have z is a nontrivial solution of problem (3.6), then 1 is an eigenvalue
of this problem. On the other hand, by strict monotonicity λk (λk + m(x)) < 1 and
λk+1 (λk + m(x)) > 1 , which gives a contradiction.

Case ii: By (F1), for ε > 0, there exists a constant rε > r such that

0 ≤ f(s)
s

≤ λk+1 − λk + ε ∀|s| ≥ rε (3.7)

Put fn(x) =
f
(
un(x)

)
un(x) χ{|un(x)| ≥ rε}, which remains bounded in L∞, passing if

necessary to a subsequence, fn → l in the weak* topology of L∞. By (3.7), the
L∞-function l satisfies

0 ≤ l(x) ≤ λk+1 − λk + ε a.e.in Ω

Multiply fn by z2
n, integrate on Ω and going to the limit, to have∫

fnz2
ndx =

∫
f (un(x))
‖un‖

zn →
∫

m(x)z2dx =
∫

l(x)z2dx = 0.

By the unique continuation Property of ∆ and l ≥ 0, we deduce that l ≡ 0 a.e.in
Ω. Then, by lemma 2.2 and lemma 2.3 there exists M > 0 such that∫

F (
uk

n

2
)dx ≤ M .

This is a contradiction with assumption (F2) and ‖uk
n‖ → +∞.

Case iii: If m(x) ≡ λk+1 − λk. Dividing (3.1) by ‖un‖2, we obtain

Φ(un)
‖un‖2

=
1
2
‖zn‖2 −

λk

2

∫
z2
n −

∫
F (un(x))
‖un‖2

dx → 0, as n →∞.

However, it results that

lim
n→+∞

∫
F (un(x))
‖un‖2

dx =
1
2
α

∫
z2dx.

Applying Fatou’s lemma, we have∫
z>0

(α−K+)z2dx +
∫

z<0

(α−K−) z2dx ≤ 0.
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This is a contradiction with assumption (F3), since (F3) is equivalent to K± =
lim sups→±∞

2F (s)
s2 < α. (see [10]). The proof of lemma is complete. �

Lemma 3.2. Under the hypothesis of Theorem 1.1, the functional Φ has the fol-
lowing properties:

(i) Φ(w) → +∞, as ‖w‖ → +∞, w ∈ W+ = Ek+1 ⊕ E+.
(ii) Φ(v) → −∞, as ‖v‖ → +∞, w ∈ W− = Ek ⊕ E−.

Proof. (i) Φ is coercive on W+. Indeed, the assumption (F3) is equivalent to
K± = lim sups→±∞

2F (s)
s2 < α. Thus, there exists an Bε ≥ 0 such that

F (s) ≤ α

2
s2 − εs2 + Bε ∀s ∈ R.

Hence, for every w ∈ W+, we obtain

Φ(w) =
1
2
‖w‖2 − λk

2

∫
w2 −

∫
F (w) dx

≥ λk+1 − λk

2λk+1
‖w‖2 − α− 2ε

2

∫
w2 −Bε|Ω|

≥ ε

λk+1
‖w‖2 −Bε|Ω|.

However, Φ(w) → +∞, as ‖w‖ → +∞.
(ii) Assume by contradiction that there exists a constant B > 0 and a sequence
(vn) ⊂ V with ‖vn‖ → ∞ such that

B ≤ Φ(vn) ≤ −δ‖v−n ‖2.
Therefore, by lemma 2.3, since ‖v−n ‖ is bounded, there exists M > 0 such that∫

F (
vk

n

2
) dx ≤ M

which contradicts (F2). �

Lemma 3.3. Under the condition (F4), the functional Φ has the following proper-
ties:

(i) There is an R > 0 and β > 0 such that Φ ≥ β on ∂BR(0).
(ii) Cq(Φ, 0) = δq,0Z

Proof. (i) We start by proving the first assertion. On one hand, it is easy to see
that if λk + f ′(0) ≤ 0 we have

