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NON-AUTONOMOUS INHOMOGENEOUS BOUNDARY CAUCHY
PROBLEMS

MOHAMMED FILALI, BELHADJ KARIM

ABSTRACT. In this paper we prove existence and uniqueness of classical solu-
tions for the non-autonomous inhomogeneous Cauchy problem

Lu(t) = AWl + 1), 0<s<E<T,
L(tyu(t) = S(tu(t) + g(t), 0<s<t<T)
u(s) = z.

The solution to this problem is obtained by a variation of constants formula.

1. INTRODUCTION

Consider the boundary Cauchy problem

%u(t) — Abu(t), 0<
Lt)u(t) = ®(Hu(t), 0<s<t<T, (1.1)
u(s) =

(

x.
In the autonomous case (A(t) = A, L(t) = L), the Cauchy problem was
studied by Greiner [3]. The author used the perturbation of domains of infinitesi-
mal generators to study the homogeneous boundary Cauchy problem. He has also
showed the existence of classical solution of via a variation of constants for-
mula. In the non-autonomous case, Kellerman [5] and Lan [6] showed the existence
of an evolution family (U(t, s))o<s<t<r which provides classical solutions of homo-

geneous boundary Cauchy problems. Filali and Moussi [2] showed the existence
and uniqueness of classical solutions to the problem

%u(t) =At)u(t), 0<s<t<T,
L(tyu(t) = ®(t)u(t) + g(t), 0<s<t<T, (1.2)
u(s) = .
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In this paper, we prove existence and uniqueness of classical solutions to the problem

d
() = A@u() + f(2),

L(t)u(t) = @(t)u(t) + (1),
u(s) = x.

<s<t<T

)

<s<t<T (1.3)

7

Our technique consists on transforming (|1.3)) into an ordinary Cauchy problem and
giving an equivalence between the two problems. The solution is explicitly given
by a variation of constants formula.

2. EVOLUTION FAMILY

Definition 2.1. A family of bounded linear operators (U(t, s))o<s<t<r on X is an
evolution family if

(a) U(t,")U(r,s) =U(t,s) and U(t,t) = Id for all 0 < s <r <t <T; and

(b) the mapping (t,s) — U(t, s)x is continuous on A, for all x € X with

A={(ts)eR::0<s<t<T}

Definition 2.2. A family of linear (unbounded) operators (A(t))o<¢<7 on a Banach
space X is a stable family if there are constants M > 1, w € R such that Jw, +o00[C
p(A(t)) for all 0 < ¢t < T and

|| f[lRuA(mH <t

for A > w and any finite sequence 0 < t; <t; <--- <t, <T.

Let D, X and Y be Banach spaces, D densely and continuously embedded in X.
Consider families of operators A(t) € L(D,X), L(t) € L(D,Y), ®(t) € L(X,Y)
for 0 <t < T. In this section, we use the operator matrices method to prove the
existence of classical solutions for the non-autonomous inhomogeneous boundary
Cauchy problem (L.3). We use the following theorem due to Tanaka [9].

Theorem 2.3. Let (A(t))o<i<t be a stable family of linear operators on a Banach
space X such that

(a) the domain D = (D(A(t),]||.|lp) is a Banach space independent of t,
(b) the mapping t — A(t)x is continuously differentiable in X for every x € D.

Then there is an evolution family (U(t,s))o<s<i<r on D. Moreover, we have the

following properties: (1) U(t,s)D(s) C D(t) for all0 < s <t <T, where
D(r)={x € D:A(r)r € D},0<r < T;

(2) the mapping t — U(t, s)x is continuously differentiable in X on [s,T] and

%U(t, s)x=A@)U(t,s)z

for all x € D(s) and t € [0,T].

We will assume that the following hypotheses:

(H1) The mapping t — A(t)x is continuously differentiable for all z € D.

(H2) The family (Ao (t))o<i<t, Ao(t) = A(t)/ker L(t) the restriction of A(t) to
ker L(t), is stable, with My and wy constants of stability.
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(H3) The operator L(t) is surjective for every ¢ € [0,7] and the mapping ¢t —
L(t)x is continuously differentiable for all z € D.

