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A GENERALIZATION OF EKELAND’S VARIATIONAL
PRINCIPLE WITH APPLICATIONS

ABDEL R. EL AMROUSS, NAJIB TSOULIL

ABSTRACT. In this paper, we establish a variant of Ekeland’s variational prin-
ciple. This result suggest to introduce a generalization of the famous Palais-
Smale condition. An example is provided showing how it is used to give the
existence of minimizer for functions for which the Palais-Smale condition and
the one introduced by Cerami are not satisfied.

1. INTRODUCTION

Let E be a complete metric space with metric d and ® : E — R U {co} a lower
semicontinuous function which is bounded from below and not identically to +oo.
The Ekeland’s variational principle, see [I], allows for each £ > 0, each § > 0 and
each x € F such as

d(x) < i%f@ +e,

to build an element v € E minimizing the functional ®, given by

O, (z) = ®(x) + %d(x,v).
This principle has wide applications in optimization and nonlinear analysis [T, 2, [4].

If E is a Banach space and ® : F — R is Gateaux differentiable, lower semi-
continuous and bounded from below, then the Ekeland’s variational principle pro-
vides the existence of a minimizing sequence (u,,) such as ®'(u,,) — 0, when n — co.
It is well known that if ® satisfies the Palais-Smale condition then ® reaches its min-
imum. But, it is possible to find a minimizing sequence (u,,) such as ®'(u,) — 0,
when n — oo, not having any convergent subsequence. Let us take the example of
the function ®(s) = arctan(s).

Ekeland [2] prove that if ® is bounded below and satisfies the Cerami condition
for every ¢ € R, introduced by [3], then ® has a minimal point.

In this note, we prove a variant of Ekeland’s variational principle. This result
suggest to introduce a generalization of the classical Palais-Smale condition. An
example is provided showing how it is used to give the existence of minimizer for
functions for which the Palais-Smale condition or the Cerami condition are not
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satisfied. We also generalize some results cited in [I], [5], which the Palais-Smale
condition or Cerami condition has failed.

2. VARIANTS OF EKELAND’S VARIATIONAL PRINCIPLE

In this section we will prove the following variant of Ekeland’s variational prin-
ciple. We start with a definition.

Definition 2.1. We say that « : [0, 00[—]0,00[ is a comparison function of order
k if for every q > k there exist ¢,d > 0 such that

M <cs?+d,Vt,s € RT.
alt) ’

Examples:

(1) a(s) = (1+s)*
(2) a(s) = (1+s)kLog(2 + s)

Let (E,d) be a complet space metric and v € E. Denote by B(u,r) = {z € E |
d(u,z) < r} the closed boule and B(u,r) = {z € FE | d(u,x) < r} the open boule.

Theorem 2.2. Let (E,d) be a complete space metric, xg € E fized, ® : E — R a
lower semi-continuous and bounded below. Let « : [0, 00[—]0,00[ be a comparison
function of order k continuous nondecreasing. Thus for each € > 0, each § > 0 and
each u € E such that

D(u) < i%f ¢+

there exists a convergent sequence (zn)n>1 of E satisfies:

(i) z1 = u,2n, € B(u,v(u)) with y(u) be a positive constant such that u

chu) is bounded in E

The sequence (d(xo, zn))n>1 is nondecreasing

d(2n,2n
(i "1m<25forall]>1

(i)
i)

(1v§ for v =1im,_ o0 2, P(v) < P(u)
)

1

—-
=

v) d(u,v) < min{da(d(zo,v)),y(u)}
(vi) for every w € Bu,1(u))\ Blu, d(zo, ),
€
da(d(zg,w))
Proof. Let us define a partial order in E by letting

D(r) < B(s)

d(w) > d(v) — d(v,w).

d(r,s) (2.1)

and

d(wo,7) > d(wo, 5). (2.2)
This relation is easily seen to be reflexive, antisymmetry and transitive. Indeed, it
is clear that r < r, for every r € E. The partial order < is antisymmetry. Indeed,
if r < s and s < r then d(zg,7) = d(zo, 3),

€ 2e

—d <P(r)— ———
Saldor)) 07 e) = ) = FoEE S
However d(r,s) = 0 and so r = s. < is transitive, because if r < s and s < ¢ then
d(zg,r) > d(xo,s) > d(xg,t) and

