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ON THE SPECTRUM OF THE P-LAPLACIAN OPERATOR FOR
NEUMANN EIGENVALUE PROBLEMS WITH WEIGHTS

SIHAM EL HABIB, NAJIB TSOULI

Abstract. This paper is devoted to study the spectrum for a Neumann eigen-

value problem involving the p-Laplacian operator with weight in a bounded
domain.

1. Introduction

Let Ω be a smooth bounded domain in RN , N ≥ 1, 1 < p < +∞ and m ∈ Lr(Ω),
with r = r(N, p) satisfying the conditions

r > N/p if 1 < p < N

r = 1 if p > N

r > p if p = N

(1.1)

We assume that meas(Ω+) 6= 0, where Ω+ = {x ∈ Ω/m(x) > 0}. We consider the
nonlinear eigenvalue problem

−∆pu = λm(x)|u|p−2u in Ω,

∂u

∂ν
= 0 on ∂Ω,

(1.2)

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator.
The goal of this work is to prove the existence of a sequence of non trivial eigen-

values for the problem (1.2), and we prove the simplicity, isolation and monotonicity
with respect to the weight of the first eigenvalue λ1 defined by

λ1 = inf{‖∇u‖p
p : u ∈ W 1,p(Ω) and

∫
Ω

m(x)|u|pdx = 1}. (1.3)

The semilinear elliptic problems has been treated by many authors; see, e.g. [3,
11, 12, 16] and the references therein. In the case of bounded weight: Anane
[1] with Dirichlet boundary conditions and Dakkak [8] with Neumann boundary
conditions, proved the existence, simplicity and isolation of the first eigenvalue.
Cuesta [7] (for the p-Laplacian) and in Touzani [17] (for the Ap-Laplacian: Apu =
ΣN

i,j=1
∂

∂xi
(|∇u|p−2

a aij(x) ∂u
∂xj

), |ξ|2a = ΣN
i,j=1aij(x)ξiξj) studied the above properties
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in the case of Dirichlet problem with weight in Lr(Ω), with r satisfying (1.1). Cuesta
[7] showed these results for any r satisfying the conditions (1.1), by using Harnack’s
inequality and Picone’s identity. However, in [17], the isolation was establisehd with
some appropriate condition on r (r > Np′) in order to use the regularity results
established by Di Benedetto [9]. We will try to adapt these results to the case of
Neumann boundary conditions.

This paper is organized as follows. In section 2, we recall some definitions and
results that we will use later. In section 3, we prove that the problem (1.2) has
a sequence of eigenvalues, by using a perturbation of the initial problem ([7]),
and then by applying the Ljusternik-Schnirelmann theory ([4, 5]) to the perturbed
problem. In section 4, we show simplicity, isolation and monotonicity of the first
eigenvalue λ1.

2. Preliminaries

Note by W 1,p(Ω) the Sobolev space with norm ‖.‖1,p = (‖.‖p
p + ‖∇(.)‖p

p)
1/p,

where ‖.‖p is the Lp-norm.
We say that λ ∈ R is an eigenvalue of problem (1.2) if there exists u ∈ W 1,p(Ω)\

{0} such that∫
Ω

|∇u|p−2∇u∇ϕ dx = λ

∫
Ω

m(x)|u|p−2uϕ dx ∀ϕ ∈ W 1,p(Ω). (2.1)

Theorem 2.1 ([1]). Let v > 0 and u ≥ 0 be two continuous functions in Ω,
differentiable a.e, and

L(u, v) = |∇u|p + (p− 1)
up

vp
|∇v|p − p

up−1

vp−1
|∇v|p−2∇v∇u,

R(u, v) = |∇u|p − |∇v|p−2∇(
up

vp−1
)∇v.

Then we have

(i) L(u,v) =R(u,v)
(ii) L(u, v) ≥ 0 a.e. in Ω
(iii) L(u, v) = 0 a.e. in Ω if and only if there exists k ∈ R such that u = kv .

Proposition 2.2. Let u ∈ W 1,p(Ω) be an eigenfunction associated to λ then

(i) u ∈ L∞(Ω)
(ii) u is locally Hölder continuous; i.e., there exists α = α(p, N, ‖λm‖r) in ]0, 1[

such that for each Ω′ ⊂ Ω, there exists C = C(p, N, ‖λm‖s,dist(Ω′, ∂Ω))
such that

|u(x)− u(y)| ≤ C‖u‖∞|x− y|α ∀x, y ∈ Ω′.