(H4) The mapping ¢t — ®(t)z is continuously differentiable for all z € X.

(H5) There exist constants v > 0 and wy € R such that

)\—wl

IL@)z]ly > ]l x (2.1)

for x € ker(M — A(t)), w1 < X and ¢ € [0,T).
Note that under the above hypotheses, Lan [6] has showed that Ag(t) generates
an evolution family (U(t, s))o<s<t<r such that:
(a) U(t,r)U(r,s) =U(t,s) and U(¢,t) = Idx for all 0 < s <t < T}
(b) (t,s) — U(t,s)x is continuously differentiable on A for all x € X with
A={(ts)eR>:0<s<t<T}
(c) there exists constants My > 1 and wy € R such that [|U(t, s)|| < Mpe“o*=9).

The following results with will be used in this article.

Lemma 2.4 ([3]). Fort € [0,T] and X € p(Ao(t)), following properties are satisfied:
(1) D= D(Ao(t)) ® ker(A — A(t))
(2) L(t)/ker(AI — A(t)) is an isomorphism from ker(AI — A(t)) onto Y
(3) t Ly = (L(t)/ ker(A — A(t))) ™! is strongly continuously differentiable.

As a consequence of this lemma, we have L(¢)Ly, = Idy, Ly.L(t) and (I —
Ly.L(t)) are the projections from D onto ker(AI — A(¢)) and D(Ao(t)) .

3. THE HOMOGENEOUS PROBLEM

In this section, we consider the Cauchy problem (L.I). A function u : [s,T] — X
is called classical solution if it is continuously differentiable, u(t) € D for all 0 <
s <t <T and u satisfies .

We now introduce the Banach spaces Z = X x Y, Zy = X x {0} C Z and we
consider the projection of Z onto X: p;(z,y) = x. Let M(t) be the matrix-valued
operator defined on Z by

A(t) 0

where

and D(M(t)) = D x {0}.
Now, we consider the Cauchy problem

d

%u(t) =M(t)u(t), 0<s<t<T,
u(s) = (x,0).

We start by proving the following lemma.

Lemma 3.1. Assume that hypothesis (H1)-(H5) hold. Then, the family of opera-
tors (M(t))o<i<t s stable.



194 M. FILALI, B. KARIM EJDE/CONF/14

Remark 3.2. Since L) (L(t) is the projection from D onto ker(A — A(t)) and
x— LyL(t)xz € D(Ap(t)), we have

R(A Ap(t)) (M — A(t))z) + L L(t)x
= R(A, Ao(t)) (M — A(t))(x — Ly L(t)x) + L+ L(t)x
and
RN, Ao(8)) (M — A(t))x) + Ly L(t)x = x. (3.2)

Proof of Lemma[3.1] Since M (t) is a perturbation of [(¢) by a linear bounded op-
erator on E, hence, in view of the perturbation result [7, Theorem 5.2.3], it is
sufficient to show the stability of [(¢). For A > wg and A # 0, let

R(\) = <R(A7640<t)) LS,t> |

We have D(I(t)) = D x {0} and

(AT —1(t)) (g) - <W£(£‘)13(:t))x)
for (z

0) € D x {0}. By Remark [3.2] we obtain

RO —1()) (g) _ (R(/\v Ao (1)) (M — gl(t))iﬂ) + L)\,tL(t)x> .

RO\)(M = 1(1)) <””> = (x> . (3.3)
0 0
On the other hand, for (z,y) € X x Y, we have

z\ (A — A(t) 0 R(), Ao(t))l‘ + Ly [z
(M =1(t))R(N) (y> = ( L(t) )\> < =y (3.4)
from and ., we obtain that the resolvent of I(t) is given by

R\ I(t)) = ( , AO L, t) (3.5)

By a direct computation, we obtain

T Ry — (T RO Ao IS RO ()

So that

)

0

for a finite sequence 0 < t; <ty < --- <t,, < T and we have

HRM () (HHRM At >>w+Ho?iﬁRu,Ao(t))LA,tmy).