Φ′′(0)u.u ≥ ‖u‖2.
On the other hand, where λk + f ′(0) > 0, the Poincaré’s inequality gives that

Φ′′(0)u.u = ‖u‖2 − λk

∫
u2 −

∫
f ′(0)u2dx ≥

(
1− λk + f ′(0)

λ1

)
‖u‖2

Put γ = 1− λk+f ′(0)
λ1

and by (F4), we have γ > 0 and

Φ′′(0)u.u ≥ γ‖u‖2.
Taylor’s formula implies

Φ(u) =
1
2
Φ′′(0)u.u + o(‖u‖2) ≥

(γ

2
+

o(‖u‖2)
‖u‖2

)
‖u‖2
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with o(‖u‖2)
‖u‖2 → 0, as ‖u‖ → 0. Consequently, the assertion (i) follows.

(ii) Since u = 0 is a local mininum of Φ, we have

Cq(Φ, 0) = δq,0Z.

�

Lemma 3.4. The functional Φ has at least one critical point u0, such that

Cq(Φ, u0) = δq,1Z.

Proof. According to (ii) of Lemma 3.2, Φ is anti-coercive on W− we can find an
e ∈ H1

0 such that ‖e‖ ≥ M > R andΦ(e) ≤ 0. So by mountain pass theorem, there
exists a critical point u0 of mountain pass type, such that

C1(Φ, u0) 6= 0.

By proposition 2.4, it results that Cq(Φ, u0) = δq,1Z. The proof of lemma is com-
plete. �

Proof of Theorem 1.1. For this proof we distinguish two cases.

Case 1: If k = 1, we assume that {0, u0} is the critical set of Φ and let R > 0,
such that {0, u0} ⊂ BR(0). By the Riesz representation theorem we can write

〈Φ′(u), v〉 = 〈u, v〉 − 〈Nu, v〉, for all u, v ∈ H1
0 (Ω)

where 〈u, v〉 =
∫
Ω
∇u∇v and 〈Nu, v〉 =

∫
[λ1u+f(u)]v dx. So that, Φ′ = I−N and

By the Sobolev embedding theorem, N is compact. We see that Φ′ has the form
Identity-compact, so that Leary-Shauder techniques are applicable

deg(Φ′, BR(0), 0) = index(Φ′, 0) + index(Φ′, u0)

=
∞∑

q=0

(−1)q dim Cq (Φ, 0) +
∞∑

q=0

(−1)q dim Cq (Φ, u0)

= 1− 1 = 0

(3.8)

In a similar way we can define a compact map T : H1
0 (Ω) → H1

0 (Ω) by

〈Tu, v〉 =
∫

(λ1 + µ)uv dx

where 0 < µ < λ2− λ1. Now we claim that there is a priori bound in H1
0 (Ω) for all

possible solutions of the family of equations (see [12])

−∆u− λ1u = (1− t)µu + tf(u) in Ω
u = 0 on ∂Ω.

The homotopy invariance of Leray-Schauder degree implies

deg(Φ′, BR(0), 0) = deg(I − T,BR(0), 0) = −1.

This contradicts (3.8).
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Case 2: If k ≥ 2, by Lemma 3.1, the functional Φ satisfies the condition (C). Since
Φ is weakly lower semi continuous and coercive on W+, Φ is bounded from below
on W+. Moreover, by (ii) of Lemma 3.2, Φ is anti-coercive on W−, thus we can
apply the proposition 2.5 and we conclude that

Cµ(Φ,∞) 6= 0

where µ = dim W− ≥ k ≥ 2. It follows from the Morse inequality that Φ has a
critical point u1 with

Cµ(Φ, u1) 6= 0.

Since µ 6= 1 and µ 6= 0, then the problem (1.1) has at least two nontrivial solutions.
The proof of theorem is complete. �
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