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A GENERALIZATION OF EKELAND’S VARIATIONAL
PRINCIPLE WITH APPLICATIONS

ABDEL R. EL AMROUSS, NAJIB TSOULI

Abstract. In this paper, we establish a variant of Ekeland’s variational prin-

ciple. This result suggest to introduce a generalization of the famous Palais-

Smale condition. An example is provided showing how it is used to give the
existence of minimizer for functions for which the Palais-Smale condition and

the one introduced by Cerami are not satisfied.

1. Introduction

Let E be a complete metric space with metric d and Φ : E → R ∪ {∞} a lower
semicontinuous function which is bounded from below and not identically to +∞.
The Ekeland’s variational principle, see [1], allows for each ε > 0, each δ > 0 and
each x ∈ E such as

Φ(x) ≤ inf
E

Φ + ε,

to build an element v ∈ E minimizing the functional Φv given by

Φv(x) = Φ(x) +
ε

δ
d(x, v).

This principle has wide applications in optimization and nonlinear analysis [1, 2, 4].
If E is a Banach space and Φ : E → R is Gâteaux differentiable, lower semi-

continuous and bounded from below, then the Ekeland’s variational principle pro-
vides the existence of a minimizing sequence (un) such as Φ′(un) → 0, when n →∞.
It is well known that if Φ satisfies the Palais-Smale condition then Φ reaches its min-
imum. But, it is possible to find a minimizing sequence (un) such as Φ′(un) → 0,
when n →∞, not having any convergent subsequence. Let us take the example of
the function Φ(s) = arctan(s).

Ekeland [2] prove that if Φ is bounded below and satisfies the Cerami condition
for every c ∈ R, introduced by [3], then Φ has a minimal point.

In this note, we prove a variant of Ekeland’s variational principle. This result
suggest to introduce a generalization of the classical Palais-Smale condition. An
example is provided showing how it is used to give the existence of minimizer for
functions for which the Palais-Smale condition or the Cerami condition are not
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satisfied. We also generalize some results cited in [1], [5], which the Palais-Smale
condition or Cerami condition has failed.

2. Variants of Ekeland’s variational principle

In this section we will prove the following variant of Ekeland’s variational prin-
ciple. We start with a definition.

Definition 2.1. We say that α : [0,∞[→]0,∞[ is a comparison function of order
k if for every q ≥ k there exist c, d ≥ 0 such that

α((t + 1)s)
α(t)

≤ csq + d, ∀t, s ∈ R+.

Examples:
(1) α(s) = (1 + s)k

(2) α(s) = (1 + s)kLog(2 + s)

Let (E, d) be a complet space metric and u ∈ E. Denote by B̄(u, r) = {x ∈ E |
d(u, x) ≤ r} the closed boule and B(u, r) = {x ∈ E | d(u, x) < r} the open boule.

Theorem 2.2. Let (E, d) be a complete space metric, x0 ∈ E fixed, Φ : E → R a
lower semi-continuous and bounded below. Let α : [0,∞[→]0,∞[ be a comparison
function of order k continuous nondecreasing. Thus for each ε > 0, each δ > 0 and
each u ∈ E such that

Φ(u) ≤ inf
E

Φ + ε

there exists a convergent sequence (zn)n≥1 of E satisfies:
(i) z1 = u, zn ∈ B̄(u, γ(u)) with γ(u) be a positive constant such that u 7→

γ(u)
1+d(x0,u) is bounded in E

(ii) The sequence (d(x0, zn))n≥1 is nondecreasing
(iii)

∑j
n=1

d(zn,zn+1)
α(d(x0,zn+1))

< 2δ, for all j ≥ 1
(iv) for v = limn→∞ zn,Φ(v) ≤ Φ(u)
(v) d(u, v) ≤ min{δα(d(x0, v)), γ(u)}
(vi) for every w ∈ B̄(u, γ(u)) \B(u, d(x0, u)),

Φ(w) ≥ Φ(v)− ε

δα(d(x0, w))
d(v, w).

