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NON-AUTONOMOUS INHOMOGENEOUS BOUNDARY CAUCHY
PROBLEMS

MOHAMMED FILALI, BELHADJ KARIM

Abstract. In this paper we prove existence and uniqueness of classical solu-

tions for the non-autonomous inhomogeneous Cauchy problem

d

dt
u(t) = A(t)u(t) + f(t), 0 ≤ s ≤ t ≤ T,

L(t)u(t) = Φ(t)u(t) + g(t), 0 ≤ s ≤ t ≤ T,

u(s) = x.

The solution to this problem is obtained by a variation of constants formula.

1. Introduction

Consider the boundary Cauchy problem

d

dt
u(t) = A(t)u(t), 0 ≤ s ≤ t ≤ T,

L(t)u(t) = Φ(t)u(t), 0 ≤ s ≤ t ≤ T,

u(s) = x.

(1.1)

In the autonomous case (A(t) = A, L(t) = L), the Cauchy problem (1.1) was
studied by Greiner [3]. The author used the perturbation of domains of infinitesi-
mal generators to study the homogeneous boundary Cauchy problem. He has also
showed the existence of classical solution of (1.1) via a variation of constants for-
mula. In the non-autonomous case, Kellerman [5] and Lan [6] showed the existence
of an evolution family (U(t, s))0≤s≤t≤T which provides classical solutions of homo-
geneous boundary Cauchy problems. Filali and Moussi [2] showed the existence
and uniqueness of classical solutions to the problem

d

dt
u(t) = A(t)u(t), 0 ≤ s ≤ t ≤ T,

L(t)u(t) = Φ(t)u(t) + g(t), 0 ≤ s ≤ t ≤ T,

u(s) = x.

(1.2)
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In this paper, we prove existence and uniqueness of classical solutions to the problem

d

dt
u(t) = A(t)u(t) + f(t), 0 ≤ s ≤ t ≤ T,

L(t)u(t) = Φ(t)u(t) + g(t), 0 ≤ s ≤ t ≤ T,

u(s) = x.

(1.3)

Our technique consists on transforming (1.3) into an ordinary Cauchy problem and
giving an equivalence between the two problems. The solution is explicitly given
by a variation of constants formula.

2. Evolution Family

Definition 2.1. A family of bounded linear operators (U(t, s))0≤s≤t≤T on X is an
evolution family if
(a) U(t, r)U(r, s) = U(t, s) and U(t, t) = Id for all 0 ≤ s ≤ r ≤ t ≤ T ; and
(b) the mapping (t, s) → U(t, s)x is continuous on 4, for all x ∈ X with

4 = {(t, s) ∈ R2
+ : 0 ≤ s ≤ t ≤ T}.

Definition 2.2. A family of linear (unbounded) operators (A(t))0≤t≤T on a Banach
space X is a stable family if there are constants M ≥ 1, ω ∈ R such that ]ω, +∞[⊂
ρ(A(t)) for all 0 ≤ t ≤ T and

‖
m∏

i=1

R(λ, A(ti))‖ ≤ M
1

(λ− ω)m

for λ > ω and any finite sequence 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm ≤ T .

Let D,X and Y be Banach spaces, D densely and continuously embedded in X.
Consider families of operators A(t) ∈ L(D,X), L(t) ∈ L(D,Y ), Φ(t) ∈ L(X, Y )
for 0 ≤ t ≤ T . In this section, we use the operator matrices method to prove the
existence of classical solutions for the non-autonomous inhomogeneous boundary
Cauchy problem (1.3). We use the following theorem due to Tanaka [9].

Theorem 2.3. Let (A(t))0≤t≤T be a stable family of linear operators on a Banach
space X such that

(a) the domain D = (D(A(t), ‖.‖D) is a Banach space independent of t,
(b) the mapping t → A(t)x is continuously differentiable in X for every x ∈ D.

Then there is an evolution family (U(t, s))0≤s≤t≤T on D. Moreover, we have the
following properties: (1) U(t, s)D(s) ⊂ D(t) for all 0 ≤ s ≤ t ≤ T , where

D(r) = {x ∈ D : A(r)x ∈ D}, 0 ≤ r ≤ T ;

(2) the mapping t → U(t, s)x is continuously differentiable in X on [s, T ] and

d

dt
U(t, s)x = A(t)U(t, s)x

for all x ∈ D(s) and t ∈ [0, T ].