From hypothesis (H5), we conclude that ||Ly .|| < ﬁ forallt € [0,T] and A > w
and by using (H2), we obtain

m m m—1
ITTRO 1) (2) 1< 1 T RO Au(0)el +1| TT RO A0) s
i=1 i=1 i=1 (3.6)
yM 1

[l +

<M I
=D —wo)m O — o)L A —wy I
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For we = max(wp,w ), we have

U

ITT RO (D)1 gl + Ll

where M’ = max(M,M~). On E = X x Y equipped with the norm ||(z,y)||1 =
llz[l + llyll, we have:

IR0 (3) 1< el )
O

In the following proposition we give the equivalence between the boundary prob-

lem (1.1]) and the Cauchy problem ({3.1J).
Proposition 3.3. Let (x,0) € D x {0}.
(1) If the function t — U(t) = (u1(t),0) is a classical solution of (3.1)) with an
ingtial value (x,0) then t — wuy(t) is a classical solution of (1.1|) with the
initial value x.
(2) Let u be a classical solution of (1.1) with the initial value x. Then the
function t — U(t) = (u(t),0) is a classical solution of (3.1) with the initial
value (x,0).

Proof. (1) Since U(t) = (u1(t),0) is a classical solution of (3.1)), uy is continuously
differentiable on [s,T] and uy(t) € D. Moreover,

%U(t) - (ci“ol(t)> — MEU®) and U(s) = (g) (3.7)
Therefore,
%ul(t) =At)ui(t), 0<s<t<T,
L(t)ui(t) = ®(H)us(t), 0<s<t<T, (3.8)

ui(s) = x.
This implies that u; is a classical solution of (|L.1]).
(2) Let w is a classical solution of (|1.1)), then u is continuously differentiable, u(t) €
D for t > s and

%u(t) =Atu(t), 0<s<t<T,

Lt)u(t) = d(t)u(t), 0<s<t<T,

u(s) = x.

(iz(t)> B (L(f)l(i)@(t) 8) (ug)>’

with (u(s),0) = («,0). This implies that U(t) = (u(¢),0) is a classical solution of
(3.2) with the initial value (z,0). O

Hence

The above proposition allows us to get the aim of this section by showing the
well-posedness of the Cauchy problem ([1.1)).
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Theorem 3.4. Assume that the hypotheses (H1)—(H5) hold. Then for every x € D,
such that —L(s)x + ®(s)x = 0, the problem (L.1) has a unique classical solution.

Moreover, u is given by t — p1(U(t, s) , where U(t, s) is the evolution family

x
0
generated by (M(t)o<i<T)-
Proof. For the Cauchy problem (3.1)), we have the following;:
(1) D(M(t)) = D x {0} is independent of t.
(2) t— M) (|,
(3) The family (M(t))ogth is stable.
Then the family M (t) satisfies all conditions of Theorem Thus, there exist an
evolution family (U(t, s))o<s<: generated by the family (M (¢))o<i<r such that

(a) U(t,t) = Idx oy,
(b) U(t,r)U(r,s) =Ul(t,s),0<s<r<t<T,
(¢c) (t,s) — U(t,s) is strongly continuous,

)t

(d

is continuously differentiable for (x,0) € D x {0}.

is continuously differentiable in X x {0} on

he function ¢t — U(t, s) (g)

[s,T], and satisfies

%U(t,s) <g) = M@)U(t,s) <g> for (ﬁ) € D(s),

U(t,s)D(s) C D(t), forall0<s<t<T, (3.9)

and

where
D(s) = {(3) € D x {0} : M(s) (g) € X x {0}}

= ker (L(s) — ®(s)) x {0}.
Let U(t, s)(x,0) = (u1(t),0). We have

(éﬂ“()l(ﬂ) — M) (Ulo(t)> 7

and for u(t) = (u1(t),0), we have Lu(t) = M(t)u(t), with u(s) = (z,0), thus
u(t) = (u1(¢),0) is a classical solution of (3.1) and from Proposition we have
w1 is a classical solution of (1.1)) and

ui(t) = p1 (U(t, 5) (g) ). (3.11)
O

4. FIRST INHOMOGENEOUS PROBLEM

In this section, we consider the inhomogeneous Cauchy problem
@(f ()(t) ft), 0<s<t<T,
d(tyu(t), 0<s<t<T, (4.1)

u(s) = .