Proof. Let us define a partial order in E by letting

Φ(r) ≤ Φ(s)− ε

δα(d(x0, r))
d(r, s) (2.1)

and
d(x0, r) ≥ d(x0, s). (2.2)

This relation is easily seen to be reflexive, antisymmetry and transitive. Indeed, it
is clear that r ≺ r, for every r ∈ E. The partial order ≺ is antisymmetry. Indeed,
if r ≺ s and s ≺ r then d(x0, r) = d(x0, s),

Φ(r) ≤ Φ(s)− ε

δα(d(x0, r))
d(r, s) ≤ Φ(r)− 2ε

δα(d(x0, r))
d(r, s).

However d(r, s) = 0 and so r = s. ≺ is transitive, because if r ≺ s and s ≺ t then
d(x0, r) ≥ d(x0, s) ≥ d(x0, t) and

Φ(r) ≤ Φ(s)− ε

δα(d(x0, r))
d(r, s), Φ(s) ≤ Φ(t)− ε

δα(d(x0, s))
d(t, s). (2.3)
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From d(t, s) ≤ d(t, r) + d(r, s), (2.3) becomes

Φ(r) ≤ Φ(s)− ε

δα(d(x0, r))
[d(t, r)− d(t, s)], Φ(s) ≤ Φ(t)− ε

δα(d(x0, s))
d(t, s).

This implies

Φ(r) ≤ Φ(t) +
[ ε

δα(d(x0, r))
− ε

δα(d(x0, s))

]
d(t, s)− ε

δα(d(x0, r))
d(r, t).

Since α(.) is nondecreasing and d(x0, r) ≥ d(x0, s), we obtain

r ≺ s and s ≺ t ⇒
{

Φ(r) ≤ Φ(t)− ε
δα(d(x0,r))d(r, t)

d(x0, r) ≥ d(x0, t)
⇒ r ≺ t.

Moreover, if we denote S = {r ∈ E | r ≺ s}, by lower semi-continuity of E, S is
closed.

Let ε, δ, u and γ(u) given by theorem. Now we define a sequence Sn of subsets
as follows. Start with z1 = u and define

S1 = {w ∈ E | w ≺ z1} ∩ B̄(u, γ(u)),

and inductively

Sn = {w ∈ E | w ≺ zn} ∩ B̄(u, γ(u)), zn+1 ∈ Sn

such that
Φ(zn+1) ≤ inf

Sn

Φ +
1

(n + 1)α(d(x0, zn))
. (2.4)

Clearly by transitivity of ≺ the sequence (Sn)n is a decreasing sequence of non
empty closed sets. Hence also (d(x0, zn))n is a bounded nondecreasing sequence
and converges in [d(x0, u), d(x0, u) + γ(u)].

Now we prove that the diameters of these sets go to zero: diamSn → 0. Indeed,
on one hand w ∈ Sn+1 implies

Φ(w) ≤ Φ(zn+1)−
ε

δα(d(x0, w))
d(w, zn+1) and d(x0, w) ≥ d(x0, zn+1).

From (2.4), it results

Φ(w) ≤ inf
Sn

Φ +
1

(n + 1)α(d(x0, zn))
− ε

δα(d(x0, w))
d(w, zn+1).

This implies

d(w, zn+1) ≤
δ

ε(n + 1)
α(d(x0, w))
α(d(x0, zn))

.

On the other hand, we have that w belongs to B̄(u, γ(u)), we obtain

d(w, zn+1) ≤
δ

ε(n + 1)
α(γ(u) + d(x0, u))

α(d(x0, zn))
. (2.5)

Since the function u 7→ γ(u)
1+d(x0,u) is bounded, then there exists M > 0 such that

γ(u) ≤ M(1 + d(x0, u)). (2.6)

From (2.5), (2.6) and α(.) is a nondecreasing function, it results

d(w, zn+1) ≤
δ

ε(n + 1)
α((M + 1)(1 + d(x0, zn)))

α(d(x0, zn))
. (2.7)
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By (2.7) and α(.) is a comparison function of order k, there exist c, d > 0 such that

d(w, zn+1) ≤
δ

ε(n + 1)
(c(M + 1)k + d), n ∈ N

which gives diam Sn+1 go to 0, when n →∞.
Now we claim that the unique point v ∈ E in the intersection of the Sn’s satisfies

conditions (iii)–(vi) of Theorem 2.2. Let then ∩nSn = {v} and zn converges to v.
Since zj ≺ zj−1 ≺ · · · ≺ z1; and by (2.1), we have