We will assume that the following hypotheses:
(H1) The mapping t → A(t)x is continuously differentiable for all x ∈ D.
(H2) The family (A0(t))0≤t≤T , A0(t) = A(t)/ ker L(t) the restriction of A(t) to

ker L(t), is stable, with M0 and ω0 constants of stability.
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(H3) The operator L(t) is surjective for every t ∈ [0, T ] and the mapping t →
L(t)x is continuously differentiable for all x ∈ D.

(H4) The mapping t → Φ(t)x is continuously differentiable for all x ∈ X.
(H5) There exist constants γ > 0 and ω1 ∈ R such that

‖L(t)x‖Y ≥ λ− ω1

γ
‖x‖X (2.1)

for x ∈ ker(λI −A(t)), ω1 < λ and t ∈ [0, T ].

Note that under the above hypotheses, Lan [6] has showed that A0(t) generates
an evolution family (U(t, s))0≤s≤t≤T such that:

(a) U(t, r)U(r, s) = U(t, s) and U(t, t) = IdX for all 0 ≤ s ≤ t ≤ T ;
(b) (t, s) → U(t, s)x is continuously differentiable on ∆ for all x ∈ X with

∆ = {(t, s) ∈ R+
2 : 0 ≤ s ≤ t ≤ T};

(c) there exists constants M0 ≥ 1 and ω0 ∈ R such that ‖U(t, s)‖ ≤ M0e
ω0(t−s).

The following results with will be used in this article.

Lemma 2.4 ([3]). For t ∈ [0, T ] and λ ∈ ρ(A0(t)), following properties are satisfied:

(1) D = D(A0(t))⊕ ker(λI −A(t))
(2) L(t)/ ker(λI −A(t)) is an isomorphism from ker(λI −A(t)) onto Y
(3) t 7→ Lλ,t := (L(t)/ ker(λI−A(t)))−1 is strongly continuously differentiable.

As a consequence of this lemma, we have L(t)Lλ,t = IdY , Lλ,tL(t) and (I −
Lλ,tL(t)) are the projections from D onto ker(λI −A(t)) and D(A0(t)) .

3. The Homogeneous Problem

In this section, we consider the Cauchy problem (1.1). A function u : [s, T ] → X
is called classical solution if it is continuously differentiable, u(t) ∈ D for all 0 ≤
s ≤ t ≤ T and u satisfies (1.1).

We now introduce the Banach spaces Z = X × Y , Z0 = X × {0} ⊂ Z and we
consider the projection of Z onto X: p1(x, y) = x. Let M(t) be the matrix-valued
operator defined on Z by

M(t) =
(

A(t) 0
−L(t) + Φ(t) 0

)
= l(t) + φ(t),

where

l(t) =
(

A(t) 0
−L(t) 0

)
, φ(t) =

(
0 0

Φ(t) 0

)
,

and D(M(t)) = D × {0}.
Now, we consider the Cauchy problem

d

dt
u(t) = M(t)u(t), 0 ≤ s ≤ t ≤ T,

u(s) = (x, 0).
(3.1)

We start by proving the following lemma.

Lemma 3.1. Assume that hypothesis (H1)–(H5) hold. Then, the family of opera-
tors (M(t))0≤t≤T is stable.
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Remark 3.2. Since Lλ,tL(t) is the projection from D onto ker(λI − A(t)) and
x− Lλ,tL(t)x ∈ D(A0(t)), we have

R(λ, A0(t))((λI −A(t))x) + Lλ,tL(t)x

= R(λ, A0(t))((λI −A(t))(x− Lλ,tL(t)x) + Lλ,tL(t)x

and
R(λ, A0(t))((λI −A(t))x) + Lλ,tL(t)x = x. (3.2)

Proof of Lemma 3.1. Since M(t) is a perturbation of l(t) by a linear bounded op-
erator on E, hence, in view of the perturbation result [7, Theorem 5.2.3], it is
sufficient to show the stability of l(t). For λ > ω0 and λ 6= 0, let

R(λ) =
(

R(λ, A0(t)) Lλ,t

0 0

)
.

We have D(l(t)) = D × {0} and

(λI − l(t))
(

x
0

)
=

(
(λI −A(t))x

L(t)x

)
for (x
0) ∈ D × {0}. By Remark 3.2, we obtain

R(λ)(λI − l(t))
(

x
0

)
=

(
R(λ, A0(t))((λI −A(t))x) + Lλ,tL(t)x

0

)
.