™~
—~

~
\./
/-\
Nt

Il
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A function w : [s,T] — X is called classical solution if it is continuously differen-
tiable, u(t) € D, t > s and u satisfies (£.1)).

Consider the Banach space E = X xY xC([0,T], X),T > 0, where C1([0, T, X)
is the space of continuously differentiable functions from [0, 7] into X equipped with
the norm || f|| = || flleo + [ floc, for f € C*([0,T],X). Let B(t) be the operator
matrices defined on E by

A(t) 0 4
B(t) = (-L@y+¢@) 0 0) (4.2)
0 0

with D(B(t)) = D x {0} x C'([0,T],X). Where & : C1([0,7],X) — X is the
Dirac function concentrated at the point ¢ with §;(f) = f(¢). To the family B(t)
we associate the homogeneous Cauchy problem

%Mﬂ:B@Mﬂ,Ogsgtgﬂ
u(s) = (2,0, f).
with (2,0, f) € D x {0} x C*([0,T).

Lemma 4.1. Assume that hypothesis (H1)-(H5) hold. Then the family operators
(B(t))o<t<t is stable.

Proof. For t € [0,T], we write the operator B(t) as B(t) = I(t) + ¢(t), with

At) 0 0 0 0 o
I(t) = (L(t) 0 O) and  ¢(t) = (@(t) 0 0
0 0

(4.3)

0 0 0 0
We must show that I(¢) is stable and that
RN, Ao(t)) Lx: O
R(\ (1)) = 0 0 0 . (4.4)
0 0 1/A

For A > wy, A # 0, and ¢ € [0, 7], let

RN\ Ao(t)) Lx: O
0 0 0 1.
SRR

For (z,y, f) € X x Y x C1([0,T], X), we have

R(X, Ao(t) Lx: O x R\, Ao(t))x + L sy
e a)e- )

by the Remark we obtain

x (AL = A1) [R(A, Ao(t))x + L y] x

A =IUE)RN) |y | = L) [R(A, Ao(t)) + La1y] =lv]. (45
f f f

On the other hand, for (z,0, f) € D x {0} x C*([0,T], X), we have

x (M — A(t))x
- 10) (0) :( P )
f Af

R(A) =
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and
x R\, Ao(t)) (M — A(t))z) + L L(t)x
RN =1@) 0] = 0
f f

From Remark [3:2] we have

ROV — U(t)) (g> = (g) . (4.6)
f f

From (4.5) and (4.6)), we obtain that the resolvent of I(t) is given by
R(A Ao(t)) Lxe 0
R(\I(t)) = 0 0 0
0 0 1/A

By recurrence we can obtain

m [T RO Aots)) TI RO Ao(8)) L, 0
[T RO i) = 0 0 0o |.
i=1 0 0 1/Am
For a finite sequence 0 < t; <tg--- < t,, < T and for (x y, f) € E, we have
" z 121 R(A, Aot ))l”rl_[ R(A, Ao(ti)) Lty
[TrN ) (v =
i i i
Using (H5), we obtain
m m m—1
R\, (¢ y < R(\, Ao(t; R(\ A L Hf”
ITIRO W) [y | 1< ITT RO Aotz + TT RO Ao(t)) Lo,y +
i=1 f i=1 i=1
M M ||f||
< — .
< el + ey Il +
Define wy = max(0,wp,w;). Then
m x M’
ITT RO 1)) (v | I < = (=l + Iyl + 11D,
i=1 f (A —wn)
where M’ = max(M, M~) and
M/
R\, I(¢ —_ 4.7
|| H L (47)
This inequality shows that the family I(¢) is stable and by using [7, Theorem 5.2.3],
the family B(t) is stable. O

Proposition 4.2. Let (2,0, f) € D x {0} x C*([0,7T], X).

(1) If the function t — u(t) = (u1(t),0,us(t)) is a classical solution of with an
initial value (x,0, f) then t — ui(t) is a classical solution of with the initial
value x.