M”§¢@_&%£{5W“$’¢@§@@_&%£?$

O(r) < B(s) — d(r, s).

dlt,s).  (2.3)
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From d(t,s) < d(t,r) + d(r,s), (2.3) becomes

B(r) < B(s) — joaem s ld(t ) = dlt,s)), - Bls) < (1) — 5o

This implies

B(r) < (1) + [ c c c

Sald(zo. ) 5a(d(xo,s))}d(t7s) ~ Saldzo. )
Since «(.) is nondecreasing and d(zg, ) > d(zo, s), we obtain

D(r) < (t) — sarazoyd(rt)
d(xg,7) > d(z0,1)

=71 =<t

r-<sands-<t:>{

Moreover, if we denote S = {r € E | r < s}, by lower semi-continuity of E, S is
closed.

Let €, 6, u and y(u) given by theorem. Now we define a sequence S,, of subsets
as follows. Start with z; = v and define

Sy ={weFE|w=<z}NBu,y(u)),
and inductively
S, ={we€E|w=z}NB(u,v(u)), zns1 € S

such that )

(n+ Da(d(zo, 2n)) "
Clearly by transitivity of < the sequence (S,), is a decreasing sequence of non
empty closed sets. Hence also (d(xg,2,))n is a bounded nondecreasing sequence
and converges in [d(xg,u), d(zg,u) + y(u)].

Now we prove that the diameters of these sets go to zero: diamsS,, — 0. Indeed,
on one hand w € S, 41 implies

(1) S ipf @+ (2.4)

€
(0] <o - > .
(U}) = (Zn+1) 5a(d(x07w))d(w’zn+1) and d(x07w) = d($072n+1)
From (2.4)), it results
O(w) < inf®+ ! — c d(w, zp41)-

S, (n+ Da(d(zg, zn))  da(d(zg,w))
This implies
0 a(d(zg,w))
n+1) ald(zg, zn))
On the other hand, we have that w belongs to B(u,~(u)), we obtain
5 aly(w) + d(zo,w)
n+1)  aldlzo,zn))

d(w, 2 s1) <
(U},Z +1) — €(

d(w, zpt1) < = (2.5)

Since the function u — # is bounded, then there exists M > 0 such that
0,u)
Y(u) < M(1+ d(zo, u)). (2.6)

From (2.5, (2.6) and «(.) is a nondecreasing function, it results

5§ a((M+1)1+d(zg,2n)))
n+1) a(d(xg, z,)) '

d(w, zpt1) < = (2.7)
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By (2.7) and «(.) is a comparison function of order k, there exist ¢,d > 0 such that

d(w, zpt1) < (e(M+1)* +d),neN

e(n+1)
which gives diam S,,+1 go to 0, when n — oo.

Now we claim that the unique point v € E in the intersection of the S,,’s satisfies
conditions (iii)—(vi) of Theorem Let then N, S, = {v} and z, converges to v.
Since z; < zj—1 < -+ < z1; and by (2.1)), we have

€
D(zj41) < O(z5) —

60{(d($(], Zj+1))d(’z]7 Zj"rl)

J
Ed _ed(25,z41)
20 -2 5,
n—1 xOvZJ—O-l))

or

j
_ed(z5,2j41)
< P(u) — P(z;
g I'O;Zj—‘,-l)) — ( ) ( J+1)

< irE1f<I> +e—®(zj41) <e.

Thus assertion (iii) is shown. Since v € Sy, (iv) is clear. It also results from it that
&£
da(d(zg,v))

The assertion (v) is shown. B

Finally, we prove (vi), let w € E such that w < v and w € B(u,vy(u)), then we

have w < z, for every n. This gives w € N, S, and w = v, which means that v be
an minimal element in B(u,y(u)), i.e.

dv,u) < P(u) — ®(v) < i%fq) +e—P(v) <e.

w € Blu,y(w)) and w<v=w=nu.