The proof of (i) can be found in [10, propositions 1.2 and 1.3], and of (ii) in [14,
theorem 8].

Proposition 2.3. Let u ∈ W 1,p(Ω) be a nonnegative weak solution of (1.2), then
either u ≡ 0 or u(x) > 0 for all x ∈ Ω.

The proof is a direct consequence of Harnack’s inequality (see [15, theorem 5, 6,
9]).
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3. Existence of solutions

In this section, we establish the existence of solutions by using a perturbation of
problem (1.2) in order to use the general theory of nonlinear eigenvalue problems.
So, let us consider the perturbed problem

−∆pu + ε|u|p−2u = λm(x)|u|p−2u in Ω,

∂u

∂ν
= 0 on ∂Ω,

(3.1)

where ε is enough small (0 < ε < 1), λ > 0. We first show that problem (3.1)
has at least one sequence of eigenvalues, and deduce the solutions of problem (1.2)
when ε tends to 0.

Let X = W 1,p(Ω) , Gε(u) = 1
p‖∇u‖p

p + ε
p‖u‖

p
p, and F (u) = 1

p

∫
Ω

m(x)|u|pdx. It
is well known that F and Gε are differentiable [8]. The problem (3.1) is equivalent
to the problem G′ε(u) = λF ′(u). Let us consider the functional Φε : W 1,p(Ω) → R
defined by Φε(v) = (Gε(v))2 − F (v).

Lemma 3.1. The eigenvalues and eigenfunctions associated to the problem (3.1)
are entirely determined by a non trivial critical values of Φε.

Proof. Let u 6≡ 0 be a critical point of Φε associated with a critical value cε then
Φε(u) = cε and Φ′ε(u) = 0, i.e cε = −(Gε(u))2 < 0 and 〈Φ′ε(u), v〉 = 1

2
√
−cε

〈F ′(u), v〉
for any v ∈ C∞c (Ω). Thus we deduce that λ = 1

2
√
−cε

is a positive eigenvalue of
(3.1) and u is its associated eigenfunction.

Conversely, let (u 6≡ 0, λ) be a solution of (3.1), then for every β ∈ R∗, βu

is also an eigenfunction associated to λ. In particular for β = ( 1
2λGε(u) )

1
p , v =

(2λGε(u))−
1
p u is an eigenfunction associated to λ = 1

2
√
−cε

, thus v is a critical
point associated to the critical value cε = − 1

4λ2 . �

Let us now consider the sequence

cn,ε = inf
K∈An

sup
v∈K

Φε(v), (3.2)

where An = {K ⊂ W 1,p(Ω) : K is compact symmetric and γ(K) ≥ n}, n ≥ 1.

Theorem 3.2. The values cn,ε defined by (3.2) are the critical values of Φε, more-
over cn,ε < 0 for n ≥ 1 and limn→∞ cn,ε = 0.

Proof. The proof of this theorem is based on the fundamental theorem of multi-
plicity [6] and the approximation of Sobolev imbedding by operators of finite rank.
We first show that for all n ≥ 1, cn,ε is a critical value of Φε and cn,ε < 0.

Since φε is even and is C1 on W 1,p(Ω), then the result follows from the funda-
mental theorem of multiplicity if Φε satisfies the following conditions:

(i) Φε is bounded below
(ii) Φε verify the Palais Smale condition (PS).
(iii) for all n ≥ 1, there exists a compact symmetric subset K such that γ(K) =

n and supv∈K{Φε(v)} < 0.