(2) Let w is a classical solution of with the initial value x . Then, the function
t— U(t) = (u(t),0, f) is a classical solution of with the initial value (z,0, f).



EJDE/CONF/14 CAUCHY PROBLEMS 199

Proof. (1) If u(t) = (u1(t),0,us(t)) is a classical solution of (4.3]), then u; is con-
tinuously differentiable on [s,T], u; € D and we have

d %ul (t)
au(t) =1, 0 = B(t)u(t),
a2 (t)
which implies
Ly (t) A(t) 0 6\ [ui(t)
0 =|-L#)+2(t) 0 O 0 ,
Srua(t) 0 0 0 ua (%)
and
4o (t) A(t)uy (t) 4 Spua(t)
0 = [ —L{Ow(t) +2()w(t) |,
%'LLQ (t) 0
with

ui(s)
u(s) = 0
us($)

One has %uy(t) = 0. This implies u(t)
f(t) and we have

= f; therefore, dyus(t) = 0rf =

Sualt) = Al + ), 0
L(t)uy(t) = d(H)us(t), 0<s<t<T,
ui(s) = x.

Therefore, u; is a classical solution of (4.1]) with the initial value z.
(2) If w is a classical solution of (4.1]), then u is continuously differentiable, u(t) € D
and

%u(t) = A(t)u(t) + f(t), 0<s<t<T,
L(tu(t) = ®(t)u(t), 0<s<t<T,
u(s) =z
Moreover,
du) AG 0 &\ [u®)
0 | =[|-LE)+2¢) 0 0 0
0 0 0o 0/ \ 7

With u(s) =z, U(t) = (u(t),0, f) is continuously differentiable, U(t) € D(B(t)) =
D x {0} x C'(]o, } X) then it is a classical solution of (4.3)) with the initial value
(2,0, f). O

Theorem 4.3. Let f € C1([0,T],X). Assume that the hypothesis (H1)-(H5) hold.
Then for all x € D, such that —L(s)x + ®(s)x = 0, problem (4.1) has a unique
classical solution solution u. Moreover, u is given by

u(t) = Us(t, s)x +/ Us(t,s)f(r)dr, (4.8)

where Ug(t, s) is an evolution family solution of the problem ([3.1))
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Proof. Consider the problem

d
%u(t) = B({t)u(t), 0<s<t<T,

u(s) = (z,0, ).
We have showed that (B(t))o<t<7 is a stable family and the function ¢ — B(t)y
is continuously differentiable, for all y € D(B(t)) = D x {0} x C1([0,T], X) and
that D(B(t)) is independent of ¢. Then there exist an evolution system U (¢, s) on
X x {0} x C*([0,T], X) such that

x uy(t)
Ut,s) |0 | = 0 = u(t)
f us(t)

is a classical solution of (4.3) and from the Proposition up is a classical so-
lution of (4.1)), for (x,0, f) € ker(L(s) — ®(s)) x {0} x C*([0,T], X). Let v(r) =
Us(t,7)ui(r). Then v is differentiable and

Do) = ~Ua(t,r) As(r)us (1) + Ua (1,7)[Aa (1) + £,

where Ag(t) = A(t)/ ker(L(t) — ®(t)); therefore,

dirv(r) =Ug(t,r)f(r). (4.9)

Integrating (4.9) from s to ¢, we obtain
t
wr(t) = Us(t, s)e + / Us(t, r)f(r)dr,
which completes the proof. O

5. SECOND INHOMOGENEOUS PROBLEM

In this section, we consider the Inhomogeneous Cauchy problem

Loty = Ayu(t) + 1), 0<
L(t)u(t) = ®(t)u(t) + g(t), 0<s<t<T, (5.1)

u(s) = x.

s<t<T,

A function w : [s,T] — X is a classical solution if it is continuously differentiable,
u(t) € D, for all t > s and u satisfies (5.1)).