So that

R(λ)(λI − l(t))
(

x
0

)
=

(
x
0

)
. (3.3)

On the other hand, for (x, y) ∈ X × Y , we have

(λI − l(t))R(λ)
(

x
y

)
=

(
λI −A(t) 0

L(t) λ

) (
R(λ, A0(t))x + Lλ,ty

0

)
=

(
x
y

)
(3.4)

from (3.3) and (3.4), we obtain that the resolvent of l(t) is given by

R(λ, l(t)) =
(

R(λ, A0(t)) Lλ,t

0 0

)
. (3.5)

By a direct computation, we obtain
m∏

i=1

R(λ, l(ti)) =
(∏m

i=1 R(λ, A0(ti))
∏m−1

i=1 R(λ, A0(ti)Lλ,tm

0 0

)
for a finite sequence 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm ≤ T and we have

m∏
i=1

R(λ, l(ti))
(

x
y

)
=

(∏m
i=1 R(λ, A0(t))x +

∏m−1
i=1 R(λ, A0(t))Lλ,tmy

0

)
.

From hypothesis (H5), we conclude that ‖Lλ,t‖ ≤ γ
(λ−ω) for all t ∈ [0, T ] and λ > ω

and by using (H2), we obtain

‖
m∏

i=1

R(λ, l(ti))
(

x
y

)
‖ ≤ ‖

m∏
i=1

R(λ, A0(t))x‖+ ‖
m−1∏
i=1

R(λ, A0(t))Lλ,tm
y‖

≤ M

(λ− ω0)m
‖x‖+

γM

(λ− ω0)m−1

1
λ− ω1

‖y‖.
(3.6)
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For ω2 = max(ω0, ω1), we have

‖
m∏

i=1

R(λ, l(ti)
(

x
y

)
‖ ≤ M ′

(λ− ω2)m
(‖x‖+ ‖y‖),

where M ′ = max(M,Mγ). On E = X × Y equipped with the norm ‖(x, y)‖1 =
‖x‖+ ‖y‖, we have:

‖
m∏

i=1

R(λ, l(ti)
(

x
y

)
‖ ≤ M ′

(λ− ω2)m
(‖(x, y)‖1).

�

In the following proposition we give the equivalence between the boundary prob-
lem (1.1) and the Cauchy problem (3.1).

Proposition 3.3. Let (x, 0) ∈ D × {0}.
(1) If the function t → U(t) = (u1(t), 0) is a classical solution of (3.1) with an

initial value (x, 0) then t → u1(t) is a classical solution of (1.1) with the
initial value x.

(2) Let u be a classical solution of (1.1) with the initial value x. Then the
function t → U(t) = (u(t), 0) is a classical solution of (3.1) with the initial
value (x, 0).

Proof. (1) Since U(t) = (u1(t), 0) is a classical solution of (3.1), u1 is continuously
differentiable on [s, T ] and u1(t) ∈ D. Moreover,

d

dt
U(t) =

(
d
dtu1(t)

0

)
= M(t)U(t) and U(s) =

(
x
0

)
. (3.7)

Therefore,
d

dt
u1(t) = A(t)u1(t), 0 ≤ s ≤ t ≤ T,

L(t)u1(t) = Φ(t)u1(t), 0 ≤ s ≤ t ≤ T,

u1(s) = x.

(3.8)

This implies that u1 is a classical solution of (1.1).
(2) Let u is a classical solution of (1.1), then u is continuously differentiable, u(t) ∈
D for t ≥ s and

d

dt
u(t) = A(t)u(t), 0 ≤ s ≤ t ≤ T,

L(t)u(t) = Φ(t)u(t), 0 ≤ s ≤ t ≤ T,

u(s) = x.

Hence (
d
dtu(t)

0

)
=

(
A(t) 0

−L(t) + Φ(t) 0

) (
u(t)
0

)
,

with (u(s), 0) = (x, 0). This implies that U(t) = (u(t), 0) is a classical solution of
(3.2) with the initial value (x, 0). �

The above proposition allows us to get the aim of this section by showing the
well-posedness of the Cauchy problem (1.1).
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Theorem 3.4. Assume that the hypotheses (H1)–(H5) hold. Then for every x ∈ D,
such that −L(s)x + Φ(s)x = 0, the problem (1.1) has a unique classical solution.