Let us verify assertion (i): Let us take ε fixed (0 < ε < 1) and let u ∈ W 1,p(Ω),
then by Hölder’s inequality and the Sobolev imbeddings; there exist k1 > 0 , k2 > 0
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and k3 > 0 such that:

∫
Ω

m|u|pdx ≤


k1‖m‖r‖u‖p

1,p if 1 < p < N

k2‖m‖r‖u‖N
1,N if p = N

k3‖m‖r‖u‖p
1,p if p > N

In addition, note that ‖u‖1,p,ε = (‖∇u‖p
p + ε‖u‖p

p)
1
p defines a norm on W 1,p(Ω)

equivalent to the usual norm on W 1,p(Ω). It is easy to see that there exists c1 > 0,
c2 > 0 and c3 > 0 such that for Φε, we have the following inequalities:

Φε(u) ≥


c1
p2 ‖u‖p

1,p(ε
2‖u‖p

1,p − p‖m‖r) if 1 < p < N
c2
N2 ‖u‖N

1,N (ε2‖u‖N
1,N − p‖m‖r) if p = N

c3
p2 ‖u‖p

1,p(ε
2‖u‖p

1,p − p‖m‖r) if p > N

From where by treating each case one has: Φε is bounded below and Φε(u) → +∞
as ‖u‖1,p → +∞.

(ii) Let us now show that Φε verify the palais Smale condition: Let (un)n be a
sequence in W 1,p(Ω) such that (Φ(un))n is bounded and Φ′(un) → 0 in (W 1,p(Ω))′.
Since Φε is coercive then (un)n is bounded in W 1,p(Ω), thus there exists a subse-
quence still denoted (un) such that un converges to u strongly in Lp(Ω) and weakly
in W 1,p(Ω). Suppose that ‖un‖1,p converges to α ≥ 0. We distinguish two cases:
Case 1: α = 0. Since un ⇀ u in W 1,p(Ω) and ‖un‖1,p → 0 then un → 0 in
W 1,p(Ω), consequently, the condition (PS) is satisfied.
Case 2: α > 0. For n ≥ 1 we have:

Φ′ε(un) = 2Gε(un)G′ε(un)− F ′(un)

then

G′ε(un) =
1

2Gε(un)
(Φ′ε(un) + F ′(un))

i.e.,

[
p

2
(Φ′ε(un) + m|un|p−2un)]/(‖∇un‖p

p + ε‖un‖p
p) = G′ε(un).

Since u 7→ m|un|p−2u is strongly continuous, ‖un‖1,p → α > 0 and Φ′ε(un) → 0,
then the expression

ûn = [
2
p
(Φ′ε(un) + m|un|p−2un)]/(‖∇un‖p

p + ε‖un‖p
p)

converges strongly in (W 1,p(Ω))′. However, G′ε is continuous, thus un = (G′ε)
−1ûn

converges strongly in W 1,p(Ω), from where the (PS) condition holds.
(iii) For all n ≥ 1, there exists a compact symmetric subset K such that

γ(K) = n and sup
u∈K

Φε(u) < 0.

Indeed, since meas(Ω+) 6= 0, then there exists a family of balls (Bi)1≤i≤n in Ω
such that Bi ∩ Bj = ∅ if i 6= j and meas(Ω+ ∩ Bi) 6= 0. By approximating the
characteristic function χΩ+∩Bi

by C∞c (Ω) functions in Lp, there exists a sequence
(ui)1≤i≤n ⊂ C∞c (Bi) such that

∫
Ω

m|ui|pdx > 0 for all i = 1, . . . , n. We normalize
ui in order to have F (ui) = 1. Let Xn be the subset generated by (ui)i. For all
u ∈ Xn, we have u = Σn

i=1αiui, and F (u) = Σn
i=1|αi|p. Then u 7→ (F (u))

1
p define

one norm on Xn; moreover, since ε is fixed it follows that (‖∇u‖p
p + ε‖u‖p

p)
1/p is
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also a norm on W 1,p(Ω). However, the dimension of Xn is finite, then there exists
c > 0 such that

cF (u) ≤ Gε(u) ≤ 1
c
F (u) ∀ u ∈ Xn.

Let K be defined as

K = {u ∈ W 1,p(Ω) such that
c2

3
≤ F (u) ≤ c2

2
}

It is clear that K1 = K ∩ Xn 6= ∅ and supu∈K1
Φε(u) ≤ − c2

12 < 0. Since Xn is
isomorphous to Rn, one can identify K1 to a crown K ′

1 of Rn such that Sn−1 ⊂
K ′

1 ⊂ Rn \ {0} where Sn−1 is the unit sphere of Rn. then γ(K1) = n and the result
follows.