Consider the Banach space E = X x Y x C1([0,T],X) x C*([0,T],Y), where
C([0,T],X) and C([0,T],Y) are equipped with the norm ||f|| = || fllec + [|f'|lco
for f in C1([0,7],X) or in C*([0,T],Y). Consider the operator matrices

A(t) 04 0
Bt = fL(t)0+<I>(t) 8 8 c(S)t ’ (5.2)
0 0 0 O

with
D(B(t)) = D x {0} x C*([0,T], X) x C*([0,T],Y)
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where §; : C*([0,T],X) — X such that 6;(f) = f(t) and &; : C*([0,T],Y) — Y
such that §;(g) = g(t). To the family B(t) ,we associate the homogeneous Cauchy
problem

%u(t) = B(t)u(t), 0<s<t<T,

U(S) = (JZ,O,f, g)
for (z,0, f,g) € D x {0} x C1([0,T],X) x C([0,T],Y) = D;.

(5.3)

Lemma 5.1. Assume that the hypothesis (H1)—-(H5) hold. Then the family opera-
tors B(t) is stable.

Proof. For t € [0,T], we write the B(t) defined in (5.2) as B(t) = I(t) + ¢(t), where

A 0 0 0 0 0 & O
| =Lt 0 0 0 _|®®) 0 0 &
W= 0 00 of @ 9O=1"%9 ¢ 0o ol
0 0 0 O 0 0 0 O
we must show that the family I(¢) is stable. Let

RN, Ao(t)) Lt 0 0
0 0 0 0
R = 0 0 1A 0
0 0 0 1/

For A > wp, A # 0 and t € [0,T] we show that R(X,I(t)) = R(A\). For (z,y, f,9) €
X xY x CH[0,T],X) x CL([0,T],Y), we have

z R(A, Ao(t))x + Ly
ROV | Y f(} \ 7 (5.4)
9 9/
by the Remark and with the same proof as Lemma we obtain
x x
AT=URN) | 5] =} (5.5)
) g
On the other hand, for (z,0, f,g) € D x {0} x C*([0,T], X) x C*([0,T],Y), we have
x (M — A(t))=
VRO I I I VA
g Ag
and
R(A, Ao(£)) (M — A(t))x) + LxL(t)z
ROV —1) | 9] = 0 ~ 1%, o)

f
g

=k
|
|
S
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then from (5.5)), (5.6) and Remark we have R(\) = R(\,I(t)). By recurrence
we obtain

. T2 RO Ao(t)  TIES " RO Ao(t:) Loy, 0 0
. 0 0 0 0
a 0 0 0 1/Am

for a finite sequence 0 < t; <tg < ---<t,, <T.
Now on the space X x Y x C1([0,T],X) x C1([0,T],Y),we consider the norm

1@, y, £, )l = (el + lyll + L1+ llgl)- (5.7)
For (z,y,f,9) € X x Y x C1([0,T], X) x C1([0,T],Y), we have

xZ
m M M
ITT RO | Y| 1S ol + oy g o+ 220+ 12
)
M/
< W(HCUH + lyll + 111+ llgl),

where we = max(0,wp,w;) and M’ = max(M, M~). Since B(t) is a perturbation
of I(t), by a linear operator ¢(¢) on FE; hence, in view of perturbation result [7}
Theorem 5.2.3], B(t) is stable. O

Proposition 5.2. Let (2,0, f,g) € D x {0} x C*([0,T],X) x C*([0,T],Y)

(1) If the function t — u(t) = (u1(t),0,uz(t), us(t)) is a classical solution of
with an initial value (x,0, f,g) then t — uq(t) is a classical solution of with
the initial value x.

(2) Let w is a classical solution of with the initial value x. Then, the function
t — Ut) = (u(t),0,f,9) is a classical solution of with the initial value
(x7 0’ f’ g)'

Proof. (1) If u(t) = (u1(t),0,uz(t),us(t)) is a classical solution of (5.3, then u; is
continuously differentiable on [s,T] and we have

0 | -L@t)+®(t) 0 0 & 0
%uQ(t) - 0 0 0 0] [u®
L ug(t) 0 0 0 0/ \us(®)