Consequently,
€
P(w) > d(v) - —————d(v,w
(w) > ®(v) 5a(d(@o.w)) (v, w)
for every w € B(u,y(u)) \ B(xo,d(xg,v)). The proof is complete. O

3. APPLICATIONS

In this section H denotes a Hilbert space, recall that a function ® : H — R is
called Gateaux differerentiable if at every point xq, there exists a continuous linear
functional f’(zg) such that, for every e € X,

iy £ (@0 +te) — f(zo)
t—0 t

= <f/(.%'0)7 e>'

We always assume that « : [0, c0[—]0, 0o[ is a continuous nondecreasing comparison
function of order k. For the rest of the text we will write

¢ ={ue H:Pu)<c},
for the sublevel sets as usual.

Definition 3.1. We say that ® satisfies (C%) if: Every sequence (uy), C H such
that ®(u,) — ¢ and ¥’ (uy,)a(]|u,||) — 0 possesses a convergent subsequence.
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Remark 3.2. Note that if a(s) = cte, the (C) condition is just the famous Palais-
Smale condition and if a(s) = s+ 1, (C2) is (C) condition introduced by Cerami
in [3].

We can now state the following result.

Theorem 3.3. Let H be a Hilbert space, ® : H — R lower semi-continuous,
bounded below and Gdteaux differentiable. Let a : [0, 00[—]0, 00[ a continuous non-
decreasing comparison function of order k. Assume that for every e > 0,

(I)a+e NK # @)
with K is bounded in H and ® satisfies (C), with a = infy ®, then ® has a
minimal point.
For the proof of this theorem we will use the following lemmas.

Lemma 3.4. Under the conditions of Theorem[3.3, for every e > 0, every u € H
such that ®(u) < infyg ® + e and every § > 0 such that
[Jull +1
— 20(3(1 A [full))
there exists v € H that satisfies
(1) @(v) < ®(u)

(2) Sty <0
(3) for every h € H,t € R such that||h]| = 1,|t| <1 and t < v,h >> 0 we have
€

Proof. Let in Theorem zo = 0,7(u) = 2(JJul| + 1) and d(z,y) = ||z — y||
for every x,y € H. Then, by iv) and v) of Theorem there exists v € H (
v = limy, 00 2n, (2n) the sequence built in theorem such that

®(v) < ®(u) and ||v — u|| < da(||v]]). (3.1)

Thus assertions 1. and 2. follow.
Now we prove the assertion 3. Let h € H such that ||| = 1 and [¢| < 1 we have
v € B(u, ||u|| +1). Indeed, if not ||ul| +1 < |Jv — u||. Since «(.) is nondecreasing,
llull+1 o oenTia
§ < SEICERITTD and by 1) it results
luf +1
lull +1 < lv = ulf < da(jv]l) < 6a(3(1 + [|ul))) < —F—-
This is a contradiction. Furthermore, we have
[o+thll < floll + IRl = ol + [t
<2)ul| + 141 =~(u).
On the other hand, it is clear , since (v, h) > 0, that
[+ th]| = [loll* + [[th]|* + 2t < v, h >]'2 > Jo]].
Thus, by (iv), (v), (vi) of Theorem [2.2] assertions 1, 2, 3 of the lemma follow. [

Lemma 3.5. Under the conditions of Theorem we have

(@ (v), h)| < m Vhe H, || = 1. (3.2)
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Proof. Let h € H such that ||h|| = 1 and consider two cases:
Case 1. If (v,h) > 0 and t > 0, from 3. of Lemma and ¢ being Gateaux
differentiable, letting ¢ approach 0, we obtain

3
(®'(v),h) = —
da([[v]])
Case 2. In the similar way, if (v, h) <0 and t < 0 goes to 0, we have
€
(@' (v), h) < ; Vh|[h][=1.
da([lvll)
Thus the Lemma [3.5] follows. O

Proof of Theorem[3.3 For e = X, with n > 1, there exists a sequence (u,) C K
such that

1
and, since (u,) is bounded, there exists § > 0 such that
l[unl +1
— a3+ [Junl))
Consequently, by Lemma and Lemma there exists a sequence (vy,) satisfying

(i> q)(vn) < (I)(un)
(i) 19" (o) lx(l[onl}) — 0, a5 1 — o0,

,Vn > 1.