Φ(zj+1) ≤ Φ(zj)−
ε

δα(d(x0, zj+1))
d(zj , zj+1)

≤ Φ(z1)−
j∑

n=1

εd(zj , zj+1)
δα(d(x0, zj+1))

or
j∑

n=1

εd(zj , zj+1)
δα(d(x0, zj+1))

≤ Φ(u)− Φ(zj+1)

≤ inf
E

Φ + ε− Φ(zj+1) ≤ ε.

Thus assertion (iii) is shown. Since v ∈ S1, (iv) is clear. It also results from it that
ε

δα(d(x0, v))
d(v, u) ≤ Φ(u)− Φ(v) ≤ inf

E
Φ + ε− Φ(v) ≤ ε.

The assertion (v) is shown.
Finally, we prove (vi), let w ∈ E such that w ≺ v and w ∈ B̄(u, γ(u)), then we

have w ≺ zn for every n. This gives w ∈ ∩nSn and w = v, which means that v be
an minimal element in B̄(u, γ(u)), i.e.

w ∈ B̄(u, γ(u)) and w ≺ v ⇒ w = v.

Consequently,

Φ(w) > Φ(v)− ε

δα(d(x0, w))
d(v, w)

for every w ∈ B̄(u, γ(u)) \B(x0, d(x0, v)). The proof is complete. �

3. Applications

In this section H denotes a Hilbert space, recall that a function Φ : H → R is
called Gâteaux differerentiable if at every point x0, there exists a continuous linear
functional f ′(x0) such that, for every e ∈ X,

lim
t→0

f(x0 + te)− f(x0)
t

= 〈f ′(x0), e〉.

We always assume that α : [0,∞[→]0,∞[ is a continuous nondecreasing comparison
function of order k. For the rest of the text we will write

Φc = {u ∈ H : Φ(u) ≤ c},

for the sublevel sets as usual.

Definition 3.1. We say that Φ satisfies (Cα
c ) if: Every sequence (un)n ⊂ H such

that Φ(un) → c and Φ′(un)α(‖un‖) → 0 possesses a convergent subsequence.
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Remark 3.2. Note that if α(s) = cte, the (Cα
c ) condition is just the famous Palais-

Smale condition and if α(s) = s + 1, (Cα
c ) is (C) condition introduced by Cerami

in [3].

We can now state the following result.

Theorem 3.3. Let H be a Hilbert space, Φ : H → R lower semi-continuous,
bounded below and Gâteaux differentiable. Let α : [0,∞[→]0,∞[ a continuous non-
decreasing comparison function of order k. Assume that for every ε > 0,

Φa+ε ∩K 6= ∅,
with K is bounded in H and Φ satisfies (Cα

a ), with a = infH Φ, then Φ has a
minimal point.

For the proof of this theorem we will use the following lemmas.

Lemma 3.4. Under the conditions of Theorem 3.3, for every ε > 0, every u ∈ H
such that Φ(u) ≤ infH Φ + ε and every δ > 0 such that

δ ≤ ‖u‖+ 1
2α(3(1 + ‖u‖))

there exists v ∈ H that satisfies
(1) Φ(v) ≤ Φ(u)
(2) ‖v−u‖

α(‖v‖) ≤ δ

(3) for every h ∈ H, t ∈ R such that‖h‖ = 1, |t| ≤ 1 and t < v, h >≥ 0 we have

Φ(v + th) ≥ Φ(v)− ε

δα(‖v + th‖)
|t|.