This implies

iul(t) = A(t)u1 (t) + (5,5U2(t), 0 S

yr <s<t<T,
L(t)uy(t) = ®(t)uy (t) + dpuz(t), 0<s<t<T,
d
%UQ(t) = 07
d

One has %u;;( ) = 0 which implies us(t

) =us(s) =g and Lt)ui (t) = ®(t)uy (t) +
g(t). Also Lus(t) = 0 implies ua(t) = ua(s) =

fand Gui(t) = A(t)ua(t) + f(1).
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Then

dt
L(t)ui(t) = @(H)ui(t) + g(t),
ui(s) = x.
Thus u; is a classical solution of (5.1)) with the initial value x.
(>-1)

(2) Let w is a classical solution of . This implies that u is continuously differ-
entiable and u(t) € D x {0} x C*([0,T], X) x C*([0,T],Y). Moreover,

iul (t) = A(®)uy(t) + f(t), 0<s<t<T,
0

iu(t) =Au(t)+ f(t), 0<s<t<T

dt
L(t)u(t) = 2@)u(t) +g(t), 0<s<t<T
u(s) = x.
This implies

%u(t) A(t) 0 6 O u(t)
0 | =Lt)+ () 0 0 o 0
0 B 0 0 0 O fl
0 0 0 0 O g

with u(s) = z. Then U(t) = (u(t),0, f,g) is continuously differentiable, U(t) €
D x {0} x C*([0,T],X) x CH[0,T],Y), for all t € [s,T] and U(¢t) is a classical
solution of (5.1]) with the initial value (x,0, f, g). O

Theorem 5.3. Let f € CY([0,T],X) and g € C*([0,T),Y). Assume that the
hypothesis (H1)-(H5) hold. Then for every x € D such that —L(s)xz+®(s)x+g(s) =
0, problem (5.1) has a unique classical solution.

Proof. Consider the homogenous Cauchy problem
d
%u(t) = B({t)u(t), 0<s<t<T,
u(s) = (z,0, f,g).

By Lemma B(t) is a stable family and the function t — B(t)y is continuously
differentiable for all y € D; = D(B(t)) independent of ¢t. Then there exist an
evolution family U(t,s) on X x {0} x C1([0,T], X) x C1([0,T],Y) such that

x uy(t)
U(t, ) ? _ uit) — u(t)
g us(?)

is a classical solution of ([5.3]) and from the Proposition u1 is a classical solution
of (5.1). The uniqueness of u; comes from the uniqueness of the solution of (5.3))
and Proposition [5.2 d

Theorem 5.4. Let f € CY([0,T],X) and g € CY([0,T],Y). If u is a classical
solution of (5.1) then u is given by the variation of constants formula
t
u(t) = U(t,s)(I—L,\’SL(s))m—f—g(t,u(t))+/ U(t,r)[Ag(r,u(r))—g(r,u(r))' +f(r)]dr,
’ (5.8)
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where U(t,s) is the evolution family generated by Ao(t) and
g(tu(t)) = Lt (@()u(t) + g(t))-
Proof. Let now u be a classical solution of (5.I]). Take
up(t) = Ly L(t)u(t) and  wuy(t) = (I — Ly L(t))u(t).
Then the functions
uz(t) = g(t,u(t)) = Loe(2(H)ult) +9(t)) and  u(?)
are differentiable. Since us(t) € ker(AI — A(t)), we have A(t)us(t) = ug(t) and

d d
) = g

= A)u(t) = (9(t,u(t))) + f(t)
= A(t)(u1(t) +u2(t)) + f(t) — (9(t,u(t))’
A(ur(t) + Mg (t,u(t)) + f(t) — (g(t, u(?))".
When we define h(t) := Ag(t, u(t)) + f(t) — (9(¢,u(t)))’, we get
ur(t) = U(t, s)ui(s) +/ U(t,r)h(r)dr. (5.9)
By replacing u1(s) by (I — Ly sL(s))z, we obtain
ui(t) =U(t,s)(I — LxsL(s))x + /t U(t,r)h(r)dr, (5.10)

it follows that
u(t) = u(t,s)(I — Ly sL(s))x + g(t, u(t))

+/ u(t, )[Ag(r,u(r)) = (g(r,u(r)))" + f(r)]dr

which completes the proof. O
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