Moreover, u is given by t → p1(U(t, s)
(

x
0

)
, where U(t, s) is the evolution family

generated by (M(t)0≤t≤T ).

Proof. For the Cauchy problem (3.1), we have the following:
(1) D(M(t)) = D × {0} is independent of t.

(2) t → M(t)
(

x
0

)
is continuously differentiable for (x, 0) ∈ D × {0}.

(3) The family (M(t))0≤t≤T is stable.
Then the family M(t) satisfies all conditions of Theorem 2.3. Thus, there exist an
evolution family (U(t, s))0≤s≤t generated by the family (M(t))0≤t≤T such that

(a) U(t, t) = IdX×{0},
(b) U(t, r)U(r, s) = U(t, s), 0 ≤ s ≤ r ≤ t ≤ T ,
(c) (t, s) → U(t, s) is strongly continuous,

(d) the function t → U(t, s)
(

x
0

)
is continuously differentiable in X × {0} on

[s, T ], and satisfies

d

dt
U(t, s)

(
x
0

)
= M(t)U(t, s)

(
x
0

)
for

(
x
0

)
∈ D(s),

and
U(t, s)D(s) ⊂ D(t), for all 0 ≤ s ≤ t ≤ T, (3.9)

where

D(s) = {
(

x
0

)
∈ D × {0} : M(s)

(
x
0

)
∈ X × {0}}

= ker
(
L(s)− Φ(s)

)
× {0}.

(3.10)

Let U(t, s)(x, 0) = (u1(t), 0). We have(
d
dtu1(t)

0

)
= M(t)

(
u1(t)

0

)
,

and for u(t) = (u1(t), 0), we have d
dtu(t) = M(t)u(t), with u(s) = (x, 0), thus

u(t) = (u1(t), 0) is a classical solution of (3.1) and from Proposition 3.3, we have
u1 is a classical solution of (1.1) and

u1(t) = p1

(
U(t, s)

(
x
0

) )
. (3.11)

�

4. First Inhomogeneous Problem

In this section, we consider the inhomogeneous Cauchy problem

d

dt
u(t) = A(t)u(t) + f(t), 0 ≤ s ≤ t ≤ T,

L(t)u(t) = Φ(t)u(t), 0 ≤ s ≤ t ≤ T,

u(s) = x.

(4.1)
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A function u : [s, T ] → X is called classical solution if it is continuously differen-
tiable, u(t) ∈ D, t ≥ s and u satisfies (4.1).

Consider the Banach space E = X×Y ×C1([0, T ], X), T > 0, where C1([0, T ], X)
is the space of continuously differentiable functions from [0, T ] into X equipped with
the norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞, for f ∈ C1([0, T ], X). Let B(t) be the operator
matrices defined on E by

B(t) =

 A(t) 0 δt

−L(t) + Φ(t) 0 0
0 0 0

 (4.2)

with D(B(t)) = D × {0} × C1([0, T ], X). Where δt : C1([0, T ], X) → X is the
Dirac function concentrated at the point t with δt(f) = f(t). To the family B(t)
we associate the homogeneous Cauchy problem

d

dt
u(t) = B(t)u(t), 0 ≤ s ≤ t ≤ T,

u(s) = (x, 0, f).
(4.3)

with (x, 0, f) ∈ D × {0} × C1([0, T ].

Lemma 4.1. Assume that hypothesis (H1)–(H5) hold. Then the family operators
(B(t))0≤t≤T is stable.

Proof. For t ∈ [0, T ], we write the operator B(t) as B(t) = l(t) + φ(t), with

l(t) =

 A(t) 0 0
−L(t) 0 0

0 0 0

 and φ(t) =

 0 0 δt

Φ(t) 0 0
0 0 0

 .

We must show that l(t) is stable and that

R(λ, l(t)) =

R(λ, A0(t)) Lλ,t 0
0 0 0
0 0 1/λ

 . (4.4)

For λ > ω0, λ 6= 0, and t ∈ [0, T ], let

R(λ) =

R(λ, A0(t)) Lλ,t 0
0 0 0
0 0 1/λ

 .