For the proof of limn→∞ cn,ε = 0, we use an approximation of Sobolev imbed-
dings by operators of finite rank; see for example [17]. �

Remark 3.3. It is clear that the sequence (λn,ε)n defined by the formula λn,ε =
1

2
√
−cn,ε

for all n ≥ 1 is a sequence of positive eigenvalues of (3.1) which satisfy

limn→+∞ λn,ε = +∞.

Next, we show that problem (1.2) has a sequence of eigenvalues (λn)n which is
the limit of the sequence (λn,ε)n, as ε → 0 .

Remark 3.4. We write λn,ε as λn,ε = infK∈Γn
supu∈K Gε(u), where

Γn = {K ⊂ W 1,p(Ω) \ {0} : K is compact, symmetric γ(K) ≥ n,
∫

m|u|p = 1}.

For more details see [8]. Put

G(u) =
1
p
‖∇u‖p

p and λn = inf
K∈An

sup
u∈K

G(u).

Lemma 3.5. The following assertions hold:
(i) limε→0 λn,ε = λn

(ii) λn → +∞ as n → +∞.

Proof. (i) Let ε > 0, from Remark 3.4, we have λn,ε ≥ λn. Let α > 0 such that
λn < α. Then there exists K = K(α) ∈ An such that λn ≤ supu∈K G(u) < α. Set
δ = supu∈K ‖u‖p. Then

λn ≤ λn,ε ≤ sup
u∈K

Gε(u) ≤ sup
u∈K

G(u) +
εδ

p

For ε = 1
k → 0, there exists k(α) such that for every k ≥ k(α), we obtain

supu∈K G(u) + δ
kp ≤ α. Thus λn ≤ λn,ε ≤ α for all k ≥ k(α). From where

we obtain the desired result.
(ii) From (3.2), we have for all m,m′ ∈ Lr(Ω) such that m′ ≥ m; cn,ε(m) ≤

cn,ε(m′), thus λn,ε(m) ≥ λn,ε(m′). When ε → 0, we obtain λn(m′) ≤ λn(m). Let
δ > 0, and set

m′(x) =

{
m(x) if m(x) ≥ δ

δ if m(x) < δ

It is clear that λn,ε(m′) ≤ λn(m′)+ε/δ. Since (λn,ε(m′))n ↗∞, limn→∞ λn(m′) =
+∞. The result follows. �
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Corollary 3.6. (λn)n is a sequence of positives eigenvalues associated to the Neu-
mann problem (1.2).

Proof. Let n ∈ N∗ fixed and ε = 1
k , k ∈ N∗. There exists a sequence (uk)k∈N∗ of

eigenfunctions associated with (λn,k)k∈N∗ which verify Gk(uk) + ‖uk‖p
p = 1 then

(uk)k is bounded in W 1,p(Ω). Hence for a subsequence (uk)k, (uk)k converges
strongly in Lp(Ω), and weakly in W 1,p(Ω) towards a limit u. uk → u. Indeed,
set J(u) = |u|p−2u. The operator G′ + J is of S+ type and G′ + J : W 1,p(Ω) →
(W 1,p(Ω))′ is an homeomorphism (see [13]), then (uk)k converges strongly to u.
However, G′(uk) + 1

k |uk|p−2uk = λn,kF ′(uk) and F ′ is strongly continuous on
W 1,p(Ω), thus G′(u)= λnF ′ and G(u) + ‖u‖p

p = 1. Consequently, (u, λn) is a
solution of (1.2). �

4. On the first eigenvalue

In this section, we are going to prove some properties of the first eigenvalue λ1

of problem (1.2) defined by (1.3). We refer in this section to the work of Cuesta
[7]; so we prove that λ1 is simple, isolated and strictly monotone with respect to
the weight.

Proposition 4.1. λ1 is an eigenvalue of problem (1.2). Moreover λ1 > 0 if and
only if m changes its sign on Ω and

∫
Ω

m(x)dx < 0.

The proof of the above proposition is a straight application of [15, Theorem 1.2].

Proposition 4.2. The eigenfunctions associated with λ1 > 0 are either positive or
negative in Ω.