Proof. Let in Theorem 2.2, x0 = 0, γ(u) = 2(‖u‖ + 1) and d(x, y) = ‖x − y‖
for every x, y ∈ H. Then, by iv) and v) of Theorem 2.2, there exists v ∈ H (
v = limn→∞ zn, (zn) the sequence built in theorem 2.2) such that

Φ(v) ≤ Φ(u) and ‖v − u‖ ≤ δα(‖v‖). (3.1)

Thus assertions 1. and 2. follow.
Now we prove the assertion 3. Let h ∈ H such that ‖h‖ = 1 and |t| ≤ 1 we have

v ∈ B̄(u, ‖u‖ + 1). Indeed, if not ‖u‖ + 1 < ‖v − u‖. Since α(.) is nondecreasing,
δ ≤ ‖u‖+1

2α(3(1+‖u‖)) and by (3.1), it results

‖u‖+ 1 < ‖v − u‖ ≤ δα(‖v‖) ≤ δα(3(1 + ‖u‖))) ≤ ‖u‖+ 1
2

.

This is a contradiction. Furthermore, we have

‖v + th‖ ≤ ‖v‖+ |t|‖h‖ = ‖v‖+ |t|
≤ 2‖u‖+ 1 + 1 = γ(u).

On the other hand, it is clear , since t〈v, h〉 ≥ 0, that

‖v + th‖ = [‖v‖2 + ‖th‖2 + 2t < v, h >]1/2 ≥ ‖v‖.
Thus, by (iv), (v), (vi) of Theorem 2.2, assertions 1, 2, 3 of the lemma follow. �

Lemma 3.5. Under the conditions of Theorem 3.3, we have

|〈Φ′(v), h〉| ≤ ε

δα(‖v‖)
, ∀h ∈ H, ‖h‖ = 1. (3.2)
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Proof. Let h ∈ H such that ‖h‖ = 1 and consider two cases:
Case 1. If 〈v, h〉 ≥ 0 and t > 0, from 3. of Lemma 3.4 and Φ being Gâteaux
differentiable, letting t approach 0, we obtain

〈Φ′(v), h〉 ≥ − ε

δα(‖v‖)
.

Case 2. In the similar way, if 〈v, h〉 ≤ 0 and t < 0 goes to 0, we have

〈Φ′(v), h〉 ≤ ε

δα(‖v‖)
, ∀h, ‖h‖ = 1.

Thus the Lemma 3.5 follows. �

Proof of Theorem 3.3. For ε = 1
n , with n ≥ 1, there exists a sequence (un) ⊂ K

such that
Φ(un) ≤ a +

1
n

and, since (un) is bounded, there exists δ > 0 such that

δ ≤ ‖un‖+ 1
α(3(1 + ‖un‖))

,∀n ≥ 1.

Consequently, by Lemma 3.4 and Lemma 3.5, there exists a sequence (vn) satisfying
(i) Φ(vn) ≤ Φ(un)
(ii) ‖Φ′(vn)‖α(‖vn‖) → 0, as n →∞.

The (Cα
a ) condition implies that (vn) has a subsequence (vnk

) convergent to some
point u. Since Φ is lower semi-continuous, we get

inf
H

Φ ≤ Φ(u) ≤ lim inf
k→∞

Φ(vnk
) ≤ inf

H
Φ.

Therefore, Φ(u) = infH Φ. �

Now, we illustrate Theorem 3.3 by an example where the function Φ checks the
conditions of Theorem 3.3, but the Palais-Smale condition and Cerami condition
do not hold.
Example. Consider

f(s) =


arctan(s) if s ≤ 0
sin(s) if 0 ≤ s ≤ 2π

arctan(s− 2π) if s ≥ 2π.

and Φ(u) = f(2π + Log(‖u‖2 + 1) − (‖u‖2 + 1)
1
2 ) for u ∈ H. It is clear that Φ is

C1 functional and a = infH Φ = −1. Take

K = {u ∈ H : log(‖u‖2 + 1)− (‖u‖2 + 1)
1
2 ∈ [−2π, 0]},

it is easy to see that Φ−1+ε ∩K 6= ∅ for every ε > 0. On the other hand, Φ satisfies
(Cα

c ), with α(s) = s2 + 1, and by Theorem 3.3, Φ has a minimal point u0 which
Φ′(u0) = 0.