For (x, y, f) ∈ X × Y × C1([0, T ], X), we haveR(λ, A0(t) Lλ,t 0
0 0 0
0 0 1/λ

 x
y
f

 =

R(λ, A0(t))x + Lλ,ty
0
f
λ

 ,

by the Remark 3.2, we obtain

(λI − l(t))R(λ)

x
y
f

 =

(λI −A(t))[R(λ, A0(t))x + Lλ,ty]
L(t)[R(λ, A0(t))x + Lλ,ty]

f

 =

x
y
f

 . (4.5)

On the other hand, for (x, 0, f) ∈ D × {0} × C1([0, T ], X), we have

(λI − l(t))

x
0
f

 =

(λI −A(t))x
L(t)x
λf

 ,
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and

R(λ)(λI − l(t))

x
0
f

 =

R(λ, A0(t))((λI −A(t))x) + Lλ,tL(t)x
0
f

 .

From Remark 3.2, we have

R(λ)(λI − l(t))

x
0
f

 =

x
0
f

 . (4.6)

From (4.5) and (4.6), we obtain that the resolvent of l(t) is given by

R(λ, l(t)) =

R(λ, A0(t)) Lλ,t 0
0 0 0
0 0 1/λ

 .

By recurrence we can obtain

m∏
i=1

R(λ, l(ti)) =

∏m
i=1 R(λ, A0(ti))

∏m−1
i=1 R(λ, A0(ti))Lλ,tm

0
0 0 0
0 0 1/λm

 .

For a finite sequence 0 ≤ t1 ≤ t2 · · · ≤ tm ≤ T and for (x, y, f) ∈ E, we have

m∏
i=1

R(λ, l(ti))

x
y
f

 =

∏m
i=1 R(λ, A0(ti))x +

∏m−1
i=1 R(λ, A0(ti))Lλ,tmy

0
f/λm

 .

Using (H5), we obtain

‖
m∏

i=1

R(λ, l(ti))

x
y
f

 ‖ ≤ ‖
m∏

i=1

R(λ, A0(ti))x +
m−1∏
i=1

R(λ, A0(ti))Lλ,tmy‖+
‖f‖
λm

≤ M

(λ− ω0)m
‖x‖+

M

(λ− ω0)m−1

γ

λ− ω1
‖y‖+

‖f‖
λm

.

Define ω2 = max(0, ω0, ω1). Then

‖
m∏

i=1

R(λ, l(ti))

x
y
f

 ‖ ≤ M ′

(λ− ω2)m
(‖x‖+ ‖y‖+ ‖f‖),

where M ′ = max(M,Mγ) and

‖
m∏

i=1

R(λ, l(ti))‖ ≤
M ′

(λ− ω2)m
. (4.7)

This inequality shows that the family l(t) is stable and by using [7, Theorem 5.2.3],
the family B(t) is stable. �

Proposition 4.2. Let (x, 0, f) ∈ D × {0} × C1([0, T ], X).
(1) If the function t → u(t) = (u1(t), 0, u2(t)) is a classical solution of (4.3) with an
initial value (x, 0, f) then t → u1(t) is a classical solution of (4.1) with the initial
value x.
(2) Let u is a classical solution of (4.1) with the initial value x .Then, the function
t → U(t) = (u(t), 0, f) is a classical solution of (4.3) with the initial value (x, 0, f).
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Proof. (1) If u(t) = (u1(t), 0, u2(t)) is a classical solution of (4.3), then u1 is con-
tinuously differentiable on [s, T ], u1 ∈ D and we have

d

dt
u(t) =

 d
dtu1(t)

0
d
dtu2(t)

 = B(t)u(t),

which implies  d
dtu1(t)

0
d
dtu2(t)

 =

 A(t) 0 δt

−L(t) + Φ(t) 0 0
0 0 0

 u1(t)
0

u2(t)

 ,

and  d
dtu1(t)

0
d
dtu2(t)

 =

 A(t)u1(t) + δtu2(t)
−L(t)u1(t) + Φ(t)u1(t)

0

 ,

with

u(s) =

u1(s)
0

u2(s)

 =

x
0
f

 .

One has d
dtu2(t) = 0. This implies u2(t) = u2(s) = f ; therefore, δtu2(t) = δtf =

f(t) and we have

d

dt
u1(t) = A(t)u1(t) + f(t), 0 ≤ s ≤ t ≤ T,

L(t)u1(t) = Φ(t)u1(t), 0 ≤ s ≤ t ≤ T,

u1(s) = x.