The (C%) condition implies that (v,) has a subsequence (v,, ) convergent to some
point u. Since ® is lower semi-continuous, we get

inf ® < ®(u) < liminf ®(v,, ) < inf S.
H k—oo H
Therefore, ®(u) = infy ®. O

Now, we illustrate Theorem by an example where the function ® checks the
conditions of Theorem but the Palais-Smale condition and Cerami condition
do not hold.

Example. Consider
arctan(s) ifs<0
f(s) = < sin(s) if0<s<2m

arctan(s — 2mw) if s > 2.

and ®(u) = (2 + Log(|Jul|?> + 1) — (JJul|® + 1)2) for u € H. It is clear that ® is
C"! functional and @ = infy; ® = —1. Take

K ={ue H :log(|[ul” +1) = (lul® + 1)2 € [-27,0]},

it is easy to see that @17 N K # () for every € > 0. On the other hand, ® satisfies
(C2), with a(s) = s? + 1, and by Theorem ® has a minimal point uy which
D' (up) = 0.

Theorem 3.6. Let & : H — R be Gateaux differentiable and bounded below, says
ainfy ®. Assume that o : [0,00[—]0,00[ be a continuous nondecreasing function
such that [ ﬁ ds = +o0o. If ® satisfies (C) then the set ®4+F is bounded, for
some 3> 0.

The main point to prove Theorem is the following.
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Lemma 3.7. Under the conditions of Theorem [3.6, for every ¢ > 0, every u € H
such that ®(u) < infy ® + ¢ and every 6 > 0 there exists v € H satisfies

(1) @(v) < ®(u)

(2) llo—ull <6

a([lo]l)

(3) for every h € H such that ||h]| =1, we have

3

|<(I)'(1;),h>| < m~

Proof. Let in Theorem [2.2] zp = 0 and d(z,y) = ||z — y| for every z,y € H. From
theorem there exists a sequence (z,,),>1 satisfying (||z,||) is nondecreasing and

Z Jzn =2niall o5 gisy (3.3)
a(l[zn11)
ds = 400 there exists 7 > 0 such that
1 plul+y g
0 < = ——ds. 3.4

Put v = limy, oo 2, and y(u) = 2|ju|| + v + 1 in Theorem Thus, by (iv)-(v) of
Theorem we obtain

B(v) < (u) and o — ul < sa(]jo])).

. o0
However, since [} ;75

For the proof of assertion 3, it is enough to verify that h € H such that |[A[ = 1
we have v+ th € B(u,7y(u)) for every ¢ sufficiently small. Now we prove that

l2nll < flull +v, ¥n>1. (3.5)

If not, there exists j > 1 such that ||zj11|| > [Ju|| +~. However, by (3.4) and « is
nondecreasing, we obtain

lzj+11l
25§/ L ds
I

21| a(s)

J lzntall
<
<2 /nzn| a(s)

n=1

Z ||Zn+1H — ||zl

a([lzntal)

Z l|2n — Zn+1||

a([[zn+11)
This contradicts (3.3]). Using (3 , we have
[l — ull < 2[jul| +. (3.6)
Thus, for [t| <1 and h € H such that ||k| =1 and by (3.6), it results

[o+th —ull < 2f|ull + 7+ 1 = y(u).

Finally, the Lemma allows to conclude. The proof is complete. (I
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Proof of theorem[3.6, Suppose, by contradiction, that ®@*7 is unbounded for all
B > 0. Then, there exists (u,) such that ||u,| > n and

1
®(u,) < —.
(wn) S+

and Lemma [3.7with € = (1)2,6 = 1 implies the existence of (v,) satisfying

(i) @(vn) < P(uy)

(ii) H'Un — Uyl < %a(H'UnH)

(iif) [|®"(vn)[|e([[on]]) — 0, as n — oo.
We reach a contradiction with (C%), since (i)-(iii) give respectively

(1) ®(v,) — a, as n — o0,

(2) [[oall — o0, as n — oo,

() [[®"(wn)lla([[vnl]) — 0, as n — oc.

U

As an immediate consequence of the above results we have the following result.

Corollary 3.8. Let H be a Hilbert space, ® : H — R lower semi-continuous,

bounded below and Gdteaur differentiable. Assume that o : [0,00[—]0,00[ be a

continuous nondecreasing function such that floo ﬁ ds = +oo. If @ satisfies (CY),

with a = inf g ®, then ® has a minimal point.
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