Theorem 3.6. Let Φ : H → R be Gâteaux differentiable and bounded below, says
a infH Φ. Assume that α : [0,∞[→]0,∞[ be a continuous nondecreasing function
such that

∫∞
1

1
α(s) ds = +∞. If Φ satisfies (Cα

a ) then the set Φa+β is bounded, for
some β > 0.

The main point to prove Theorem 3.6 is the following.
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Lemma 3.7. Under the conditions of Theorem 3.6, for every ε > 0, every u ∈ H
such that Φ(u) ≤ infH Φ + ε and every δ > 0 there exists v ∈ H satisfies

(1) Φ(v) ≤ Φ(u)
(2) ‖v−u‖

α(‖v‖) ≤ δ

(3) for every h ∈ H such that ‖h‖ = 1, we have

|〈Φ′(v), h〉| ≤ ε

δα(‖v‖)
.

Proof. Let in Theorem 2.2, x0 = 0 and d(x, y) = ‖x− y‖ for every x, y ∈ H. From
theorem 2.2 there exists a sequence (zn)n≥1 satisfying (‖zn‖) is nondecreasing and

j∑
n=1

‖zn − zn+1‖
α(‖zn+1‖)

< 2δ, ∀j ≥ 1. (3.3)

However, since
∫∞
1

1
α(s) ds = +∞ there exists γ > 0 such that

δ ≤ 1
2

∫ ‖u‖+γ

‖u‖

1
α(s)

ds. (3.4)

Put v = limn→∞ zn and γ(u) = 2‖u‖+ γ + 1 in Theorem 2.2. Thus, by (iv)-(v) of
Theorem 2.2, we obtain

Φ(v) ≤ Φ(u) and ‖v − u‖ ≤ δα(‖v‖).

For the proof of assertion 3, it is enough to verify that h ∈ H such that ‖h‖ = 1
we have v + th ∈ B̄(u, γ(u)) for every t sufficiently small. Now we prove that

‖zn‖ ≤ ‖u‖+ γ, ∀n ≥ 1. (3.5)

If not, there exists j ≥ 1 such that ‖zj+1‖ > ‖u‖ + γ. However, by (3.4) and α is
nondecreasing, we obtain

2δ ≤
∫ ‖zj+1‖

‖z1‖

1
α(s)

ds

≤
j∑

n=1

∫ ‖zn+1‖

‖zn‖

1
α(s)

ds

≤
j∑

n=1

‖zn+1‖ − ‖zn‖
α(‖zn+1‖)

≤
j∑

n=1

‖zn − zn+1‖
α(‖zn+1‖)

.

This contradicts (3.3). Using (3.5), we have

‖v − u‖ ≤ 2‖u‖+ γ. (3.6)

Thus, for |t| ≤ 1 and h ∈ H such that ‖h‖ = 1 and by (3.6), it results

‖v + th− u‖ ≤ 2‖u‖+ γ + 1 = γ(u).

Finally, the Lemma 3.5 allows to conclude. The proof is complete. �
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Proof of theorem 3.6. Suppose, by contradiction, that Φa+β is unbounded for all
β > 0. Then, there exists (un) such that ‖un‖ ≥ n and

Φ(un) ≤ a +
1
n

.

and Lemma 3.7 with ε = ( 1
n )2, δ = 1

n implies the existence of (vn) satisfying
(i) Φ(vn) ≤ Φ(un)
(ii) ‖vn − un‖ ≤ 1

nα(‖vn‖)
(iii) ‖Φ′(vn)‖α(‖vn‖) → 0, as n →∞.

We reach a contradiction with (Cα
a ), since (i)-(iii) give respectively

(1) Φ(vn) → a, as n →∞,
(2) ‖vn‖ → ∞, as n →∞,
(3) ‖Φ′(vn)‖α(‖vn‖) → 0, as n →∞.

�

As an immediate consequence of the above results we have the following result.

Corollary 3.8. Let H be a Hilbert space, Φ : H → R lower semi-continuous,
bounded below and Gâteaux differentiable. Assume that α : [0,∞[→]0,∞[ be a
continuous nondecreasing function such that

∫∞
1

1
α(s) ds = +∞. If Φ satisfies (Cα

a ),
with a = infH Φ, then Φ has a minimal point.
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