Therefore, u1 is a classical solution of (4.1) with the initial value x.
(2) If u is a classical solution of (4.1), then u is continuously differentiable, u(t) ∈ D
and

d

dt
u(t) = A(t)u(t) + f(t), 0 ≤ s ≤ t ≤ T,

L(t)u(t) = Φ(t)u(t), 0 ≤ s ≤ t ≤ T,

u(s) = x.

Moreover,  d
dtu(t)

0
0

 =

 A(t) 0 δt

−L(t) + Φ(t) 0 0
0 0 0

 u(t)
0
f

 .

With u(s) = x, U(t) = (u(t), 0, f) is continuously differentiable, U(t) ∈ D(B(t)) =
D× {0} ×C1([0, T ], X) then it is a classical solution of (4.3) with the initial value
(x, 0, f). �

Theorem 4.3. Let f ∈ C1([0, T ], X). Assume that the hypothesis (H1)–(H5) hold.
Then for all x ∈ D, such that −L(s)x + Φ(s)x = 0, problem (4.1) has a unique
classical solution solution u. Moreover, u is given by

u(t) = UΦ(t, s)x +
∫ t

s

UΦ(t, s)f(r)dr, (4.8)

where UΦ(t, s) is an evolution family solution of the problem (3.1)
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Proof. Consider the problem

d

dt
u(t) = B(t)u(t), 0 ≤ s ≤ t ≤ T,

u(s) = (x, 0, f).

We have showed that (B(t))0≤t≤T is a stable family and the function t → B(t)y
is continuously differentiable, for all y ∈ D(B(t)) = D × {0} × C1([0, T ], X) and
that D(B(t)) is independent of t. Then there exist an evolution system U(t, s) on
X × {0} × C1([0, T ], X) such that

U(t, s)

x
0
f

 =

u1(t)
0

u2(t)

 = u(t)

is a classical solution of (4.3) and from the Proposition 4.2, u1 is a classical so-
lution of (4.1), for (x, 0, f) ∈ ker(L(s) − Φ(s)) × {0} × C1([0, T ], X). Let v(r) =
UΦ(t, r)u1(r). Then v is differentiable and

d

dr
v(r) = −UΦ(t, r)AΦ(r)u1(r) + UΦ(t, r)[AΦ(r)u1(r) + f(r)],

where AΦ(t) = A(t)/ ker(L(t)− Φ(t)); therefore,

d

dr
v(r) = UΦ(t, r)f(r). (4.9)

Integrating (4.9) from s to t, we obtain

u1(t) = UΦ(t, s)x +
∫ t

s

UΦ(t, r)f(r)dr,

which completes the proof. �

5. Second Inhomogeneous Problem

In this section, we consider the Inhomogeneous Cauchy problem

d

dt
u(t) = A(t)u(t) + f(t), 0 ≤ s ≤ t ≤ T,

L(t)u(t) = Φ(t)u(t) + g(t), 0 ≤ s ≤ t ≤ T,

u(s) = x.

(5.1)

A function u : [s, T ] → X is a classical solution if it is continuously differentiable,
u(t) ∈ D, for all t ≥ s and u satisfies (5.1).

Consider the Banach space E = X × Y × C1([0, T ], X) × C1([0, T ], Y ), where
C1([0, T ], X) and C1([0, T ], Y ) are equipped with the norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞
for f in C1([0, T ], X) or in C1([0, T ], Y ). Consider the operator matrices

B(t) =


A(t) 0 δt 0

−L(t) + Φ(t) 0 0 δt

0 0 0 0
0 0 0 0

 , (5.2)

with
D(B(t)) = D × {0} × C1([0, T ], X)× C1([0, T ], Y )
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where δt : C1([0, T ], X) → X such that δt(f) = f(t) and δt : C1([0, T ], Y ) → Y
such that δt(g) = g(t). To the family B(t) ,we associate the homogeneous Cauchy
problem

d

dt
u(t) = B(t)u(t), 0 ≤ s ≤ t ≤ T,

u(s) = (x, 0, f, g)
(5.3)

for (x, 0, f, g) ∈ D × {0} × C1([0, T ], X)× C1([0, T ], Y ) = D1.

Lemma 5.1. Assume that the hypothesis (H1)–(H5) hold. Then the family opera-
tors B(t) is stable.