Proof. Let u be an eigenfunction associated to λ1. Without loss of generality, we
can suppose that u ∈ M = {u ∈ W 1,p(Ω) :

∫
Ω

m|u|p = 1}. Then, the infimum in
(1.3) is achieved at one u ∈ W 1,p(Ω). It’s easy to prove that ‖∇|u|‖p = ‖∇u‖p and
|u| ∈ M , it follows then that |u| is an eigenfunction associated to λ1, and therefore,
from Proposition 2.3, the result holds. �

Proposition 4.3. Any eigenfunction associated with a positive eigenvalue λ 6= λ1

changes its sign.

Proof. For the proof, we use the Picone’s identity (see Theorem 2.1). Indeed, let
(v, λ), (u, λ1) be two positive solutions of (1.2) and suppose that u > 0. Suppose
also that v ≥ 0 (the case v ≤ 0 is proved similarly). By Theorem 2.1, we have∫

Ω

L(u, v + ε)dx =
∫

Ω

R(u, v + ε)dx ≥ 0 ∀ε > 0.

However, ∫
Ω

R(u, v + ε)dx =
∫

Ω

[|∇u|p − |∇v|p−2∇(
up

(v + ε)p−1
)∇v]dx,

By taking up

(v+ε)p−1 as a test function in the formula 〈−∆pv, ϕ〉 = λ〈m|v|p−2v, ϕ〉,
we obtain ∫

Ω

[λ1mup − λmvp−1 up

(v + ε)p−1
]dx ≥ 0

i.e., ∫
Ω

mup(λ1 − λ
vp−1

(v + ε)p−1
)dx ≥ 0.
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Let ε goes to 0, we obtain
∫
Ω

mup(λ1−λ)dx ≥ 0 which is impossible because λ > λ1

and
∫
Ω

mupdx > 0. Hence, v changes its sign on Ω. �

Proposition 4.4 (Simplicity). λ1 is simple in the sense that if (u, λ1) and (v, λ1)
are two solutions associated to the problem (1.2), then there exists α ∈ R such that
u = αv.

The proof of the above proposition is the same as in the preceding proposition.
We use the assertion (iii) of Theorem 2.1 (see preliminaries section).

Now, we establish the isolation of the first eigenvalue. We use for this the same
method as in [2, 7, 17]. We will show first the following estimates:

Proposition 4.5. For m ∈ Lr(Ω) with r satisfying the conditions (1.1), the fol-
lowing estimates hold:

min(meas(Ω+),meas(Ω−)) ≥ (λCp‖m‖r)σ

with

σ =


rN

N−rp if 1 < p < N
r

1−N if p = N
N

N−p if p > N

(4.1)

Proof. Let u be an eigenfunction associated with λ, then∫
Ω

|∇u|p−2∇u∇v dx = λ

∫
Ω

m(x)|u|p−2uv dx ∀v ∈ W 1,p(Ω). (4.2)

For λ 6= λ1, u changes its sign i.e. u+ 6= 0 and u− 6= 0, so, since u+ ∈ W 1,p(Ω) we
have ∫

Ω

|∇u+|pdx = λ

∫
Ω

m(x)|u+|p. (4.3)

Case 1: 1 < p < N . By Hölder inequality, we have

λ

∫
Ω

m|u+|pdx ≤ ‖m‖r‖u+‖p
p∗(meas(Ω+))1−

1
r−

p
p∗

where

p∗ =

{
pN

N−p if p < N

+∞ if p ≥ N

On the other hand, using Sobolev imbeddings, there exists a constant C depending
on p and N such that ‖u+‖p∗ ≤ C(

∫
Ω
|∇u+|p)

1
p dx. Hence from (4.3) it follows that

‖∇u+‖p
p ≤ λCp‖m‖r‖u+‖p

1,p(meas(Ω+))
rp−N

rN

and meas(Ω+) ≥ (λCp‖m‖r)
rN

N−rp .
Case 2: p = N . In this case, we proceed in the same way as previously. On the
one hand, we have

λ

∫
Ω

m|u+|Ndx ≤ λ‖m‖r‖u+‖N−1
N ‖u+‖s

where s = Nr
r−N . From Hölder inequality, we have

‖u+‖N−1
N ≤ ‖u+‖N−1

s (meas(Ω+))(1−
N
s )( N−1

N )
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On the other hand, while s > 1, by the Sobolev imbedding W 1,N ↪→ Ls(Ω), there
exists C > 0 such that ‖u+‖s ≤ C‖∇u+‖N . However, it results

‖∇u+‖N
N ≤ λCN‖m‖r‖∇u+‖N

N (meas(Ω+))(1−
N
s )( N−1

N ).