Proof. For t ∈ [0, T ], we write the B(t) defined in (5.2) as B(t) = l(t)+φ(t), where

l(t) =


A(t) 0 0 0
−L(t) 0 0 0

0 0 0 0
0 0 0 0

 and φ(t) =


0 0 δt 0

Φ(t) 0 0 δt

0 0 0 0
0 0 0 0

 ,

we must show that the family l(t) is stable. Let

R(λ) =


R(λ, A0(t)) Lλ,t 0 0

0 0 0 0
0 0 1/λ 0
0 0 0 1/λ

 .

For λ > ω0, λ 6= 0 and t ∈ [0, T ] we show that R(λ, l(t)) = R(λ). For (x, y, f, g) ∈
X × Y × C1([0, T ], X)× C1([0, T ], Y ), we have

R(λ)


x
y
f
g

 =


R(λ, A0(t))x + Lλ,ty

0
f/λ
g/λ

 , (5.4)

by the Remark 3.2 and with the same proof as Lemma 4.1 we obtain

(λI − l(t))R(λ)


x
y
f
g

 =


x
y
f
g

 . (5.5)

On the other hand, for (x, 0, f, g) ∈ D×{0}×C1([0, T ], X)×C1([0, T ], Y ), we have

(λI − l(t))


x
0
f
g

 =


(λI −A(t))x

L(t)x
λf
λg

 ,

and

R(λ)(λI − l(t))


x
0
f
g

 =


R(λ, A0(t))((λI −A(t))x) + Lλ,tL(t)x

0
f
g

 =


x
0
f
g

 , (5.6)
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then from (5.5), (5.6) and Remark 3.2, we have R(λ) = R(λI, l(t)). By recurrence
we obtain

m∏
i=1

R(λ, l(ti)) =


∏m

i=1 R(λ, A0(ti))
∏m−1

i=1 R(λ, A0(ti))Lλ,tm 0 0
0 0 0 0
0 0 1/λm 0
0 0 0 1/λm

 ,

for a finite sequence 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm ≤ T .
Now on the space X × Y × C1([0, T ], X)× C1([0, T ], Y ),we consider the norm

‖(x, y, f, g)‖ = (‖x‖+ ‖y‖+ ‖f‖+ ‖g‖). (5.7)

For (x, y, f, g) ∈ X × Y × C1([0, T ], X)× C1([0, T ], Y ), we have

‖
m∏

i=1

R(λ, l(ti))


x
y
f
g

 ‖ ≤ M

(λ− ω0)m
‖x‖+

Mγ

(λ− ω0)m−1

1
λ− ω1

‖y‖+
‖f‖
λm

+
‖g‖
λm

≤ M ′

(λ− ω2)m
(‖x‖+ ‖y‖+ ‖f‖+ ‖g‖),

where ω2 = max(0, ω0, ω1) and M ′ = max(M,Mγ). Since B(t) is a perturbation
of l(t), by a linear operator φ(t) on E; hence, in view of perturbation result [7,
Theorem 5.2.3], B(t) is stable. �

Proposition 5.2. Let (x, 0, f, g) ∈ D × {0} × C1([0, T ], X)× C1([0, T ], Y )
(1) If the function t → u(t) =

(
u1(t), 0, u2(t), u3(t)

)
is a classical solution of (5.3)

with an initial value (x, 0, f, g) then t → u1(t) is a classical solution of (5.1) with
the initial value x.
(2) Let u is a classical solution of (5.1) with the initial value x. Then, the function
t → U(t) =

(
u(t), 0, f, g

)
is a classical solution of (5.3) with the initial value

(x, 0, f, g).

Proof. (1) If u(t) =
(
u1(t), 0, u2(t), u3(t)

)
is a classical solution of (5.3), then u1 is

continuously differentiable on [s, T ] and we have
d
dtu1(t)

0
d
dtu2(t)
d
dtu3(t)

 =


A(t) 0 δt 0

−L(t) + Φ(t) 0 0 δt

0 0 0 0
0 0 0 0




u1(t)
0

u2(t)
u3(t)

 .

This implies

d

dt
u1(t) = A(t)u1(t) + δtu2(t), 0 ≤ s ≤ t ≤ T,

L(t)u1(t) = Φ(t)u1(t) + δtu3(t), 0 ≤ s ≤ t ≤ T,

d

dt
u2(t) = 0,

d

dt
u3(t) = 0.