Finally, we obtain meas(Ω+) ≥ (λCN‖m‖r)
r

1−N .
Case 3: p > N . In this case r = 1. From (4.3), we have∫

Ω

|∇u+|pdx ≤ λ‖m‖1‖u+‖p
∞,

and by Morrey’s lemma, there exists C > 0 depending on p and N such that

‖u+‖∞ ≤ C(meas(Ω+))
1
N−

1
p ‖∇u+‖p.

Thus, meas(Ω+) ≥ (λCp‖m‖1)
N

N−p .
In conclusion , in the three cases we obtain the desired estimate for u+. By pro-

ceeding in the same way for u−, from (4.3) (for u−), we deduce the same estimates
for u−. From where the proposition 4.5 holds. �

The following proposition is a consequence of the previous proposition.

Proposition 4.6 (Isolation). λ1(m) is isolated, that is, there exists β > λ1 such
that if λ ∈]0, β[ then λ = λ1 or λ is not an eigenvalue associated to (1.2).

Proof. Let u be an eigenfunction associated with λ ∈]0, β[. Then
∫
Ω
|∇u|pdx =

λ
∫
Ω

m(x)|u|p. Since
∫
Ω
|∇u|pdx ≥ λ1

∫
Ω

m(x)|u|p, it follows that λ1 ≤ λ; thus λ1

is isolated on the left. Assume now by contradiction that there exists a sequence of
eigenvalues of (1.2) (λn)n decreasing to λ1, thus one has a sequence of eigenfunctions
un associated with λn. We can suppose that ‖∇un‖ = 1, for all n ∈ N. (un) is
bounded in W 1,p(Ω), so there exists a subsequence (still denoted un) such that un

converges weakly in W 1,p(Ω) and strongly in Lp(Ω) to a limit u ∈ W 1,p(Ω). On
the other hand, we have∫

Ω

|∇u|pdx ≥ lim inf
n→∞

∫
Ω

|∇un|pdx = λ1

then by the definition of λ1, we conclude that
∫
Ω
|∇un|pdx = λ1 and u is an

eigenfunction associated to λ1. It follows then by Proposition 4.4 that either u > 0
or u < 0. Suppose that u > 0 (the other case is analogous). By Egorov and Lusin
theorem, we obtain for every ε > 0, there exists Nε > 0 such that

meas({x ∈ Ω, un(x) > 0}) ≥ meas(Ω)− ε, ∀n ≥ Nε.

Then for ε suitably chosen by the estimates (4.1) (for more details see [2, p. 24]),
we obtain a contradiction with the estimates (4.1) related to meas(Ω−). �

The last proposition in this paper deals with the monotonicity of λ1 with respect
to the weight.

Proposition 4.7. λ1 verify the monotonicity and the monotonicity strict with
respect to the weight, i.e. if m′ ≤ m then λ1(m) ≤ λ1(m′), moreover if m′ ≤ m
and meas({x ∈ Ω : m′(x) < m(x)}) 6= 0 then λ1(m) < λ1(m′).

Proof. Let u > 0 be an eigenfunction associated to λ1(m′). By λ1(m′) definition
we have

0 <
1

(λ1(m′))

∫
Ω

|∇u|pdx =
∫

Ω

m′updx ≤
∫

Ω

mupdx.
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Since

λ1(m) = inf{‖∇u‖p
p/u ∈ W 1,p(Ω) and

∫
Ω

mupdx = 1}

and
u

(
∫
Ω

mupdx)1/p
∈ W 1,p(Ω) verifies

∫
Ω

m(
up∫

Ω
mupdx

)dx = 1

it follows that

λ1(m) ≤
∫
Ω
|∇u|pdx∫

Ω
mupdx

≤
∫
Ω
|∇u|pdx∫

Ω
m′updx

= λ1(m′)

and from where it follows that λ1(m) ≤ λ1(m′). The equality holds if and only if∫
Ω

mupdx =
∫

Ω

m′updx.

However, u > 0 thus m ≡ m′, which is a contradiction with meas({x ∈ Ω/m′(x) <
m(x)}) 6= 0. �
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