One has d
dtu3(t) = 0 which implies u3(t) = u3(s) = g and L(t)u1(t) = Φ(t)u1(t) +

g(t). Also d
dtu2(t) = 0 implies u2(t) = u2(s) = f and d

dtu1(t) = A(t)u1(t) + f(t).
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Then
d

dt
u1(t) = A(t)u1(t) + f(t), 0 ≤ s ≤ t ≤ T,

L(t)u1(t) = Φ(t)u1(t) + g(t), 0 ≤ s ≤ t ≤ T,

u1(s) = x.

Thus u1 is a classical solution of (5.1) with the initial value x.
(2) Let u is a classical solution of (5.1). This implies that u is continuously differ-
entiable and u(t) ∈ D × {0} × C1([0, T ], X)× C1([0, T ], Y ). Moreover,

d

dt
u(t) = A(t)u(t) + f(t), 0 ≤ s ≤ t ≤ T

L(t)u(t) = Φ(t)u(t) + g(t), 0 ≤ s ≤ t ≤ T

u(s) = x.

This implies 
d
dtu(t)

0
0
0

 =


A(t) 0 δt 0

−L(t) + Φ(t) 0 0 δt

0 0 0 0
0 0 0 0




u(t)
0
f
g

 ,

with u(s) = x. Then U(t) = (u(t), 0, f, g) is continuously differentiable, U(t) ∈
D × {0} × C1([0, T ], X) × C1([0, T ], Y ), for all t ∈ [s, T ] and U(t) is a classical
solution of (5.1) with the initial value (x, 0, f, g). �

Theorem 5.3. Let f ∈ C1([0, T ], X) and g ∈ C1([0, T ], Y ). Assume that the
hypothesis (H1)–(H5) hold. Then for every x ∈ D such that −L(s)x+Φ(s)x+g(s) =
0, problem (5.1) has a unique classical solution.

Proof. Consider the homogenous Cauchy problem
d

dt
u(t) = B(t)u(t), 0 ≤ s ≤ t ≤ T,

u(s) = (x, 0, f, g).

By Lemma 5.1, B(t) is a stable family and the function t → B(t)y is continuously
differentiable for all y ∈ D1 = D(B(t)) independent of t. Then there exist an
evolution family U(t, s) on X × {0} × C1([0, T ], X)× C1([0, T ], Y ) such that

U(t, s)


x
0
f
g

 =


u1(t)

0
u2(t)
u3(t)

 = u(t)

is a classical solution of (5.3) and from the Proposition 5.2, u1 is a classical solution
of (5.1). The uniqueness of u1 comes from the uniqueness of the solution of (5.3)
and Proposition 5.2. �

Theorem 5.4. Let f ∈ C1([0, T ], X) and g ∈ C1([0, T ], Y ). If u is a classical
solution of (5.1) then u is given by the variation of constants formula

u(t) = U(t, s)(I−Lλ,sL(s))x+g(t, u(t))+
∫ t

s

U(t, r)[λg(r, u(r))−g(r, u(r))′+f(r)]dr,

(5.8)
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where U(t, s) is the evolution family generated by A0(t) and

g(t, u(t)) = Lλ,t(Φ(t)u(t) + g(t)).

Proof. Let now u be a classical solution of (5.1). Take

u2(t) = Lλ,tL(t)u(t) and u1(t) = (I − Lλ,tL(t))u(t).

Then the functions

u2(t) = g(t, u(t)) = Lλ,t(Φ(t)u(t) + g(t)) and u1(t)

are differentiable. Since u2(t) ∈ ker(λI −A(t)), we have A(t)u2(t) = λu2(t) and

d

dt
u1(t) =

d

dt
u(t)− d

dt
u2(t)

= A(t)u(t)− (g(t, u(t)))′ + f(t)

= A(t)(u1(t) + u2(t)) + f(t)− (g(t, u(t)))′

= A(t)u1(t) + λ(g(t, u(t)) + f(t)− (g(t, u(t)))′.

When we define h(t) := λg(t, u(t)) + f(t)− (g(t, u(t)))′, we get

u1(t) = U(t, s)u1(s) +
∫ t

s

U(t, r)h(r)dr. (5.9)

By replacing u1(s) by (I − Lλ,sL(s))x, we obtain

u1(t) = U(t, s)(I − Lλ,sL(s))x +
∫ t

s

U(t, r)h(r)dr, (5.10)

it follows that

u(t) = u(t, s)(I − Lλ,sL(s))x + g(t, u(t))

+
∫ t

s

u(t, r)[λg(r, u(r))− (g(r, u(r)))′ + f(r)]dr,

which completes the proof. �
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